Thanks to visit codestin.com
Credit goes to github.com

Skip to content

fodorad/LinMulT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LinMulT

python pytorch

General-purpose Multimodal Transformer with Linear-Complexity Attention Mechanism.

Setup

Install package from PyPI

pip install linmult

Install package for development

git clone https://github.com/fodorad/LinMulT
cd LinMulT
pip install -e .
pip install -U -r requirements.txt
python -m unittest

Quick start

The following use cases demonstrate some basic, then more advanced functionality using the LinT and LinMulT models. For better coverage of configurations, refer to the test cases provided in the linmult/test directory.

LinT: linear-complexity transformer for a single input sequence

Input sequence without mask, single output head

import torch
from linmult import LinT

batch_size = 8
time_dim_1 = 1500
feature_dim_1 = 25
output_dim_1 = 5

x = torch.rand((batch_size, time_dim_1, feature_dim_1))

model = LinT(
    {
        'input_feature_dim': feature_dim_1,
        'heads': [{'name': 'head_0', 'type': 'simple', 'output_dim': output_dim_1}]
    }
)
output_heads = model(x)
assert output_heads['head_0'].shape == (batch_size, time_dim_1, output_dim_1)

Input sequence without mask, single aggregated output head

Note, that the time dimension aggregation is applied within the model.

import torch
from linmult import LinT

batch_size = 8
time_dim_1 = 1500
feature_dim_1 = 25
output_dim_1 = 5

x = torch.rand((batch_size, time_dim_1, feature_dim_1))

model = LinT(
    {
        'input_feature_dim': feature_dim_1,
        'heads': [{'name': 'head_0', 'type': 'simple', 'output_dim': output_dim_1}],
        'time_dim_reducer': 'attentionpool'
    }
)
output_heads = model(x)
assert output_heads['head_0'].shape == (batch_size, output_dim_1)

Input sequence without mask, single aggregated output head

Note, that the time dimension aggregation is applied to the model outputs.

import torch
from linmult import LinT, apply_logit_aggregation

batch_size = 8
time_dim_1 = 1500
feature_dim_1 = 25
output_dim_1 = 5

x = torch.rand((batch_size, time_dim_1, feature_dim_1))

model = LinT(
    {
        'input_feature_dim': feature_dim_1,
        'heads': [{'name': 'head_0', 'type': 'simple', 'output_dim': output_dim_1}]
    }
)
output_heads = model(x)
assert output_heads['head_0'].shape == (batch_size, time_dim_1, output_dim_1)

output = apply_logit_aggregation(x=output_heads['head_0'], method='meanpooling')
assert output.shape == (batch_size, output_dim_1)

Input sequence with a mask, multiple aggregated output head

import torch
from linmult import LinT, apply_logit_aggregation

batch_size = 8
time_dim_1 = 50
feature_dim_1 = 25
output_dim_1 = 5
output_dim_2 = 6

x = torch.rand((batch_size, time_dim_1, feature_dim_1))
mask = (torch.arange(x.size(1)).unsqueeze(0) < x.size(1) - 10).expand(batch_size, -1).bool() # Shape: (batch_size, time_dim_1) 

model = LinT(
    {
        'input_feature_dim': feature_dim_1,
        'heads': [
            {'name': 'head_0', 'type': 'simple', 'output_dim': output_dim_1},
            {'name': 'head_1', 'type': 'simple', 'output_dim': output_dim_2}
        ]
    }
)
output_heads = model(x, mask)
assert output_heads['head_0'].shape == (batch_size, time_dim_1, output_dim_1)
assert output_heads['head_1'].shape == (batch_size, time_dim_1, output_dim_2)

output_0 = apply_logit_aggregation(x=output_heads['head_0'], method='meanpooling')
output_1 = apply_logit_aggregation(x=output_heads['head_1'], method='meanpooling')
assert output_0.shape == (batch_size, output_dim_1)
assert output_1.shape == (batch_size, output_dim_2)

Input sequence with a mask, a sequence and an aggregated output head

import torch
from linmult import LinT, apply_logit_aggregation

batch_size = 8
time_dim_1 = 50
feature_dim_1 = 25
output_dim_1 = 5
output_dim_2 = 6

x = torch.rand((batch_size, time_dim_1, feature_dim_1))
mask = (torch.arange(x.size(1)).unsqueeze(0) < x.size(1) - 10).expand(batch_size, -1).bool() # Shape: (batch_size, time_dim_1) 

model = LinT(
    {
        'input_feature_dim': feature_dim_1,
        'heads': [
            {'name': 'head_0', 'type': 'sequence', 'output_dim': output_dim_1},
            {'name': 'head_1', 'type': 'sequence_aggregation', 'output_dim': output_dim_2}
        ]
    }
)
output_heads = model(x, mask)
assert output_heads['head_0'].shape == (batch_size, time_dim_1, output_dim_1)
assert output_heads['head_1'].shape == (batch_size, output_dim_2)

output_0 = apply_logit_aggregation(x=output_heads['head_0'], method='meanpooling')
assert output_0.shape == (batch_size, output_dim_1)

LinMulT: linear-complexity multimodal transformer for multiple input sequences

2 input sequences with same time dimensions, single aggregated output

import torch
from linmult import LinMulT, apply_logit_aggregation

batch_size = 8
time_dim = 450
feature_dim_1, feature_dim_2 = 25, 35
output_dim_1 = 5

x_1 = torch.rand((batch_size, time_dim, feature_dim_1))
x_2 = torch.rand((batch_size, time_dim, feature_dim_2))

model = LinMulT(
    {
        'input_feature_dim': [feature_dim_1, feature_dim_2],
        'heads': [{'name': 'head_0', 'type': 'simple', 'output_dim': output_dim_1}]
    }
)
output_heads = model([x_1, x_2])
assert output_heads['head_0'].shape == (batch_size, time_dim, output_dim_1)

output = apply_logit_aggregation(x=output_heads['head_0'], method='meanpooling')
assert output.shape == (batch_size, output_dim_1)

3 input sequences with different time dimensions, masks, multiple aggregated output heads

import torch
from linmult import LinMulT

batch_size = 8
time_dim_1, time_dim_2, time_dim_3 = 1500, 450, 450
feature_dim_1, feature_dim_2, feature_dim_3 = 25, 35, 256
output_dim_1 = 5
output_dim_2 = 6

x_1 = torch.rand((batch_size, time_dim_1, feature_dim_1))
x_2 = torch.rand((batch_size, time_dim_2, feature_dim_2))
x_3 = torch.rand((batch_size, time_dim_3, feature_dim_3))
mask_1 = (torch.arange(x_1.size(1)).unsqueeze(0) < x_1.size(1) - 10).expand(batch_size, -1).bool() # Shape: (batch_size, time_dim_1) 
mask_2 = (torch.arange(x_2.size(1)).unsqueeze(0) < x_2.size(1) - 10).expand(batch_size, -1).bool() # Shape: (batch_size, time_dim_2) 
mask_3 = (torch.arange(x_3.size(1)).unsqueeze(0) < x_3.size(1) - 10).expand(batch_size, -1).bool() # Shape: (batch_size, time_dim_3) 

model = LinMulT(
    {
        'input_feature_dim': [feature_dim_1, feature_dim_2, feature_dim_3],
        'heads': [
            {'name': 'head_0', 'type': 'simple', 'output_dim': output_dim_1},
            {'name': 'head_1', 'type': 'simple', 'output_dim': output_dim_2}
        ],
        'time_dim_reducer': 'gap',
    }
)
output_heads = model([x_1, x_2, x_3], [mask_1, mask_2, mask_3])
assert output_heads['head_0'].shape == (batch_size, output_dim_1)
assert output_heads['head_1'].shape == (batch_size, output_dim_2)

3 input sequences with different time dimensions, a missing input, enhanced multimodal signal module

import torch
from linmult import LinMulT, apply_logit_aggregation

batch_size = 8
time_dim_1, time_dim_2, time_dim_3 = 1500, 450, 450
feature_dim_1, feature_dim_2, feature_dim_3 = 25, 35, 256
output_dim_1 = 5

x_1 = torch.rand((batch_size, time_dim_1, feature_dim_1))
x_2 = torch.rand((batch_size, time_dim_2, feature_dim_2))
x_3 = torch.rand((batch_size, time_dim_3, feature_dim_3))
mask_1 = (torch.arange(x_1.size(1)).unsqueeze(0) < x_1.size(1) - 10).expand(batch_size, -1).bool() # Shape: (batch_size, time_dim_1) 
mask_2 = (torch.arange(x_2.size(1)).unsqueeze(0) < x_2.size(1) - 10).expand(batch_size, -1).bool() # Shape: (batch_size, time_dim_2) 
mask_3f = torch.zeros(size=x_3.size()[:2], dtype=bool) # Shape: (B, T_3)

model = LinMulT(
    {
        'input_feature_dim': [feature_dim_1, feature_dim_2, feature_dim_3],
        'heads': [
            {'name': 'head_0', 'type': 'simple', 'output_dim': output_dim_1},
            {'name': 'head_1', 'type': 'simple', 'output_dim': output_dim_2}
        ],
        'multimodal_signal': True,
        'time_dim_aligner': 'amp',
        'tam_fusion': True,
        'aligned_time_dim': time_dim_2,
    }
)
output_heads = model([x_1, x_2, x_3], [mask_1, mask_2, mask_3f])
assert output_heads['head_0'].shape == (batch_size, time_dim_2, output_dim_1)
assert output_heads['head_1'].shape == (batch_size, time_dim_2, output_dim_2)

output = apply_logit_aggregation(x=output_heads['head_0'], method='meanpooling')
assert output.shape == (batch_size, output_dim_1)

3 input sequences with different time dimensions, a missing input, enhanced multimodal signal module with multiple task-specific (sequence and aggregated sequence) output heads

import torch
from linmult import LinMulT, apply_logit_aggregation

batch_size = 8
time_dim_1, time_dim_2, time_dim_3 = 1500, 450, 450
feature_dim_1, feature_dim_2, feature_dim_3 = 25, 35, 256
output_dim_1 = 5

x_1 = torch.rand((batch_size, time_dim_1, feature_dim_1))
x_2 = torch.rand((batch_size, time_dim_2, feature_dim_2))
x_3 = torch.rand((batch_size, time_dim_3, feature_dim_3))
mask_1 = (torch.arange(x_1.size(1)).unsqueeze(0) < x_1.size(1) - 10).expand(batch_size, -1).bool() # Shape: (batch_size, time_dim_1) 
mask_2 = (torch.arange(x_2.size(1)).unsqueeze(0) < x_2.size(1) - 10).expand(batch_size, -1).bool() # Shape: (batch_size, time_dim_2) 
mask_3f = torch.zeros(size=x_3.size()[:2], dtype=bool) # Shape: (B, T_3)

model = LinMulT(
    {
        'input_feature_dim': [feature_dim_1, feature_dim_2, feature_dim_3],
        'heads': [
            {'name': 'head_0', 'type': 'sequence', 'output_dim': output_dim_1},
            {'name': 'head_1', 'type': 'sequence_aggregation', 'output_dim': output_dim_2}
        ],
        'multimodal_signal': True,
        'time_dim_aligner': 'amp',
        'tam_fusion': True,
        'aligned_time_dim': time_dim_2,
    }
)
output_heads = model([x_1, x_2, x_3], [mask_1, mask_2, mask_3f])
assert output_heads['head_0'].shape == (batch_size, time_dim_2, output_dim_1)
assert output_heads['head_1'].shape == (batch_size, output_dim_2)

output = apply_logit_aggregation(x=output_heads['head_0'], method='meanpooling')
assert output.shape == (batch_size, output_dim_1)

Using a config file

import torch
from linmult import LinMulT, apply_logit_aggregation, load_config

batch_size = 8
time_dim_1, time_dim_2, time_dim_3 = 300, 300, 500
feature_dim_1, feature_dim_2, feature_dim_3 = 25, 41, 768
output_dim_1 = 7
output_dim_2 = 2

x_1 = torch.rand((batch_size, time_dim_1, feature_dim_1))
x_2 = torch.rand((batch_size, time_dim_2, feature_dim_2))
x_3 = torch.rand((batch_size, time_dim_3, feature_dim_3))

config = load_config("configs/LinMulT.yaml")
model = LinMulT(config)

output_heads = model([x_1, x_2, x_3])
assert output_heads['head_0'].shape == (batch_size, output_dim_1)
assert output_heads['head_1'].shape == (batch_size, time_dim_1, output_dim_2)

output = apply_logit_aggregation(x=output_heads['head_1'], method='meanpooling')
assert output.shape == (batch_size, output_dim_2)

Similar projects using LinMulT

(2023) BlinkLinMulT

LinMulT is trained for blink presence detection and eye state recognition tasks. Our results demonstrate comparable or superior performance compared to state-of-the-art models on 2 tasks, using 7 public benchmark databases.

(2022) PersonalityLinMulT

LinMulT is trained for Big Five personality trait estimation using the First Impressions V2 dataset and sentiment estimation using the MOSI and MOSEI datasets.

Citation - BibTex

If you found our research helpful or influential please consider citing:

(2023) LinMulT for blink presence detection and eye state recognition:

@article{blinklinmult-fodor23,
  title = {BlinkLinMulT: Transformer-based Eye Blink Detection},
  author = {Fodor, {\'A}d{\'a}m and Fenech, Kristian and L{\H{o}}rincz, Andr{\'a}s},
  journal = {...}
  pages = {1--19},
  year = {2023}
}

(2022) LinMulT for personality trait and sentiment estimation:

@InProceedings{pmlr-v173-fodor22a,
  title = {Multimodal Sentiment and Personality Perception Under Speech: A Comparison of Transformer-based Architectures},
  author = {Fodor, {\'A}d{\'a}m and Saboundji, Rachid R. and Jacques Junior, Julio C. S. and Escalera, Sergio and Gallardo-Pujol, David and L{\H{o}}rincz, Andr{\'a}s},
  booktitle = {Understanding Social Behavior in Dyadic and Small Group Interactions},
  pages = {218--241},
  year = {2022},
  editor = {Palmero, Cristina and Jacques Junior, Julio C. S. and Clapés, Albert and Guyon, Isabelle and Tu, Wei-Wei and Moeslund, Thomas B. and Escalera, Sergio},
  volume = {173},
  series = {Proceedings of Machine Learning Research},
  month = {16 Oct},
  publisher = {PMLR},
  pdf = {https://proceedings.mlr.press/v173/fodor22a/fodor22a.pdf},
  url = {https://proceedings.mlr.press/v173/fodor22a.html}
}

Acknowledgement

The code is inspired by the following two materials:

Multimodal Transformer:

Linear Attention:

Contact

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages