Thanks to visit codestin.com
Credit goes to github.com

Skip to content

RMBarnard/raresim

Repository files navigation

PyPI version Python Version License: MIT Code style: black

RAREsim2

Python interface for flexible simulation of rare-variant genetic data using real haplotypes

Installation

From PyPI

pip install raresim

From TestPyPI (for testing pre-releases)

pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple/ raresim

From Source

git clone https://github.com/RMBarnard/raresim.git
cd raresim
pip install -e .  # Install in development mode

Main Functions

CALC

Calculate the expected number of variants per MAC bin using default population parameters, user-provided parameters, or target data.

usage: __main__.py calc [-h] --mac MAC -o OUTPUT -N N [--pop POP]
                        [--alpha ALPHA] [--beta BETA] [--omega OMEGA]
                        [--phi PHI] [-b B]
                        [--nvar_target_data NVAR_TARGET_DATA]
                        [--afs_target_data AFS_TARGET_DATA]
                        [--reg_size REG_SIZE] [-w W] [--w_fun W_FUN]
                        [--w_syn W_SYN]

options:
  -h, --help            show this help message and exit
  --mac MAC             MAC bin bounds (lower and upper allele counts) for the simulated sample size
  -o OUTPUT             Output file name
  -N N                  Simulated sample size
  --pop POP             Population (AFR, EAS, NFE, or SAS) to use default values for if not providing
                        alpha, beta, omega, phi, and b values or target data
  --alpha ALPHA         Shape parameter to estimate the expected AFS distribution (must be > 0)
  --beta BETA           Shape parameter to estimate the expected AFS distribution
  --omega OMEGA         Scaling parameter to estimate the expected number of variants per (Kb) for
                        sample size N (range of 0-1)
  --phi PHI             Shape parameter to estimate the expected number of variants per (Kb) for
                        sample size N (must be > 0)
  -b B                  Scale parameter to estimate the expected AFS distribution
  --nvar_target_data NVAR_TARGET_DATA
                        Target downsampling data with the number of variants per Kb to estimate the
                        expected number of variants per Kb for sample size N
  --afs_target_data AFS_TARGET_DATA
                        Target AFS data with the proportion of variants per MAC bin to estimate the
                        expected AFS distribution
  --reg_size REG_SIZE   Size of simulated genetic region in kilobases (Kb)
  -w W                  Weight to multiply the expected number of variants by in non-stratified
                        simulations (default value of 1)
  --w_fun W_FUN         Weight to multiply the expected number of functional variants by in
                        stratified simulations (default value of 1)
  --w_syn W_SYN         Weight to multiply the expected number of synonymous variants by in
                        stratified simulations (default value of 1)
  • default population parameters

The expected number of functional and synonymous variants can be estimated using default parameters for the following populations: African (AFR), East Asian (EAS), Non-Finnish European (NFE), and South Asian (SAS).

$ python3 -m raresim calc \
    --mac data/mac_bins.csv \
    -o <output file> \
    -N 15000 \
    --pop EAS \
    --reg_size 19.029
  • target data

The user can also use their own target data - this is necessary to calculate the expected number of functional and/or synonymous variants for stratified simulations. Note, the simulation parameters are output if the user wants to use them instead of target data for future simulations.

$ python3 -m raresim calc \
    --mac data/mac_bins.csv \
    -o <output file> \
    -N 15000 \
    --nvar_target_data data/chr19_block37_NFE_nvar_target_data.txt \
    --afs_target_data data/chr19_block37_NFE_AFS_target_data.txt \
    --reg_size 19.029
  • user-provided parameters

If parameters are known from previous simulations, the user can provide those instead of having to provide and fit target data.

$ python3 -m raresim calc \
    --mac data/mac_bins.csv \
    -o <output file> \
    -N 15000 \
    --alpha 1.5 \
    --beta -.25 \
    -b .25 \
    --omega .15 \
    --phi .65 \
    --reg_size 19.029

SIM

Simulate new allele frequencies given input haplotypes, a legend file, and the expected number of variants for the simulated sample size. A list of pruned variants (.legend-pruned-variants) is also output.

usage: __main__.py sim [-h] -m SPARSE_MATRIX [-b EXP_BINS]
                       [--functional_bins EXP_FUN_BINS]
                       [--synonymous_bins EXP_SYN_BINS] -l INPUT_LEGEND
                       [-L OUTPUT_LEGEND] -H OUTPUT_HAP
                       [--f_only FUN_BINS_ONLY] [--s_only SYN_BINS_ONLY] [-z]
                       [-prob] [--small_sample] [--keep_protected]
                       [--stop_threshold STOP_THRESHOLD]
                       [--activation_threshold ACTIVATION_THRESHOLD]
                       [--verbose]

options:
  -h, --help            show this help message and exit
  -m SPARSE_MATRIX      Input haplotype file (can be a .haps, .sm, or .gz file)
  -b EXP_BINS           Expected number of functional and synonymous variants per MAC bin
  --functional_bins EXP_FUN_BINS
                        Expected number of variants per MAC bin for functional variants (must be used
                        with --synonymous_bins) 
  --synonymous_bins EXP_SYN_BINS
                        Expected number of variants per MAC bin for synonymous variants (must be used
                        with --functional_bins) 
  -l INPUT_LEGEND       Input legend file
  -L OUTPUT_LEGEND      Output legend file (only required when using -z)
  -H OUTPUT_HAP         Output compressed haplotype file
  --f_only FUN_BINS_ONLY
                        Expected number of variants per MAC bin for only functional variants
  --s_only SYN_BINS_ONLY
                        Expected number of variants per MAC bin for only synonymous variants
  -z                    Monomorphic and pruned variants (rows of zeros) are removed from the output
                        haplotype file
  -prob                 Variants are pruned allele by allele given a probability of removal in the
                        legend file
  --small_sample        Overrides error to allow for simulation of small sample sizes (<10,000
                        haplotypes)
  --keep_protected      Variants designated with a 1 in the protected column of the legend file will
                        not be pruned
  --stop_threshold STOP_THRESHOLD
                        Percentage threshold for stopping the pruning process (0-100). Prevents the
                        number of variants from falling below the specified percentage of the expected
                        count for any given MAC bin during pruning (default value of 20)
  --activation_threshold ACTIVATION_THRESHOLD
                        Percentage threshold for activating the pruning process (0-100). Requires that
                        the actual number of variants for a MAC bin must be more than the given
                        percentage different from the expected number to activate pruning on the bin
                        (default value of 10)
  --verbose             when using --keep_protected and this flag, the program will additionally print
                        the before and after Allele Frequency Distributions with the protected variants
                        pulled out
$ python3 -m raresim sim \
    -m Simulated_80k_9.controls.haps.gz \
    -b data/Expected_variants_per_bin_80k.txt \
    -l data/Simulated_80k.legend \
    -L new.legend \
    -H new.hap.gz

Input allele frequency distribution:
(1, 1, 20.0) 9
(2, 2, 10.0) 5
(3, 5, 5.0) 6
(6, 10, 5.0) 7
(11, 20, 1.0) 11
(21, 1000, 0.0) 48

New allele frequency distribution:
(1, 1, 20.0) 15
(2, 2, 10.0) 11
(3, 5, 5.0) 6
(6, 10, 5.0) 3
(11, 20, 1.0) 1
(21, 1000, 0.0) 0

Writing new variant legend

Writing new haplotype file............
  • stratified (functional/synonymous) pruning

To perform stratified simulations where functional and synonymous variants are pruned separately:

  1. add a column to the legend file (-l) named "fun", where functional variants have the value "fun" and synonymous variants have the value "syn"
  2. provide separate MAC bin files with the expected number of variants per bin for functional (--functional_bins) and synonymous (--synonymous_bins) variants
$ python3 -m raresim sim \
    -m chr19.block37.NFE.sim100.stratified.haps.gz \
    --functional_bins data/Expected_variants_functional.txt \
    --synonymous_bins data/Expected_variants_synonymous.txt \
    -l data/chr19.block37.NFE.sim100.stratified.legend \
    -L new.legend \
    -H new.hap.gz

Input allele frequency distribution:
Functional
[1,1]   610.213692400324    686
[2,2]   199.745137641156    351
[3,5]   185.434393821117    598
[6,10]  73.1664075520905    472
[11,20] 37.132127271035 432
[21,220]    34.4401706091422    768
[221,440]   1.98761248740743    10
[441, ]     30

Synonymous
[1,1]   215.389082675548    276
[2,2]   73.1166493377018    140
[3,5]   73.6972836211026    240
[6,10]  33.4315406970657    181
[11,20] 19.1432926816897    181
[21,220]    20.2848171294807    331
[221,440]   1.38678884898772    11
[441, ]     20

New allele frequency distribution:
Functional
[1,1]   610.213692400324    607
[2,2]   199.745137641156    217
[3,5]   185.434393821117    178
[6,10]  73.1664075520905    82
[11,20] 37.132127271035 40
[21,220]    34.4401706091422    41
[221,440]   1.98761248740743    1
[441, ]     30

Synonymous
[1,1]   215.389082675548    220
[2,2]   73.1166493377018    66
[3,5]   73.6972836211026    63
[6,10]  33.4315406970657    31
[11,20] 19.1432926816897    20
[21,220]    20.2848171294807    20
[221,440]   1.38678884898772    1
[441, ]     20

Writing new variant legend

Writing new haplotype file...........
  • only functional/synonymous variants

To prune only functional or only synonymous variants:

  1. add a column to the legend file (-l) named "fun", where functional variants have the value "fun" and synonymous variants have the value "syn"
  2. provide a MAC bin file with the expected number of variants per bin for only functional (--f_only) or only synonymous (--s_only) variants
$ python3 -m raresim sim \
    -m chr19.block37.NFE.sim100.stratified.haps.gz \
    --f_only data/Expected_variants_functional.txt \
    -l data/chr19.block37.NFE.sim100.stratified.legend \
    -L new.legend \
    -H new.hap.gz
  • given probabilities

To prune variants using known or given probabilities, add a column to the legend file (-l) named "prob". A random number between 0 and 1 is generated for each variant, and if the number is greater than the probability, the variant is removed from the data.

$ python3 -m raresim sim \
    -m data/ProbExample.haps.gz \
    -H new.hap.gz \
    -l data/ProbExample.probs.legend \
    -prob
  • protected status

To exclude protected variants from the pruning process, add a column to the legend file (-l) named "protected". Any row with a 0 in this column will be eligible for pruning while any row with a 1 will still be counted but will not be eligible for pruning.

$ python3 -m raresim sim \
    -m data/ProbExample.haps.gz \
    -H new.hap.gz \
    -l data/ProtectiveExample.legend \
    --keep_protected \
    -b data/fonlyBins.txt \
    --small_sample \
    -L out.test

CONVERT

Convert haplotype files between different formats (.haps, .haps.gz, .sm).

options:
  -h, --help            show this help message and exit
  -i INPUT_FILE         Input haplotype file (can be .haps, .sm, or .gz file)
  -o OUTPUT_FILE        Output haplotype file
$ python3 -m raresim convert \
    -i data/input.haps.gz \
    -o output.sm

EXTRACT

Randomly extract a subset of haplotypes (.haps-sample.gz) and output the remaining haplotypes separately (.haps-remainder.gz).

options:
  -h, --help            show this help message and exit
  -i INPUT_FILE         Input haplotype file
  -o OUTPUT_FILE        Output haplotype file name
  -s SEED, --seed SEED  Optional seed for reproducibility
  -n NUM                Number of haplotypes to extract
$ python3 -m raresim extract \
    -i data/Simulated_80k_9.controls.haps.gz \
    -o extracted_hap_subset.haps.gz \
    -n 20 \
    --seed 123

Additional Resources

About

Scalable rare-variant simulations

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 5