- 
                Notifications
    
You must be signed in to change notification settings  - Fork 8
 
Closed
Description
I have encountered a parameter fitting problem which I cannot get PEtab to solve. It might be me making some problem misspecification somewhere, but it would be useful to understand what is going on.
The parameter fitting problem should be fairly standard, which confused me a bit. The only potential pitfall could be that X1 (which we measure) gets very small.
# Declares the model.
using Catalyst
rn = @reaction_network begin
    @parameters σ
    k1, X1 --> X2
    k2, X2 --> X3
    k3, X3 --> 0
end
u0 = [:X1 => 5.0, :X2 => 0.0, :X3 => 0.0]
tend = 1.0
ps = [:k1 => 100.0, :k2 => 20.0, :k3 => 3.0, :σ => 0.1]
# Generate synthetic data.
using Distributions, OrdinaryDiffEq, Plots
oprob = ODEProblem(rn, u0, tend, ps)
sol = solve(oprob)
t_data = range(0, tend; length = 20)
data_X1 = [rand(Normal(X1, max(0,X1)/10.0)) for X1 in sol(t_data; idxs = :X1)]
data_X2 = [rand(Normal(X2, max(0,X2)/10.0)) for X2 in sol(t_data; idxs = :X2)]
data_X3 = [rand(Normal(X3, max(0,X3)/10.0)) for X3 in sol(t_data; idxs = :X3)]
# Plots true solution and data.
plot(sol; label = "")
plot!(t_data, data_X1; seriestype = :scatter, alpha = 0.5, color = 1, label = "")
plot!(t_data, data_X2; seriestype = :scatter, alpha = 0.5, color = 2, label = "")
plot!(t_data, data_X3; seriestype = :scatter, alpha = 0.5, color = 3, label = "")# Performs parameter fitting using PEtab.
# For observables I have tried with and without the `abs`.
using PEtab, DataFrames, Optim
observables = Dict(
    "obs_X1" => PEtabObservable(:X1, rn.σ * abs(rn.X1)),
    "obs_X2" => PEtabObservable(:X2, rn.σ * abs(rn.X2)),
    "obs_X3" => PEtabObservable(:X3, rn.σ * abs(rn.X3))
)
p_est = [PEtabParameter(ModelingToolkit.getname(p)) for p in parameters(rn)]
measurements = vcat(
    DataFrame(obs_id = "obs_X1", time = t_data, measurement = data_X1),
    DataFrame(obs_id = "obs_X2", time = t_data, measurement = data_X2),
    DataFrame(obs_id = "obs_X3", time = t_data, measurement = data_X3)
)
petab_model = PEtabModel(rn, observables, measurements, p_est; speciemap = u0)
petab_prob = PEtabODEProblem(petab_model)
petab_fit = calibrate_multistart(petab_prob, IPNewton(), 100)
plot(petab_fit, petab_prob)# Additional evaluation of PEtab problem.
petab_fit.fmin # NaN
petab_prob.nllh(log10.(last.(ps))) # NaN# Parameter fitting using Optimization.
# Naive approach using just squared error.
using Optimization, OptimizationBBO
p0 = [rand() for _ in parameters(rn)]
oprob_base = ODEProblem(rn, u0, 1.0, Pair.(parameters(rn), p0))
set_p = ModelingToolkit.setp_oop(oprob_base, parameters(rn))
function loss(p, (oprob_base, set_p, t_data, data_X1, data_X2, data_X3))
    oprob = remake(oprob_base; p = set_p(oprob_base, p))
    sol = solve(oprob; verbose = false, maxiters = 10000, saveat = t_data)
    SciMLBase.successful_retcode(sol) || return Inf
    return sum(abs2, data_X1 .- sol[:X1]) +
           sum(abs2, data_X2 .- sol[:X2]) +
           sum(abs2, data_X3 .- sol[:X3])
end
opt_prob = OptimizationProblem(loss, p0, (oprob_base, set_p, t_data, data_X1, data_X2, data_X3);
    lb = fill(1e-3, length(p0)), ub = fill(1e3, length(p0)))
opt_sol = solve(opt_prob, BBO_adaptive_de_rand_1_bin_radiuslimited())
# Plots optimisation solution.
oprob_fitted = remake(oprob_base; p = set_p(oprob_base, opt_sol.u))
sol = solve(oprob_fitted)
plot(sol; label = "")
plot!(t_data, data_X1; seriestype = :scatter, alpha = 0.5, color = 1, label = "")
plot!(t_data, data_X2; seriestype = :scatter, alpha = 0.5, color = 2, label = "")
plot!(t_data, data_X3; seriestype = :scatter, alpha = 0.5, color = 3, label = "")Metadata
Metadata
Assignees
Labels
No labels