Here are
    47 public repositories
    matching this topic...
   
    
  
  
  
  
  
  
  
 
  
      
        [High Performance / MAX 30 FPS] RaspberryPi3(RaspberryPi/Raspbian Stretch) or Ubuntu + Multi Neural Compute Stick(NCS/NCS2) + RealSense D435(or USB Camera or PiCamera) + MobileNet-SSD(MobileNetSSD) + Background Multi-transparent(Simple multi-class segmentation) + FaceDetection + MultiGraph + MultiProcessing + MultiClustering
       
      
    
      
          
            Updated
            Nov 12, 2019 
           
          
            
  Python 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
        Build librealsense 2.0 library on the NVIDIA Jetson AGX Xavier Developer Kit. Intel RealSense D400 series cameras.
       
      
    
      
          
            Updated
            Dec 29, 2022 
           
          
            
  Shell 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
        Build librealsense 2.0 library on the NVIDIA Jetson TX Development kit. Intel RealSense D400 series cameras.
       
      
    
      
          
            Updated
            Dec 29, 2022 
           
          
            
  Shell 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
         RaspberryPi3(Raspbian Stretch) + MobileNetv2-SSDLite(Tensorflow/MobileNetv2SSDLite) + RealSense D435 + Tensorflow1.11.0 + without Neural Compute Stick(NCS)
       
      
    
      
          
            Updated
            Feb 13, 2019 
           
          
            
  Python 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
        土炮智能機器手視覺系統,結合Intel OpenVINO NCS, RealSense D435完成採收小蕃茄直交式機器手臂視覺系統概念機。
       
      
    
      
          
            Updated
            Dec 20, 2019 
           
          
            
  Python 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
        [DEMO] links Intel RealSense T265 (tracking-camera) & Intel RealSense D435i (depth-camera) via roboter-operating-system (ROS) for generating a trackable point-cloud image dataset in the "real world"
       
      
    
      
          
            Updated
            Jan 3, 2020 
           
          
            
  Python 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
    
      
          
            Updated
            Dec 5, 2022 
           
          
            
  Dockerfile 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
        ROS2 Package for instance segmentation using the YoloV8 segmentation model and a Intel Realsense D435 camera
       
      
    
      
          
            Updated
            Dec 16, 2023 
           
          
            
  Python 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
        Using a Intel Realsense T265 to build an occupancy grid and autonomously navigate around using move_base
       
      
    
   
 
  
  
  
  
  
  
 
  
      
        Intel RealSense Depth Camera D435i D455 D435 D415
       
      
    
   
 
  
  
  
  
  
  
 
  
      
        此代码库允许人们在 ROS2 Humble 版本中使用 apriltag 代码进行正向定位和姿态的自动调整,并且已在实车上成功测试,但可能有一些繁琐的调整过程,参数需要调整以进一步优化。
       
      
    
   
 
  
  
  
  
  
  
 
  
      
        How to set up ROS Noetic, Gazebo, MavROS, MavLink, PX4 Autopilot, and an Iris drone with a D435 camera.
       
      
    
      
          
            Updated
            Mar 11, 2023 
           
          
            
  Jinja 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
        本项目基于 LiDAR、RGB-D 相机与 IMU 的多模态融合技术,为实现了移动小车的 三维建图与自主导航为目标。系统采用 Unitree L1 激光雷达 提供高精度几何结构信息,结合 Intel RealSense D435 相机 提供彩色与深度数据,并融合 MPU6050 惯性测量单元 (IMU) 实现姿态与运动状态的补偿与优化。 通过 FAST-LIO2 与 RTAB-Map 的多源融合建图算法,系统能够在复杂环境下实现高精度的环境感知、鲁棒的位姿估计与实时自主导航功能,为 多传感器融合 SLAM 与智能移动机器人研究 提供了一个可靠的实验与开发平台。
       
      
    
   
 
  
  
  
  
  
  
 
  
      
        Real-time streaming (AWS kvs) & object detection & semantic segmentation using RealSense D435i on Jetson Nano
       
      
    
      
          
            Updated
            Dec 5, 2020 
           
          
            
  Python 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
        A modular software architecture for Automatic Plant Phenotyping
       
      
    
   
 
  
  
  
  
  
  
 
  
      
        2nd Assignment of Computer Vision by José Rosa and Ricardo Silva
       
      
    
      
          
            Updated
            Dec 17, 2021 
           
          
            
  Python 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
    
      
          
            Updated
            Apr 1, 2020 
           
          
            
  Python 
 
           
       
     
   
 
  
  
  
  
  
  
 
  
      
        Using Intel Realsense T265 and D435 to navigate UAV indoor
       
      
    
   
 
  
  
  
  
  
  
 
  
      
        使用Realsense D435i实现机器人目标跟随
       
      
    
   
 
  
  
  
  
  
  
 
  
      
        Object detection and tracker utilising RealSense D435 Depth Camera on detecting features and object relation. Python is the main language utilised for this project and OpenCV as the main Computer Vision Framework.
       
      
    
      
          
            Updated
            Apr 24, 2022 
           
          
            
  Python 
 
           
       
     
   
 
  
       
      
          
            
              Improve this page
             
            
              Add a description, image, and links to the
              d435 
              topic page so that developers can more easily learn about it.
            
            
              
                Curate this topic
                
     
               
            
           
          
            
              Add this topic to your repo
             
            
              To associate your repository with the
              d435 
              topic, visit your repo's landing page and select "manage topics."
            
            
              
                Learn more
                
     
               
            
           
       
     
   
 
       
   
          
    
    
     
    
      
     
     
    You can’t perform that action at this time.