🔗 Full paper: https://arxiv.org/abs/2505.20286
conda env create -f environment.yaml
conda activate eigen1
pip install -e .
# install tool dependencies
cd mcp_sandbox/
pip install -r requirements.txt
-
Configure the tools following the instructions in
mcp_sandbox/README.md. -
Configure
configs/common_config.pyfile, set the following parameters:
DEEPSEEK_CONFIG: Deepseek v3.1 model, which is used as the main agentOPENAI_CONFIG: for RAGO3-MINI_CONFIG: for evaluationSANDBOX: for MCP toolbox URL
To run the agent on the HLE Bio/Chem dataset(data/hle-bio.json):
-
Run the Agent
python -m functions.eigen1_hle
-
Calculate Score Once the agent has finished, run the scoring script:
python utils/hle_score.py
This repository benefit from X-Master.
@article{tang2025eigen,
title={Eigen-1: Adaptive Multi-Agent Refinement with Monitor-Based RAG for Scientific Reasoning},
author={Tang, Xiangru and Xu, Wanghan and Wang, Yujie and Guo, Zijie and Shao, Daniel and Chen, Jiapeng and Zhang, Cixuan and Wang, Ziyi and Zhang, Lixin and Wan, Guancheng and others},
journal={arXiv preprint arXiv:2509.21193},
year={2025}
}