-
-
Notifications
You must be signed in to change notification settings - Fork 480
Open
Description
Tried the tutorials with the transformers==4.50.0 version on Colab and the Platypus2-7B model throws the following error:
---> 24 generation_output = model.generate(
25 input_tokens['input_ids'].cuda(),
26 max_new_tokens=3,
7 frames
[/usr/local/lib/python3.11/dist-packages/torch/utils/_contextlib.py](https://localhost:8080/#) in decorate_context(*args, **kwargs)
114 def decorate_context(*args, **kwargs):
115 with ctx_factory():
--> 116 return func(*args, **kwargs)
117
118 return decorate_context
[/usr/local/lib/python3.11/dist-packages/transformers/generation/utils.py](https://localhost:8080/#) in generate(self, inputs, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, assistant_model, streamer, negative_prompt_ids, negative_prompt_attention_mask, use_model_defaults, **kwargs)
2324
2325 # 12. run sample (it degenerates to greedy search when `generation_config.do_sample=False`)
-> 2326 result = self._sample(
2327 input_ids,
2328 logits_processor=prepared_logits_processor,
[/usr/local/lib/python3.11/dist-packages/transformers/generation/utils.py](https://localhost:8080/#) in _sample(self, input_ids, logits_processor, stopping_criteria, generation_config, synced_gpus, streamer, **model_kwargs)
3284
3285 if is_prefill:
-> 3286 outputs = self(**model_inputs, return_dict=True)
3287 is_prefill = False
3288 else:
[/usr/local/lib/python3.11/dist-packages/airllm/airllm_base.py](https://localhost:8080/#) in __call__(self, *args, **kwargs)
367
368 def __call__(self, *args, **kwargs):
--> 369 return self.forward(*args, **kwargs)
370
371 def get_past_key_values_cache_seq_len(self, past_key_values):
[/usr/local/lib/python3.11/dist-packages/airllm/airllm_base.py](https://localhost:8080/#) in forward(self, input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict)
467 if self.profiling_mode:
468 t = time.time()
--> 469 moved_layers = self.move_layer_to_device(state_dict)
470 if self.profiling_mode:
471 elapsed_time = time.time() - t
[/usr/local/lib/python3.11/dist-packages/airllm/airllm_base.py](https://localhost:8080/#) in move_layer_to_device(self, state_dict)
315 not self.hf_quantizer.check_quantized_param(self.model, param_value=None, param_name=param_name, state_dict={})
316 ):
--> 317 set_module_tensor_to_device(self.model, param_name, self.running_device, value=state_dict[param_name],
318 dtype=self.running_dtype,
319 )
[/usr/local/lib/python3.11/dist-packages/accelerate/utils/modeling.py](https://localhost:8080/#) in set_module_tensor_to_device(module, tensor_name, device, value, dtype, fp16_statistics, tied_params_map)
251 splits = tensor_name.split(".")
252 for split in splits[:-1]:
--> 253 new_module = getattr(module, split)
254 if new_module is None:
255 raise ValueError(f"{module} has no attribute {split}.")
[/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in __getattr__(self, name)
1926 if name in modules:
1927 return modules[name]
-> 1928 raise AttributeError(
1929 f"'{type(self).__name__}' object has no attribute '{name}'"
1930 )
AttributeError: 'LlamaAttention' object has no attribute 'rotary_emb'
Running the mistralai/Mistral-7B-Instruct-v0.1 gives the following error:
[/usr/local/lib/python3.11/dist-packages/transformers/models/mistral/modeling_mistral.py](https://localhost:8080/#) in forward(self, hidden_states, position_embeddings, attention_mask, past_key_value, cache_position, **kwargs)
164 value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
165
--> 166 cos, sin = position_embeddings
167 query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
168
TypeError: cannot unpack non-iterable NoneType object
Metadata
Metadata
Assignees
Labels
No labels