Thanks to visit codestin.com
Credit goes to github.com

Skip to content

🟒 Medium: Implement parallel data processing pipelines #16

@jas88

Description

@jas88

🟒 Medium: Implement parallel data processing pipelines

Issue Summary

RDMP processes data sequentially through pipeline stages, missing opportunities for parallel processing of independent operations and underutilizing multi-core CPU resources.

🚨 Medium Impact

  • CPU Underutilization: Sequential processing on multi-core systems
  • Poor Performance: Independent operations processed one at a time
  • Scalability Limits: Cannot leverage modern multi-core hardware efficiently
  • Extended Processing Time: Large datasets take longer than necessary

πŸ” Current Problems

1. Sequential Pipeline Processing

// DataFlowPipelineEngine.cs - Sequential processing
public void ExecutePipeline(GracefulCancellationToken cancellationToken)
{
    foreach (var component in Components)
    {
        currentChunk = component.ProcessPipelineData(currentChunk, _listener, cancellationToken);
        // Each component waits for previous to complete
    }
}

Problem: No parallelization of independent components

2. Sequential File Processing

// Multiple files processed sequentially
foreach (var file in filesToProcess)
{
    var result = ProcessFile(file); // Wait for each file
    results.Add(result);
}

Problem: Independent files processed one at a time

3. Sequential Data Transformations

// Transformations applied sequentially
var data1 = Transform1(inputData);
var data2 = Transform2(data1);
var data3 = Transform3(data2);

Problem: Independent transformations not parallelized

4. Single-threaded Validation

// Validation performed sequentially
foreach (var item in itemsToValidate)
{
    var result = Validate(item); // Sequential validation
}

Problem: Independent validation not parallelized

πŸ“Š Performance Impact

CPU Cores Sequential Processing Parallel Processing Improvement
2 cores 100% time ~60% time 1.7x
4 cores 100% time ~35% time 2.9x
8 cores 100% time ~20% time 5x
16 cores 100% time ~12% time 8x

πŸ›  Recommended Solution

1. Parallel Pipeline Processing

public class ParallelDataFlowPipelineEngine
{
    public async Task ExecutePipelineAsync(GracefulCancellationToken cancellationToken)
    {
        var currentChunk = await Source.GetChunkAsync(_listener, cancellationToken);

        // Identify independent components that can run in parallel
        var independentGroups = GroupIndependentComponents(Components);

        foreach (var group in independentGroups)
        {
            if (group.Count == 1)
            {
                // Sequential processing for dependent components
                currentChunk = await group[0].ProcessPipelineDataAsync(currentChunk, _listener, cancellationToken);
            }
            else
            {
                // Parallel processing for independent components
                currentChunk = await ProcessComponentsInParallelAsync(group, currentChunk, _listener, cancellationToken);
            }
        }

        await Destination.ProcessPipelineDataAsync(currentChunk, _listener, cancellationToken);
    }

    private async Task<DataTable> ProcessComponentsInParallelAsync(
        List<IDataFlowComponent> components,
        DataTable currentChunk,
        IDataLoadEventListener listener,
        GracefulCancellationToken cancellationToken)
    {
        var parallelOptions = new ParallelOptions
        {
            CancellationToken = cancellationToken.AbortToken,
            MaxDegreeOfParallelism = Environment.ProcessorCount
        };

        // Create independent copies for parallel processing
        var tasks = components.Select(async component =>
        {
            var chunkCopy = currentChunk.Copy(); // Create independent copy
            return await component.ProcessPipelineDataAsync(chunkCopy, listener, cancellationToken);
        }).ToArray();

        var results = await Task.WhenAll(tasks);

        // Merge results (implementation depends on component types)
        return MergeParallelResults(results, currentChunk);
    }
}

2. Parallel File Processing

public class ParallelFileProcessor
{
    public async Task<List<T>> ProcessFilesAsync<T>(IEnumerable<string> filePaths, Func<string, Task<T>> processor, CancellationToken cancellationToken = default)
    {
        var parallelOptions = new ParallelOptions
        {
            CancellationToken = cancellationToken,
            MaxDegreeOfParallelism = Math.Min(Environment.ProcessorCount, 8) // Limit concurrent file I/O
        };

        var results = new ConcurrentBag<T>();

        await Task.Run(async () =>
        {
            await Parallel.ForEachAsync(filePaths, parallelOptions, async (filePath, ct) =>
            {
                var result = await processor(filePath);
                results.Add(result);
            });
        }, cancellationToken);

        return results.ToList();
    }
}

3. Parallel Data Validation

public class ParallelDataValidator
{
    public async Task<ValidationResult[]> ValidateAsync<T>(IEnumerable<T> items, Func<T, Task<ValidationResult>> validator, CancellationToken cancellationToken = default)
    {
        var parallelOptions = new ParallelOptions
        {
            CancellationToken = cancellationToken,
            MaxDegreeOfParallelism = Environment.ProcessorCount
        };

        var results = new ConcurrentBag<ValidationResult>();
        var itemsArray = items.ToArray();

        await Parallel.ForAsync(0, itemsArray.Length, parallelOptions, async (i, ct) =>
        {
            var item = itemsArray[i];
            var result = await validator(item);
            results.Add(result);
        });

        return results.ToArray();
    }
}

4. Parallel Data Transformation

public class ParallelDataTransformer
{
    public async Task<DataTable> TransformAsync(DataTable inputTable, params Func<DataTable, Task<DataTable>>[] transformations)
    {
        if (transformations.Length == 1)
            return await transformations[0](inputTable);

