Thanks to visit codestin.com
Credit goes to github.com

Skip to content

arnaudsm/bigot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Example complexity graph

Bigot

Benchmarking library with Space and Time Complexity estimation.
Pull requests are welcome !

Installation

pip install bigot

Usage

Provide a benchmark function with a single dimension parameter

def on(n):
    x = 10000000*"-"*int(n)
    sleep(0.001*n)
    
import bigot
print("Function has a space complexity of", bigot.Space(on2),
      "and a time complexity of", bigot.Time(on2))
Function has a space complexity of O(n^2) and a time complexity of O(n^2)

You can test our fancy options. See docstrings for reference.

bench = bigot.Time(
    on2,
    plot=True,
    duration=1,
    verbose=True,
    name="My fancy function"
)

And check the number of iterations, useful when comparing functions

print(bench.iterations, "iterations in", bench.duration, "seconds")
8 iterations in 8 seconds

You can also compare multiple functions

def on2(n):
    x = 10000000*"-"*int(n**2)
    sleep(0.001*n**2)

print(bigot.Compare([on, on2]).space())
  Name  Duration  Iterations Space complexity
0   On       1.0        49.0             O(n)
1  On2       1.0         8.0           O(n^2)

Testing

pytest .

About

Benchmarking library with Space and Time Complexity estimation

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages