-
Notifications
You must be signed in to change notification settings - Fork 57
Open
Description
Thank you for posting the code! I attempted to implement your code in TF 1.3 making the following changes:
import tensorflow.contrib.keras.api.keras as K
from tensorflow.contrib.keras.api.keras.initializers import RandomNormal
from tensorflow.contrib.keras.api.keras.layers import Layer, InputSpec
from tensorflow.contrib.keras.api.keras.models import Model, Sequential
from tensorflow.contrib.keras.api.keras.layers import Dense, Dropout, Input
from tensorflow.contrib.keras.api.keras.optimizers import SGD
from tensorflow.contrib.keras.api.keras.callbacks import LearningRateScheduler
from tensorflow.contrib.keras.api.keras.backend import floatx
However, I encounter en error message pointing to line#71, which is the last line in the following:
def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[1]
self.input_spec = [InputSpec(dtype=K.backend.floatx(),
shape=(None, input_dim))]
self.W = K.backend.variable(self.initial_weights)
self.trainable_weights = [self.W]
layerwise pretrain and Finetuning autoencoder works fine on the test example (mnist), but then Initializing cluster centres with k-means. crushes with an error message:
self.trainable_weights = K.backend.variable(self.initial_weights)
AttributeError: can't set attribute
What could be the reason for that??? Thanks in advance.
Metadata
Metadata
Assignees
Labels
No labels