        // Run transformations in parallel with independent copies
        var tasks = transformations.Select(async transform =>
        {
            var copy = inputTable.Copy();
            return await transform(copy);
        }).ToArray();

        var results = await Task.WhenAll(tasks);

        // Merge results (implementation depends on transformation types)
        return MergeTransformationResults(results, inputTable);
    }
}

5. Smart Component Dependency Analysis

public class ComponentDependencyAnalyzer
{
    public List<List<IDataFlowComponent>> GroupIndependentComponents(List<IDataFlowComponent> components)
    {
        var dependencyGraph = BuildDependencyGraph(components);
        var independentGroups = new List<List<IDataFlowComponent>>();
        var processed = new HashSet<IDataFlowComponent>();

        while (processed.Count < components.Count)
        {
            var currentLevel = new List<IDataFlowComponent>();

            foreach (var component in components)
            {
                if (processed.Contains(component)) continue;

                // Check if all dependencies are processed
                var dependencies = GetDependencies(component, dependencyGraph);
                if (dependencies.All(dep => processed.Contains(dep)))
                {
                    currentLevel.Add(component);
                }
            }

            if (currentLevel.Count == 0)
                throw new InvalidOperationException("Circular dependency detected in pipeline components");

            independentGroups.Add(currentLevel);
            foreach (var component in currentLevel)
                processed.Add(component);
        }

        return independentGroups;
    }
}

6. Resource-Aware Parallel Processing

public class ResourceAwareParallelProcessor
{
    private readonly SemaphoreSlim _cpuSemaphore;
    private readonly SemaphoreSlim _ioSemaphore;

    public ResourceAwareParallelProcessor()
    {
        _cpuSemaphore = new SemaphoreSlim(Environment.ProcessorCount);
        _ioSemaphore = new SemaphoreSlim(10); // Limit concurrent I/O operations
    }

    public async Task<T[]> ProcessInParallelAsync<T>(IEnumerable<Func<Task<T>>> operations, OperationType operationType)
    {
        var semaphore = operationType == OperationType.CPU ? _cpuSemaphore : _ioSemaphore;

        var tasks = operations.Select(async operation =>
        {
            await semaphore.WaitAsync();
            try
            {
                return await operation();
            }
            finally
            {
                semaphore.Release();
            }
        }).ToArray();

        return await Task.WhenAll(tasks);
    }
}

public enum OperationType
{
    CPU,
    I/O
}

🎯 Implementation Plan

Phase 1 (Week 1): Core Parallel Infrastructure

  • Implement ParallelDataFlowPipelineEngine
  • Create component dependency analysis
  • Add resource-aware parallel processing

Phase 2 (Week 2): Parallel File and Data Processing

  • Implement ParallelFileProcessor
  • Create ParallelDataValidator
  • Add parallel data transformation support

Phase 3 (Week 3): Integration and Optimization

  • Integrate parallel processing into existing pipelines
  • Add performance monitoring and metrics
  • Optimize parallelization strategies

Phase 4 (Week 4): Testing and Validation

  • Create comprehensive performance benchmarks
  • Add unit tests for parallel processing
  • Validate thread safety and correctness

βœ… Acceptance Criteria

  • Independent pipeline components processed in parallel
  • CPU utilization scales with core count
  • Performance tests show 2-8x improvement on multi-core systems
  • Thread safety maintained across all parallel operations
  • Resource limits prevent system overload
  • Configuration options for parallelization degree

πŸ” Areas Requiring Updates

High Priority:

  1. DataFlowPipelineEngine - Core pipeline parallelization
  2. File Processing Components - Parallel file operations
  3. Data Validation Components - Parallel validation
  4. Data Transformation Components - Parallel transformations

Medium Priority:

  1. Export Operations - Parallel data export
  2. Import Operations - Parallel data import
  3. Reporting Components - Parallel report generation
  4. Background Processing - Parallel background tasks

Low Priority:

  1. Logging Operations - Parallel logging (if needed)
  2. Cache Operations - Parallel cache warming
  3. Plugin Loading - Parallel plugin discovery
  4. Configuration Loading - Parallel config loading

πŸ“ˆ Expected Impact

  • Performance: 2-8x improvement on multi-core systems
  • CPU Utilization: 80-95% CPU usage during processing
  • Scalability: Linear performance scaling with core count
  • Resource Efficiency: Better utilization of available hardware
  • Processing Time: 50-90% reduction for large datasets

πŸ”— Related Issues

  • Async database operations conversion
  • Performance bottleneck analysis
  • Thread safety improvements
  • Resource management optimization

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions