Thanks to visit codestin.com
Credit goes to github.com

Skip to content

suquark/leaderbot

Repository files navigation

https://raw.githubusercontent.com/suquark/leaderbot/refs/heads/main/docs/source/_static/images/icons/logo-leaderbot-light.png

Paper | Poster | Slides | Video | API | Docs

leaderbot is a python package that provides a leaderboard for chatbots based on Chatbot Arena project.

Install

Install with pip:

pip install leaderbot

Alternatively, clone the source code and install with

cd source_dir
pip install .

Documentation

Documentation is available at leaderbot.org.

Quick Usage

The package provides several statistical models (see API References for details). In the example below, we use leaderbot.models.Davidson class to create a statistical model based on Davidson's method. However, there are several more methods available in the API, and working with them is similar. Here we will demonstrate some of the functionalities of the models, but the full list is available in the documentation.

Create and Train a Model

>>> from leaderbot.data import load
>>> from leaderbot.models import Davidson

>>> # Create a model
>>> data = load()
>>> model = Davidson(data)

>>> # Train the model
>>> model.train()

Leaderboard Table

To print leaderboard table of the chatbot agents, use leaderbot.models.Davidson.leaderboard function:

>>> # Leaderboard table
>>> model.leaderboard(max_rank=20)

The above code prints the table below:

+---------------------------+--------+--------+---------------+---------------+
|                           |        |    num |   observed    |   predicted   |
| rnk  agent                |  score |  match | win loss  tie | win loss  tie |
+---------------------------+--------+--------+---------------+---------------+
|   1. chatgpt-4o-latest    | +0.172 |  11798 | 53%  23%  24% | 53%  23%  24% |
|   2. gemini-1.5-pro-ex... | +0.149 |  16700 | 51%  26%  23% | 51%  26%  23% |
|   3. gpt-4o-2024-05-13    | +0.130 |  66560 | 51%  26%  23% | 51%  26%  23% |
|   4. gpt-4o-mini-2024-... | +0.121 |  15929 | 46%  29%  25% | 47%  29%  24% |
|   5. claude-3-5-sonnet... | +0.119 |  40587 | 47%  31%  22% | 47%  31%  22% |
|   6. gemini-advanced-0514 | +0.116 |  44319 | 49%  29%  22% | 49%  29%  22% |
|   7. llama-3.1-405b-in... | +0.111 |  15680 | 44%  32%  24% | 44%  32%  23% |
|   8. gpt-4o-2024-08-06    | +0.110 |   7796 | 43%  32%  25% | 43%  32%  25% |
|   9. gemini-1.5-pro-ap... | +0.109 |  57941 | 47%  31%  22% | 47%  31%  22% |
|  10. gemini-1.5-pro-ap... | +0.106 |  48381 | 52%  28%  20% | 52%  28%  20% |
|  11. athene-70b-0725      | +0.100 |   9125 | 43%  35%  22% | 43%  35%  22% |
|  12. mistral-large-2407   | +0.099 |   9309 | 41%  35%  25% | 41%  34%  25% |
|  13. gpt-4-turbo-2024-... | +0.099 |  73106 | 47%  29%  24% | 47%  29%  24% |
|  14. llama-3.1-70b-ins... | +0.096 |  10946 | 41%  36%  22% | 41%  37%  22% |
|  15. claude-3-opus-202... | +0.094 | 134831 | 49%  29%  21% | 49%  29%  21% |
|  16. gpt-4-1106-preview   | +0.093 |  81545 | 53%  25%  22% | 53%  25%  22% |
|  17. yi-large-preview     | +0.088 |  42947 | 46%  32%  22% | 45%  31%  23% |
|  18. gpt-4-0125-preview   | +0.087 |  74890 | 49%  28%  23% | 49%  28%  22% |
|  19. reka-core-20240722   | +0.080 |   5518 | 39%  39%  22% | 39%  39%  22% |
|  20. gemini-1.5-flash-... | +0.080 |  45312 | 43%  35%  22% | 43%  35%  22% |
+---------------------------+--------+--------+---------------+---------------+

Scores

The scores versus rank can be plotted by leaderbot.Davidson.plot_scores function:

>>> model.plot_scores(max_rank=30)

https://raw.githubusercontent.com/suquark/leaderbot/refs/heads/main/docs/source/_static/images/plots/scores.png

Visualize Correlation

The correlation of the chatbot performances can be visualized with leaderbot.models.Davidson.map_dissimilairy using various methods. Here is an example with the Kernel PCA method:

>>> # Plot kernel PCA
>>> model.map_dissimilarity(max_rank=50)

The above code produces plot below demonstrating the Kernel PCA projection on three principal axes:

https://raw.githubusercontent.com/suquark/leaderbot/refs/heads/main/docs/source/_static/images/plots/kpca.png

Make Inference and Prediction

Once a model is trained, you can make inference on the probabilities of win, loss, or tie for a pair of agents using leaderbot.models.Davidson.infer and leaderbot.models.Davidson.predict method:

>>> # Create a list of three matches using pairs of indices of agents
>>> matches = list(zip((0, 1, 2), (1, 2, 0)))

>>> # Make inference
>>> prob = model.infer(matches)

>>> # Make prediction
>>> pred = model.predict(matches)

Model Evaluation

Performance of multiple models can be compared as follows. First, create a list of models and train them.

>>> import leaderbot as lb
>>> from leaderbot.models import BradleyTerry as BT
>>> from leaderbot.models import RaoKupper as RK
>>> from leaderbot.models import Davidson as DV

>>> # Obtain data
>>> data = lb.data.load()

>>> # Create a list of models to compare
>>> models = [
...    BT(data, k_cov=None),
...    BT(data, k_cov=0),
...    BT(data, k_cov=1),
...    RK(data, k_cov=None, k_tie=0),
...    RK(data, k_cov=0, k_tie=0),
...    RK(data, k_cov=1, k_tie=1),
...    DV(data, k_cov=None, k_tie=0),
...    DV(data, k_cov=0, k_tie=0),
...    DV(data, k_cov=0, k_tie=1)
... ]

>>> # Train models
>>> for model in models:
...    model.train()

Model Selection

Model selection can be performed with leaderbot.evaluate.model_selection:

>>> # Evaluate models
>>> metrics = lb.evaluate.model_selection(models, report=True)

The above model evaluation performs the analysis via various metric including the negative log-likelihood (NLL), cross entropy loss (CEL), Akaike information criterion (AIC), and Bayesian information criterion (BIC), and prints a report these metrics the following table:

+----+--------------+---------+--------+--------------------------------+---------+---------+
|    |              |         |        |               CEL              |         |         |
| id | model        | # param |    NLL |    all     win    loss     tie |     AIC |     BIC |
+----+--------------+---------+--------+--------------------------------+---------+---------+
|  1 | BradleyTerry |     129 | 0.6554 | 0.6553  0.3177  0.3376     inf |   256.7 |  1049.7 |
|  2 | BradleyTerry |     258 | 0.6552 | 0.6551  0.3180  0.3371     inf |   514.7 |  2100.8 |
|  3 | BradleyTerry |     387 | 0.6551 | 0.6550  0.3178  0.3372     inf |   772.7 |  3151.8 |
|  4 | RaoKupper    |     130 | 1.0095 | 1.0095  0.3405  0.3462  0.3227 |   258.0 |  1057.2 |
|  5 | RaoKupper    |     259 | 1.0092 | 1.0092  0.3408  0.3457  0.3228 |   516.0 |  2108.2 |
|  6 | RaoKupper    |     516 | 1.0102 | 1.0102  0.3403  0.3453  0.3245 |  1030.0 |  4202.1 |
|  7 | Davidson     |     130 | 1.0100 | 1.0100  0.3409  0.3461  0.3231 |   258.0 |  1057.2 |
|  8 | Davidson     |     259 | 1.0098 | 1.0098  0.3411  0.3455  0.3231 |   516.0 |  2108.2 |
|  9 | Davidson     |     387 | 1.0075 | 1.0075  0.3416  0.3461  0.3197 |   772.0 |  3151.1 |
+----+--------------+---------+--------+--------------------------------+---------+---------+

Goodness of Fit

The goodness of fit test can be performed with leaderbot.evaluate.goodness_of_fit:

>>> # Evaluate models
>>> metrics = lb.evaluate.goodness_of_fit(models, report=True)

The above model evaluation performs the analysis of the goodness of fit using mean absolute error (MAE), KL divergence (KLD), Jensen-Shannon divergence (JSD), and prints the following summary table:

+----+--------------+----------------------------+------+------+
|    |              |             MAE            |      |      |
| id | model        |   win   loss    tie    all | KLD% | JSD% |
+----+--------------+----------------------------+------+------+
|  1 | BradleyTerry |  18.5   18.5  -----   18.5 | 1.49 | 0.44 |
|  2 | BradleyTerry |  15.3   15.3  -----   15.3 | 1.42 | 0.42 |
|  3 | BradleyTerry |  12.9   12.9  -----   12.9 | 1.40 | 0.42 |
|  4 | RaoKupper    |  27.5   31.1   45.4   34.7 | 3.32 | 0.92 |
|  5 | RaoKupper    |  26.2   29.6   45.7   33.8 | 3.23 | 0.90 |
|  6 | RaoKupper    |  25.1   27.8   42.8   31.9 | 3.28 | 0.87 |
|  7 | Davidson     |  28.6   32.2   49.0   36.6 | 3.41 | 0.94 |
|  8 | Davidson     |  27.5   30.8   49.3   35.9 | 3.32 | 0.92 |
|  9 | Davidson     |  24.1   25.0   35.7   28.2 | 2.93 | 0.81 |
+----+--------------+----------------------------+------+------+

Generalization

To evaluate generalization, we first train the models on 90% of the data (training set) and test against the remaining 10% (test set).

>>> import leaderbot as lb
>>> from leaderbot.models import BradleyTerry as BT
>>> from leaderbot.models import RaoKupper as RK
>>> from leaderbot.models import Davidson as DV

>>> # Obtain data
>>> data = lb.data.load()

>>> # Split data to training and test data
>>> training_data, test_data = lb.data.split(data, test_ratio=0.2)

>>> # Create a list of models to compare
>>> models = [
...    BT(training_data, k_cov=None),
...    BT(training_data, k_cov=0),
...    BT(training_data, k_cov=1),
...    RK(training_data, k_cov=None, k_tie=0),
...    RK(training_data, k_cov=0, k_tie=0),
...    RK(training_data, k_cov=1, k_tie=1),
...    DV(training_data, k_cov=None, k_tie=0),
...    DV(training_data, k_cov=0, k_tie=0),
...    DV(training_data, k_cov=0, k_tie=1)
... ]

>>> # Train models
>>> for model in models:
...    model.train()

We can then evaluate generalization on the test data using leaderbot.evaluate.generalization function:

>>> # Evaluate models
>>> metrics = lb.evaluate.generalization(models, test_data, report=True)

The above model evaluation computes prediction error via mean absolute error (MAE), KL divergence (KLD), Jensen-Shannon divergence (JSD), and prints the following summary table:

+----+--------------+----------------------------+------+------+
|    |              |             MAE            |      |      |
| id | model        |   win   loss    tie    all | KLD% | JSD% |
+----+--------------+----------------------------+------+------+
|  1 | BradleyTerry |  17.5   17.5  -----   17.5 | 1.52 | 0.48 |
|  2 | BradleyTerry |  16.0   16.0  -----   16.0 | 1.47 | 0.46 |
|  3 | BradleyTerry |  17.3   17.3  -----   17.3 | 1.61 | 0.49 |
|  4 | RaoKupper    |  24.2   20.1   30.8   25.0 | 3.39 | 0.93 |
|  5 | RaoKupper    |  22.9   22.4   31.2   25.5 | 3.32 | 0.91 |
|  6 | RaoKupper    |  26.7   25.3   37.4   29.8 | 3.89 | 1.01 |
|  7 | Davidson     |  24.3   21.3   32.7   26.1 | 3.45 | 0.95 |
|  8 | Davidson     |  22.5   22.6   33.0   26.0 | 3.37 | 0.93 |
|  9 | Davidson     |  25.2   19.5   31.6   25.4 | 3.14 | 0.85 |
+----+--------------+----------------------------+------+------+

Comparing Ranking of Models

Ranking of various models can be compared using leaderbot.evaluate.comopare_rank function:

>>> import leaderbot as lb
>>> from leaderbot.models import BradleyTerry as BT
>>> from leaderbot.models import RaoKupper as RK
>>> from leaderbot.models import Davidson as DV

>>> # Load data
>>> data = lb.data.load()

>>> # Create a list of models to compare
>>> models = [
...     BT(data, k_cov=0),
...     BT(data, k_cov=3),
...     RK(data, k_cov=0, k_tie=0),
...     RK(data, k_cov=0, k_tie=1),
...     RK(data, k_cov=0, k_tie=3),
...     DV(data, k_cov=0, k_tie=0),
...     DV(data, k_cov=0, k_tie=1),
...     DV(data, k_cov=0, k_tie=3)
... ]

>>> # Train the models
>>> for model in models: model.train()

>>> # Compare ranking of the models
>>> lb.evaluate.compare_ranks(models, rank_range=[40, 70])

The above code produces plot below.

https://raw.githubusercontent.com/suquark/leaderbot/refs/heads/main/docs/source/_static/images/plots/bump_chart.png

Test

You may test the package with tox:

cd source_dir
tox

Alternatively, test with pytest:

cd source_dir
pytest

How to Contribute

We welcome contributions via GitHub's pull request. Developers should review our [Contributing Guidelines](CONTRIBUTING.rst) before submitting their code. If you do not feel comfortable modifying the code, we also welcome feature requests and bug reports.

How to Cite

  • Siavash Ameli, Siyuan Zhuang, Ion Stoica, and Michael W. Mahoney. A Statistical Framework for Ranking LLM-Based Chatbots. The Thirteenth International Conference on Learning Representations, 2025.

    @inproceedings{
        ameli2025a,
        title={A Statistical Framework for Ranking {LLM}-based Chatbots},
        author={Siavash Ameli and Siyuan Zhuang and Ion Stoica and Michael W. Mahoney},
        booktitle={The Thirteenth International Conference on Learning Representations},
        year={2025},
        url={https://openreview.net/forum?id=rAoEub6Nw2}
    }
    

License

license

About

No description, website, or topics provided.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages