SOAP – Spherical Overdensity and Aperture Processor

Bert Vandenbroucke, Joop Schaye, John Helly, Matthieu Schaller, Rob McGibbon

Generated by user "dc-mcgi1" on login8a.pri.cosma.local on Friday 30 August 2024, 15:20:37. SOAP version "e791a2c"

1 Introduction

SOAP computes different types of properties, depending on how particles are included (by radius, in projection...). For all types, we use the halo membership and centre of potential as determined by the input halo catalogue. This documentation is generated using the SOAP parameter file, and so the properties listed reflect those present in the current run of SOAP, rather than all possible properties.

2 Property types

Subhalo quantities (SH) are computed for each subhalo identified by the halo finder, irrespective of whether it is a field halo or a satellite (or even satellite of satellite and so on). They include all particles that they halo finder has determined are bound to the subhalo. Subhalo properties are contained within the group BoundSubhalo in the output file.

Exclusive sphere quantities (ES) are similar to subhalo quantities, but they include only the particles that are bound to the subhalo, and apply an additional radial cut (aperture). We use eight different aperture radii (10, 30, 50, 100, 300, 500, 1000, 3000 kpc), so that every (sub-)halo has eight of these. Exclusive sphere properties are contained within a group ExclusiveSphere/XXXkpc, where XXX is the corresponding aperture radius.

Inclusive sphere quantities (IS) use the same physical aperture radii as the exclusive sphere quantities, but include all particles within the radius, regardless of their membership status. They are stored within a group InclusiveSphere/XXXkpc.

Exclusive projected quantities (EP) are similar to exclusive sphere quantities, except that their aperture filter is applied in projection, and this for independent projections along the x-, y- and z-axis. Along the projection axis, we do not apply any radial cut, so that the depth corresponds to all particles bound to the (sub-)halo. With four projected aperture radii (10, 30, 50, 100 kpc), we then have twelve sets of projected aperture quantities for each (sub-)halo. Projected aperture quantities are stored in a group named ProjectedAperture/XXXkpc/projP, where XXX is the corresponding aperture radius, and P corresponds to a particular projection direction (x, y or z).

Spherical overdensity properties (SO) are fundamentally different from the three other types in that their aperture radius is determined from the density profile and is different for different halos. They always include all particles within a sphere around the centre of potential, regardless of halo membership. The radius is either the radius at which the density reaches a certain target value (50 crit, 100 crit, 200 crit, 500 crit, 1000 crit, 2500 crit, 200 mean, BN98) or a multiple of such a radius (5xR 500 crit). Details of the spherical overdensity calculation are given at the end of this document. Spherical overdensities are only computed for centrals, i.e. field halos. The inclusive sphere quantities are stored in a group SO/XXX, where XXX can be either XXX_mean for density multiples of the mean density, XXX_crit for density multiples of the critical density, BN98 for the overdensity definition of Bryan & Norman (1998), and YxR_XXX_ZZZZ for multiples of some other radius (e.g. 5xR_2500_mean). The latter can only be computed after the corresponding density multiple SO radius has been computed. This is achieved by ordering the calculations.

InputHalos Some properties are directly copied from the original halo catalogue that was passed to SOAP. These are stored in a separate group, **InputHalos**.

SOAP Some properties are computed by SOAP using the other halo properties present in the catalogue. These are stored in a separate group, SOAP. This is just done for convenience; these quantities can be computed from the SOAP output alone.

The table below lists all the groups in the output file which containing datasets. Note that there will be three groups (x, y or z) for each ProjectedAperture variation. Each halo variation can have a filter applied to it. If a halo does not satisfy the filter then the variation will not be calculated for that halo. More information on filters can be found in the next section.

BoundSubhalo bound_subhalo X - SO/200_crit spherical_overdensity_200_crit / - SO/50_crit spherical_overdensity_50_crit / general SO/100_crit spherical_overdensity_100_crit / general SO/200_mean spherical_overdensity_200_mean / - SO/500_crit spherical_overdensity_200_mean / - SO/500_crit spherical_overdensity_500_crit / - SO/5xR_500_crit spherical_overdensity_5xr_500_crit / general SO/1000_crit spherical_overdensity_1000_crit / general SO/2500_crit spherical_overdensity_2500_crit / general SO/2500_crit spherical_overdensity_1000_crit / general SO/8N98 spherical_overdensity_bn98 / general ExclusiveSphere/10kpc exclusive_sphere_10kpc X - ExclusiveSphere/30kpc exclusive_sphere_10kpc X - ExclusiveSphere/50kpc exclusive_sphere_30kpc X - ExclusiveSphere/50kpc exclusive_sphere_50kpc X - ExclusiveSphere/500kpc exclusive_sphere_50kpc X - ExclusiveSphere/500kpc exclusive_sphere_500kpc X - ExclusiveSphere/500kpc exclusive_sphere_500kpc X - ExclusiveSphere/500kpc exclusive_sphere_500kpc X - ExclusiveSphere/1000kpc exclusive_sphere_500kpc X - ExclusiveSphere/1000kpc exclusive_sphere_500kpc X - ExclusiveSphere/500kpc inclusive_sphere_50kpc X - InclusiveSphere/50kpc inclusive_sphere_50kpc X - InclusiveSphere/5	Group name (HDF5)	Group name (swiftsimio)	Inclusive?	Filter
SO/50_crit spherical_overdensity_50_crit	BoundSubhalo	bound_subhalo		-
SO/100_crit spherical_overdensity_100_crit	S0/200_crit	spherical_overdensity_200_crit	✓	-
SD/200_mean spherical_overdensity_200_mean	SO/50_crit	spherical_overdensity_50_crit	✓	general
S0/500_crit spherical_overdensity_500_crit / general S0/5xR_500_crit spherical_overdensity_5xr_500_crit / general S0/1000_crit spherical_overdensity_1000_crit / general S0/2500_crit spherical_overdensity_1000_crit / general S0/2500_crit spherical_overdensity_2500_crit / general S0/8N98 spherical_overdensity_bn98 / general S0/8N98 spherical_overdensity_bn98 / general ExclusiveSphere/10kpc exclusive_sphere_10kpc X - ExclusiveSphere/30kpc exclusive_sphere_30kpc X - ExclusiveSphere/50kpc exclusive_sphere_50kpc X - ExclusiveSphere/100kpc exclusive_sphere_100kpc X - ExclusiveSphere/100kpc exclusive_sphere_100kpc X - ExclusiveSphere/300kpc exclusive_sphere_300kpc X - ExclusiveSphere/500kpc exclusive_sphere_500kpc X general ExclusiveSphere/1000kpc exclusive_sphere_1000kpc X general ExclusiveSphere/3000kpc exclusive_sphere_1000kpc X general InclusiveSphere/30kpc inclusive_sphere_30kpc / - InclusiveSphere/30kpc inclusive_sphere_50kpc / - InclusiveSphere/10kpc inclusive_sphere_50kpc / - InclusiveSphere/10kpc inclusive_sphere_50kpc / - InclusiveSphere/50kpc inclusive_sphere_50kpc / - general InclusiveSphere/50kpc inclusive_sphere_50kpc / general InclusiveSphere/50kpc inclusive_sphere_50kpc / general InclusiveSphere/100kpc inclusive_sphere_50kpc / general InclusiveSphere/50kpc / g	S0/100_crit	spherical_overdensity_100_crit	✓	general
S0/5xR_500_crit spherical_overdensity_5xr_500_crit	SO/200_mean	spherical_overdensity_200_mean	✓	-
S0/1000_crit spherical_overdensity_1000_crit	SO/500_crit	spherical_overdensity_500_crit	✓	-
SO/2500_crit spherical_overdensity_2500_crit	SO/5xR_500_crit	spherical_overdensity_5xr_500_crit	✓	general
SO/BN98 spherical_overdensity_bn98	SO/1000_crit	spherical_overdensity_1000_crit	✓	general
ExclusiveSphere/10kpc exclusive_sphere_10kpc X - ExclusiveSphere/50kpc exclusive_sphere_50kpc X - ExclusiveSphere/100kpc exclusive_sphere_100kpc X - ExclusiveSphere/100kpc exclusive_sphere_100kpc X - ExclusiveSphere/300kpc exclusive_sphere_300kpc X - ExclusiveSphere/500kpc exclusive_sphere_500kpc X general ExclusiveSphere/1000kpc exclusive_sphere_1000kpc X general ExclusiveSphere/3000kpc exclusive_sphere_3000kpc X general InclusiveSphere/10kpc inclusive_sphere_10kpc X general InclusiveSphere/30kpc inclusive_sphere_30kpc X - InclusiveSphere/50kpc inclusive_sphere_30kpc X - InclusiveSphere/100kpc inclusive_sphere_50kpc X - InclusiveSphere/100kpc inclusive_sphere_50kpc X - InclusiveSphere/300kpc inclusive_sphere_100kpc X - InclusiveSphere/300kpc inclusive_sphere_300kpc X - InclusiveSphere/50kpc inclusive_sphere_50kpc X - InclusiveSphere/50kpc inclusive_sphere_300kpc X - InclusiveSphere/50kpc inclusive_sphere_300kpc X - InclusiveSphere/1000kpc inclusive_sphere_50kpc X - InclusiveSphere/1000kpc inclusive_sphere_50kpc X - InclusiveSphere/100kpc X - InclusiveSphere/100kp	SO/2500_crit	spherical_overdensity_2500_crit	✓	general
ExclusiveSphere/30kpc exclusive_sphere_30kpc X - ExclusiveSphere/100kpc exclusive_sphere_100kpc X - ExclusiveSphere/300kpc exclusive_sphere_100kpc X - ExclusiveSphere/500kpc exclusive_sphere_300kpc X - ExclusiveSphere/500kpc exclusive_sphere_500kpc X general ExclusiveSphere/1000kpc exclusive_sphere_1000kpc X general ExclusiveSphere/3000kpc exclusive_sphere_3000kpc X general ExclusiveSphere/3000kpc inclusive_sphere_10kpc X general InclusiveSphere/10kpc inclusive_sphere_10kpc Y - InclusiveSphere/30kpc inclusive_sphere_30kpc Y - InclusiveSphere/50kpc inclusive_sphere_50kpc Y - InclusiveSphere/100kpc inclusive_sphere_100kpc Y - InclusiveSphere/300kpc inclusive_sphere_300kpc Y - InclusiveSphere/300kpc inclusive_sphere_500kpc Y general InclusiveSphere/1000kpc inclusive_sphere_500kpc Y general InclusiveSphere/3000kpc inclusive_sphere_1000kpc Y general InclusiveSphere/3000kpc inclusive_sphere_3000kpc Y general InclusiveSphere/3000kpc inclusive_sphere_3000kpc Y general ProjectedAperture/10kpc/projP projected_aperture_10kpc_projP X general	SO/BN98	spherical_overdensity_bn98	✓	general
ExclusiveSphere/50kpc exclusive_sphere_50kpc X - ExclusiveSphere/100kpc exclusive_sphere_100kpc X - ExclusiveSphere/300kpc exclusive_sphere_300kpc X - ExclusiveSphere/500kpc exclusive_sphere_500kpc X general ExclusiveSphere/1000kpc exclusive_sphere_1000kpc X general ExclusiveSphere/3000kpc exclusive_sphere_3000kpc X general InclusiveSphere/10kpc inclusive_sphere_10kpc	ExclusiveSphere/10kpc	exclusive_sphere_10kpc	×	-
ExclusiveSphere/100kpc exclusive_sphere_100kpc X - ExclusiveSphere/300kpc exclusive_sphere_300kpc X general ExclusiveSphere/500kpc exclusive_sphere_500kpc X general ExclusiveSphere/1000kpc exclusive_sphere_1000kpc X general ExclusiveSphere/3000kpc exclusive_sphere_3000kpc X general InclusiveSphere/10kpc inclusive_sphere_10kpc	ExclusiveSphere/30kpc	exclusive_sphere_30kpc	×	-
ExclusiveSphere/300kpc exclusive_sphere_300kpc X general ExclusiveSphere/1000kpc exclusive_sphere_1000kpc X general ExclusiveSphere/1000kpc exclusive_sphere_1000kpc X general ExclusiveSphere/3000kpc exclusive_sphere_3000kpc X general InclusiveSphere/10kpc inclusive_sphere_10kpc	ExclusiveSphere/50kpc	exclusive_sphere_50kpc	×	-
ExclusiveSphere/500kpc exclusive_sphere_500kpc X general ExclusiveSphere/1000kpc exclusive_sphere_1000kpc X general ExclusiveSphere/3000kpc exclusive_sphere_3000kpc X general InclusiveSphere/10kpc inclusive_sphere_10kpc	ExclusiveSphere/100kpc	exclusive_sphere_100kpc	×	-
ExclusiveSphere/1000kpc exclusive_sphere_1000kpc X general ExclusiveSphere/3000kpc exclusive_sphere_3000kpc X general InclusiveSphere/10kpc inclusive_sphere_10kpc	ExclusiveSphere/300kpc	exclusive_sphere_300kpc	×	-
ExclusiveSphere/3000kpc exclusive_sphere_3000kpc X general InclusiveSphere/10kpc inclusive_sphere_10kpc	ExclusiveSphere/500kpc	exclusive_sphere_500kpc	×	general
InclusiveSphere/10kpc inclusive_sphere_10kpc / - InclusiveSphere/30kpc inclusive_sphere_30kpc / - InclusiveSphere/50kpc inclusive_sphere_50kpc / - InclusiveSphere/100kpc inclusive_sphere_100kpc / - InclusiveSphere/300kpc inclusive_sphere_300kpc / - InclusiveSphere/500kpc inclusive_sphere_500kpc / - InclusiveSphere/500kpc inclusive_sphere_500kpc / general InclusiveSphere/1000kpc inclusive_sphere_1000kpc / general InclusiveSphere/3000kpc inclusive_sphere_3000kpc / general ProjectedAperture/10kpc/projP projected_aperture_10kpc_projP X general	ExclusiveSphere/1000kpc	exclusive_sphere_1000kpc	×	general
InclusiveSphere/30kpc inclusive_sphere_30kpc / - InclusiveSphere/50kpc inclusive_sphere_50kpc / - InclusiveSphere/100kpc inclusive_sphere_100kpc / - InclusiveSphere/300kpc inclusive_sphere_300kpc / - InclusiveSphere/500kpc inclusive_sphere_500kpc / general InclusiveSphere/1000kpc inclusive_sphere_1000kpc / general InclusiveSphere/3000kpc inclusive_sphere_3000kpc / general ProjectedAperture/10kpc/projP projected_aperture_10kpc_projP X general	ExclusiveSphere/3000kpc	exclusive_sphere_3000kpc	×	general
InclusiveSphere/50kpc inclusive_sphere_50kpc / - InclusiveSphere/100kpc inclusive_sphere_100kpc / - InclusiveSphere/300kpc inclusive_sphere_300kpc / - InclusiveSphere/500kpc inclusive_sphere_500kpc / general InclusiveSphere/1000kpc inclusive_sphere_1000kpc / general InclusiveSphere/3000kpc inclusive_sphere_3000kpc / general ProjectedAperture/10kpc/projP projected_aperture_10kpc_projP X general	InclusiveSphere/10kpc	inclusive_sphere_10kpc	✓	-
InclusiveSphere/100kpc inclusive_sphere_100kpc / - InclusiveSphere/300kpc inclusive_sphere_300kpc / - InclusiveSphere/500kpc inclusive_sphere_500kpc / general InclusiveSphere/1000kpc inclusive_sphere_1000kpc / general InclusiveSphere/3000kpc inclusive_sphere_3000kpc / general ProjectedAperture/10kpc/projP projected_aperture_10kpc_projP X general	InclusiveSphere/30kpc	inclusive_sphere_30kpc	✓	-
InclusiveSphere/300kpcinclusive_sphere_300kpc✓InclusiveSphere/500kpcinclusive_sphere_500kpc✓InclusiveSphere/1000kpcinclusive_sphere_1000kpc✓InclusiveSphere/3000kpcinclusive_sphere_3000kpc✓ProjectedAperture/10kpc/projPprojected_aperture_10kpc_projPX	InclusiveSphere/50kpc	inclusive_sphere_50kpc	✓	-
InclusiveSphere/500kpcinclusive_sphere_500kpc✓generalInclusiveSphere/1000kpcinclusive_sphere_1000kpc✓generalInclusiveSphere/3000kpcinclusive_sphere_3000kpc✓generalProjectedAperture/10kpc/projPprojected_aperture_10kpc_projPXgeneral	InclusiveSphere/100kpc	inclusive_sphere_100kpc	✓	-
InclusiveSphere/1000kpcinclusive_sphere_1000kpc✓generalInclusiveSphere/3000kpcinclusive_sphere_3000kpc✓generalProjectedAperture/10kpc/projPprojected_aperture_10kpc_projPXgeneral	InclusiveSphere/300kpc	inclusive_sphere_300kpc	✓	-
InclusiveSphere/3000kpc inclusive_sphere_3000kpc ✓ general ProjectedAperture/10kpc/projP projected_aperture_10kpc_projP X general	InclusiveSphere/500kpc	inclusive_sphere_500kpc	✓	general
ProjectedAperture/10kpc/projP projected_aperture_10kpc_projP X general	InclusiveSphere/1000kpc	inclusive_sphere_1000kpc	✓	general
	InclusiveSphere/3000kpc	inclusive_sphere_3000kpc	✓	general
ProjectedAperture/30kpc/projP projected_aperture_30kpc_projP X general	ProjectedAperture/10kpc/projP	<pre>projected_aperture_10kpc_projP</pre>	×	general
	ProjectedAperture/30kpc/projP	<pre>projected_aperture_30kpc_projP</pre>	×	general
ProjectedAperture/50kpc/projP projected_aperture_50kpc_projP X general	ProjectedAperture/50kpc/projP	projected_aperture_50kpc_projP	×	general
ProjectedAperture/100kpc/projP projected_aperture_100kpc_projP X general	ProjectedAperture/100kpc/projP	projected_aperture_100kpc_projP	×	general
SOAP soap			-	-
InputHalos input_halos	InputHalos	input_halos	-	-
InputHalos/HBTplus input_halos_hbtplus	InputHalos/HBTplus	input_halos_hbtplus	-	-
InputHalos/FOF input_halos_fof	InputHalos/FOF	input_halos_fof	-	-

3 Property categories

Halo properties only make sense if the subhalo contains sufficient particles. Halo finders are often run with a configuration that requires at least 20 particles for a satellite subhalo. However, even for those particle numbers, a lot of the properties computed by SOAP will be zero (e.g. the gas mass within a 10 kpc aperture), or have values that are outliers compared to the full halo population because of undersampling. We can save a lot of disk space by filtering these out by applying appropriate cuts. Filtering means setting the value of the property to NaN; HDF5 file compression then very effectively reduces the data storage required to store these properties, while the size of the arrays that the end user sees remains unchanged. Evidently, we can also save on computing time by not computing properties that are filtered out.

Since different properties can have very different requirements, filtering is done in categories, where each category corresponds to a set of quantities that are filtered using the same criterion. Inclusive, exclusive or projected quantities with different aperture radii (or overdensity criteria) can be used to create profiles. In order for these profiles to make sense, we have to apply a consistent cut across all the different aperture radii (or overdensity criteria) for the same subhalo property type. Or in other words: the quantities for an inclusive sphere with a 10 kpc aperture radius will use the same filter mask as the quantities of the inclusive sphere with a 3000 kpc aperture radius, even though the latter by construction has many more particles.

Basic quantities (basic) are never filtered out, and hence are calculated for all objects in the input halo catalogue.

General quantities (general) use a filter based on the total number of particles bound to the subhalo.

Gas quantities (gas) use a filter based on the number of gas particles bound to the subhalo.

DM quantities (dm) use a filter based on the number of DM particles bound to the subhalo.

Stellar quantities (star) use a filter based on the number of star particles bound to the subhalo.

Baryon quantities (baryon) use a filter based on the number of gas and star particles bound to the subhalo.

Note that there are no quantities that use a BH or neutrino particle number filter.

The particle number thresholds are set in the parameter file. The different categories are summarised in the table below.

Name	criterion
basic	(all halos)
general	$N_{\rm gas} + N_{\rm dm} + N_{\rm star} + N_{\rm BH} \ge 100$
gas	$N_{\rm gas} \ge 100$
dm	$N_{ m dm} \ge 100$
star	$N_{\rm star} \ge 100$
baryon	$N_{\rm gas} + N_{\rm star} \ge 100$

4 Overview table

The table below lists all the properties that are computed by SOAP when run in HYDRO mode. For dark matter only (DMO) mode only the properties colored violet/purple are computed. This table is automatically generated by SOAP from the source code, so that all names, types, units, categories and descriptions match what is actually used and output by SOAP. For each quantity, the table indicates for which halo types the property is computed. Superscript numbers refer to more detailed explanations for some of the properties and match the numbers in the next section. If swiftsimio has been used to load a catalogue then the fields names are in snake_case rather than CamelCase, e.g. CentreOfMass becomes centre_of_mass.

Note that quantities are given in the base units of the simulation snapshot. The attributes of each SOAP dataset contains all the relevant meta-data to convert between physical and co-moving units, i.e. information about how the quantity depends on the scale-factor, and what the conversion factor to and from CGS units is. All quantities are h-free. The conversion of the base units to CGS is given by:

Unit	CGS conversion
$\overline{}$	3.086e + 24 cm
${ m M}$	1.988e + 43 g
\mathbf{t}	3.086e + 19 s
${ m T}$	1 K

For example, a property whose units are listed as M/t will have units of velocity, where $1\,\mathrm{M/t}=1\,\mathrm{km/s}$. The scale factor is explicitly included for comoving properties (e.g. the units of HaloCentre are aL)

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
BlackHolesDynamicalMass Total BH dynamical mass.	1	float32	M	1	/	1	1	1	basic	$1.36693e10 \rightarrow 1.367e10$
BlackHolesSubgridMass Total BH subgrid mass.	1	float32	M	✓	✓	✓	1	1	basic	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
CentreOfMass ¹ Centre of mass.	3	float64	$\mathbf{a}\cdot\mathbf{L}$	1	✓	1	1	1	basic	1 pc accurate
CentreOfMassVelocity ¹ Centre of mass velocity.	3	float32	$a\cdot L/t$	1	✓	1	1	1	basic	0.1 km/s accurate
Concentration ² Halo concentration assumin length	1 g an NF'	float32 W profile.	dimensionless Minimum part	× ticle r	× adius	× set t	× to soft	√ cening	basic	$1.36693e10 \rightarrow 1.367e10$
ConcentrationUnsoftened Halo concentration assuming	1 g an NFV	float32 V profile.	dimensionless No particle softe	×ening.	×	×	×	✓	basic	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
DarkMatterConcentration ² Concentration of dark matters set to softening length	1 er particle	float32 es assumin		× le. Mi	× nimu	× m pai	× rticle 1	√ radius	basic	$1.36693e10 \rightarrow 1.367e10$
DarkMatterConcentration- Unsoftened Concentration of dark matte	1 er particle	float32	dimensionless	×	× o part	×	× softeni	✓	basic	$1.36693e10 \rightarrow 1.367e10$

Concentration of dark matter particles assuming an NFW profile. No particle softening

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
DarkMatterMass Total DM mass.	1	float32	M	✓	1	✓	1	1	basic	$1.36693e10 \rightarrow 1.367e10$
EncloseRadius Radius of the particle further	1 est from t	float32 he halo ce		✓	×	×	×	×	basic	$1.36693e10 \rightarrow 1.367e10$
GasMass Total gas mass.	1	float32	M	✓	✓	✓	1	✓	basic	$1.36693 \mathrm{e} 10 \to 1.367 \mathrm{e} 10$
GasMassFractionInMetals ³ Total gas mass fraction in m	1 netals.	float32	dimensionless	✓	✓	1	×	✓	basic	$1.36693 \mathrm{e} 10 \to 1.367 \mathrm{e} 10$
${ {\it HalfMassRadiusStars}^4 } $ Stellar half mass radius.	1	float32	$\mathbf{a}\cdot\mathbf{L}$	✓	1	✓	1	×	basic	$1.36693e10 \rightarrow 1.367e10$
Maximum Circular Velocity ⁵ Maximum circular velocity v	1 when acco	float32 ounting fo	/	✓ ing ler	× ngths.		×	×	basic	$1.36693e10 \rightarrow 1.367e10$
$Unsoftened^5$	1	float32		✓	×	×	×	×	basic	$1.36693e10 \rightarrow 1.367e10$
Radius at which MaximumC	CircularVe	elocityUns	softened is reach	ed.						
MaximumCircularVelocity- Unsoftened ⁵ Maximum circular velocity v	1 when not	float32	,	√ oftenin	X g leng	X	×	×	basic	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$

Maximum circular velocity when not accounting for particle softening lengths.

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
MostMassiveBlackHoleID ID of most massive black hole	1 le.	uint64	dimensionless	✓	✓	1	✓	✓	basic	Store less bits
MostMassiveBlackHoleMass ⁶ Mass of most massive black	1 hole.	float32	M	✓	✓	✓	✓	✓	basic	$1.36693e10 \rightarrow 1.367e10$
NoiseSuppressedNeutrinoMass ⁷ Noise suppressed total neutrinomass	1 ino mass.	float32	M	×	×	×	×	✓	basic	$1.36693e10 \rightarrow 1.367e10$
NumberOfBlackHoleParticles Number of black hole particle	1 es.	uint32	dimensionless	✓	✓	✓	✓	✓	basic	no compression
NumberOfDarkMatterParticles Number of dark matter part	1 icles.	uint32	dimensionless	✓	1	✓	✓	✓	basic	no compression
Number Of Gas Particles Number of gas particles.	1	uint32	dimensionless	✓	✓	✓	✓	✓	basic	no compression
Number Of Neutrino Particles Number of neutrino particles	1	uint32	dimensionless	×	×	×	×	✓	basic	no compression
Number Of Star Particles Number of star particles.	1	uint32	dimensionless	✓	✓	✓	✓	✓	basic	no compression
RawNeutrinoMass ⁷ Total neutrino particle mass.	1	float32	M	×	×	×	×	✓	basic	$1.36693e10 \rightarrow 1.367e10$

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
SORadius Radius of a sphere satisfying	1 g a spheri	float32 cal overde		×	×	×	×	1	basic	$1.36693e10 \rightarrow 1.367e10$
$ \begin{array}{c} {\rm StarFormationRate^8} \\ {\rm Total\ star\ formation\ rate.} \end{array} $	1	float32	M/t	✓	✓	✓	✓	✓	basic	$1.36693 \mathrm{e} 10 \to 1.367 \mathrm{e} 10$
${\bf StarForming Gas Mass Fraction In-Metals}^{8,3}$	1	float32	dimensionless	✓	✓	✓	×	1	basic	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
Total gas mass fraction in m	etals for	gas that i	s star-forming.							
StellarMass Total stellar mass.	1	float32	M	✓	✓	✓	✓	✓	basic	$1.36693e10 \rightarrow 1.367e10$
StellarMassFractionInMetals Total stellar mass fraction in	1 metals.	float32	dimensionless	✓	✓	✓	×	✓	basic	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
TotalMass Total mass.	1	float32	M	✓	✓	✓	✓	✓	basic	$1.36693e10 \rightarrow 1.367e10$
BlackHolesLastEventScalefactor Scale-factor of last AGN eve	1 ent.	float32	dimensionless	✓	/	/	/	✓	general	$1.36693e10 \rightarrow 1.367e10$
ComptonY ⁹ Total Compton y parameter	. 1	float64	L^2	×	×	×	×	✓	general	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$

was recently heated by AGN.

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
ComptonYWithoutRecent-AGNHeating ⁹ Total Compton y paramete	1 er. Exclude	float64		×	×		×	1	general	$1.36693e10 \rightarrow 1.367e10$
DopplerB ¹⁰ Kinetic Sunyaey-Zel'dovich lightcone observer.	1 effect, ass	float32 cuming a		× ards tl	X he pos		× of th	✓ e first	general	$1.36693e10 \rightarrow 1.367e10$
${\bf Gas Compton Y Temperature^{11}} \\ {\bf Compton Y-weighted\ mean}$	1 gas tempe	float32 rature.	Т	×	×	×	×	✓	general	$1.36693e10 \rightarrow 1.367e10$
GasComptonYTemperatureCore- Excision ^{12,11}		float32	T	× .	×		×	✓	general	$1.36693e10 \rightarrow 1.367e10$
ComptonY-weighted mean	gas tempe	rature, ex	cluding the inn	er excı	sed co	ore.				
$\begin{array}{c} Gas Compton Y Temperature-\\ Without Recent AGN Heating ^{11} \end{array}$	1	float32	Т	×	×	×	×	✓	general	$1.36693e10 \rightarrow 1.367e10$
ComptonY-weighted mean AGN.	gas temp	erature,	excluding gas t	hat wa	as rec	ently	heat	ed by		
$\label{lem:GasComptonYTemperature-WithoutRecentAGNHeatingCore-Excision} GasComptonYTemperature-WithoutRecentAGNHeatingCore-Excision (Core-Decompton) (Core-De$	1	float32	T	×	×	×	×	✓	general	$1.36693e10 \rightarrow 1.367e10$
ComptonY-weighted mean	gas tempe	erature, ex	scluding the inn	er exc	ised c	ore a	nd ga	s that		

Name	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
Description										
GasMassFractionInIron ³ Total gas mass fraction in ir	1 on.	float32	dimensionless	×	1	1	×	1	general	$1.36693e10 \rightarrow 1.367e10$
GasMassFractionInOxygen ³ Total gas mass in oxygen.	1	float32	dimensionless	×	✓	✓	×	✓	general	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
GasTemperature ¹³ Mass-weighted mean gas ter	1 nperature	float32	Т	✓	✓	✓	×	✓	general	$1.36693e10 \to 1.367e10$
GasTemperatureCoreExcision ¹² Mass-weighted mean gas ter	1 nperature	float32 e, excludir	T ng the inner exci	× sed co	× ore.	×	×	✓	general	$1.36693e10 \to 1.367e10$
$\begin{array}{c} Gas Temperature Without Cool-\\ Gas ^{13} \end{array}$	1	float32	Т	✓	×	×	×	✓	general	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
Mass-weighted mean gas ten	nperature	e, excludir	g cool gas with	a tem	perati	ure b	elow 1	e5 K.		
${\bf Gas Temperature Without Cool-} \\ {\bf Gas And Recent AGN Heating}^{13}$	1	float32	T	✓	×	×	×	✓	general	$1.36693e10 \rightarrow 1.367e10$
Mass-weighted mean gas ter and gas that was recently heated b	-	e, excludir	ng cool gas with	a tem	perat	ure b	elow	1e5 K		
GasTemperatureWithoutCool-GasAndRecentAGNHeatingCore-Excision ¹²	1	float32	Т	×	×		×	1	general	$1.36693e10 \rightarrow 1.367e10$
Mass-weighted mean gas ter	mneratur	e eveludi	ng the inner evo	rised (ore o	gas h	elow :	1e5 K		

Mass-weighted mean gas temperature, excluding the inner excised core, gas below 1e5 K and gas that was recently heated by AGN.

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
GasTemperatureWithoutCool-GasCoreExcision ¹² Mass-weighted mean gas ter K.	1 mperature	float32	T	×	× ore ar		× s belo	✓ w 1e5	general	$1.36693e10 \rightarrow 1.367e10$
GasTemperatureWithoutRecent- AGNHeating ¹³ Mass-weighted mean gas ten	1 aperature	float32	T	✓ recent!	✓ ly hea		× oy AG	✓ N.	general	$1.36693e10 \rightarrow 1.367e10$
GasTemperatureWithoutRecent-AGNHeatingCoreExcision ¹² Mass-weighted mean gas ter recently heated by AGN.	1	float32	T	×	×	×	×	✓	general	$1.36693\mathrm{e}10 \to 1.367\mathrm{e}10$
${ m HalfMassRadiusTotal^4}$ Total half mass radius.	1	float32	$\mathbf{a} \cdot \mathbf{L}$	1	×	×	×	×	general	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
HotGasMass Total mass of gas with a ten	1 nperature	float32 above 1e	M e5 K.	×	×	×	×	✓	general	$1.36693\mathrm{e}10 \to 1.367\mathrm{e}10$
MassFractionExternal ¹⁴ Fraction of mass that is bou	1 nd to a sa	float32 atellite ou	dimensionless atside this FOF		×	×	×	1	general	$1.36693e10 \rightarrow 1.367e10$
MassFractionSatellites ¹⁴ Fraction of mass that is bou	1 nd to a sa	float32 atellite in			×	×	×	1	general	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$

	Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
	MostMassiveBlackHoleAccretion- Rate Gas accretion rate of most m	1	float32	M/t	1	1	✓	×	✓	general	$1.36693 \mathrm{e} 10 ightarrow 1.367 \mathrm{e} 10$
		1	float32	dimensionless e black hole.	✓	1	✓	✓	✓	general	$1.36693e10 \rightarrow 1.367e10$
	MostMassiveBlackHolePosition Position of most massive bla	3 ck hole.	float64	$\mathbf{a}\cdot\mathbf{L}$	✓	✓	✓	1	1	general	1 pc accurate
13	MostMassiveBlackHoleVelocity Velocity of most massive bla	3 ck hole re	float32 elative to	/	√ ⁄olume	✓ e.	✓	✓	✓	general	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
	ProjectedTotalInertiaTensor- Noniterative 2D inertia tensor computed to the halo centre. Diagonal comp calculated when we have more than	onents a	nd one of	on from the total				on, re		general	$1.36693e10 \rightarrow 1.367e10$
	ProjectedTotalInertiaTensor- ReducedNoniterative Reduced 2D inertia tensor of relative to the halo centre. Diagona Only calculated when we have more	al compoi	nents and	one off-diagona	the to	otal m	ass d	listrib		general	$1.36693e10 \rightarrow 1.367e10$

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
SpectroscopicLikeTemperature ¹⁵ Spectroscopic-like gas temp	1 erature.	float32	Т	×	×	×	×	1	general	$1.36693e10 \rightarrow 1.367e10$
${\bf Spectroscopic Like Temperature-Core Excision^{12,15}}$	1	float32	Т	×	×	×	×	✓	general	$1.36693e10 \rightarrow 1.367e10$
Spectroscopic-like gas temp	erature. E	Excludes g	gas in the inner e	excise	d core					
SpectroscopicLikeTemperature- WithoutRecentAGNHeating ¹⁵	1	float32	Т	×	×	×	×	✓	general	$1.36693e10 \rightarrow 1.367e10$
Spectroscopic-like gas temp	erature. E	Exclude ga	as that was recei	ntly he	eated	by A	GN			
${\bf Spectroscopic Like Temperature-} \\ {\bf Without Recent AGN Heating Core-} \\ {\bf Excision}^{12,15}$	1	float32	Т	×	×	×	×	✓	general	$1.36693e10 \rightarrow 1.367e10$
Spectroscopic-like gas tempo gas in the inner excised core	erature. E	xclude ga	s that was recent	ly hea	ted by	AG	N. Exe	cludes		
SpinParameter ¹⁶ Bullock et al. (2001) spin p	1 arameter.	float32	dimensionless	✓	1	✓	×	1	general	$1.36693e10 \rightarrow 1.367e10$
StarFormingGasMass ⁸ Total mass of star-forming	1 gas.	float32	M	✓	1	✓	×	×	general	$1.36693e10 \rightarrow 1.367e10$
${\bf Star Forming Gas Mass Fraction In-Iron}^{8,3}$	1	float32	dimensionless	×	✓	✓	×	×	general	$1.36693e10 \rightarrow 1.367e10$
T-4-1 f4: :- :	c									

Total gas mass fraction in iron for gas that is star-forming.

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
StarFormingGasMassFractionIn-Oxygen ^{8,3} Total gas mass fraction in ox	1 xygen for	float32	dimensionless is star-forming.	×	1	✓	×	×	general	$1.36693e10 \rightarrow 1.367e10$
Thermal EnergyGas 17 Total thermal energy of the	1 gas.	float64	$\frac{L^2 \cdot M}{t^2}$	×	×	×	×	✓	general	$1.36693\mathrm{e}10 \to 1.367\mathrm{e}10$
TotalInertiaTensor 3D inertia tensor computed is centre. Diagonal components and of Only calculated when we have more	ne off-dia	gonal tria	e total mass distrangle as $(1,1)$, $(2$	ributio	on, rel	ative		e halo	general	$1.36693e10 \rightarrow 1.367e10$
TotalInertiaTensorNoniterative 3D inertia tensor computed to the halo centre. Diagonal compo- (1,3), (2,3). Only calculated when	nents and	d one off-	on from the total diagonal triangle	l mass	distr	ibuti		lative	general	$1.36693e10 \rightarrow 1.367e10$
TotalInertiaTensorReduced Reduced 3D inertia tensor of to the halo centre. Diagonal compo- (1,3), (2,3). Only calculated when	nents and	d one off-	y from the total diagonal triangle			ibuti			general	$1.36693 \mathrm{e} 10 \to 1.367 \mathrm{e} 10$

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
TotalInertiaTensorReduced- Noniterative	6	float32	dimensionless	✓	×	×	×	1	general	$1.36693\mathrm{e}10 \to 1.367\mathrm{e}10$
Reduced 3D inertia tensor of relative to the halo centre. Diagona (1,2), (1,3), (2,3). Only calculated	l compon	ents and o	one off-diagonal t	triang						
XRayLuminosity ¹⁸ Total observer-frame Xray l		float64 in three	U -	×	×	×	×	✓	general	$1.36693e10 \to 1.367e10$
XRayLuminosityCoreExcision ¹² Total observer-frame Xray lu			U -						general	$1.36693e10 \to 1.367e10$
XRayLuminosityInRestframe ¹⁸ Total rest-frame Xray lumin			6-	×	×	×	×	✓	general	$1.36693e10 \to 1.367e10$
XRayLuminosityInRestframe- CoreExcision	3	float64	$\frac{L^2 \cdot M}{t^3}$	×	×	×	×	✓	general	$1.36693 \mathrm{e} 10 \to 1.367 \mathrm{e} 10$
Total rest-frame Xray lumin	osity in t	hree band	ls. Excludes gas	in the	e inne	r exc	ised co	ore		
${\bf Without Recent AGN Heating}$			$\frac{\mathrm{L}^2 \cdot \mathrm{M}}{\mathrm{t}^3}$						general	$1.36693e10 \to 1.367e10$
Total rest-frame Xray lumin AGN.	osity in t	hree band	s. Excludes gas	that v	vas re	centl	y heat	ed by		

	Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
	XRayLuminosityInRestframe- WithoutRecentAGNHeatingCore- Excision Total rest-frame Xray lumino			·				× y heat		general	$1.36693e10 \rightarrow 1.367e10$
	AGN. Excludes gas in the inner exc XRayLuminosityWithoutRecent- AGNHeating Total observer-frame Xray lu by AGN.	3	float64	Ü				× ntly h		general	$1.36693e10 \rightarrow 1.367e10$
17	XRayLuminosityWithoutRecent-AGNHeatingCoreExcision ¹² Total observer-frame Xray luby AGN. Excludes gas in the inner		in three b	Ü	× gas th					general	$1.36693e10 \rightarrow 1.367e10$
	XRayPhotonLuminosity ¹⁸ Total observer-frame Xray p	3 hoton lur	float64 ninosity i	,	×	×	×	×	1	general	$1.36693 \mathrm{e} 10 \to 1.367 \mathrm{e} 10$
	XRayPhotonLuminosityCore- Excision ¹² Total observer-frame Xray p excised core	3 bhoton lu	float64 minosity	,	× Excl	× udes		× n the	✓ inner	general	$1.36693e10 \rightarrow 1.367e10$

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
XRayPhotonLuminosityIn- Restframe ¹⁸ Total rest-frame Xray photo	3 n lumino	float64	,	×	×	×	×	✓	general	$1.36693 \mathrm{e} 10 ightarrow 1.367 \mathrm{e} 10$
XRayPhotonLuminosityIn- RestframeCoreExcision Total rest-frame Xray photocore	3 n lumino	float64	,	× ıdes ga	× as in t		× nner e	✓ xcised	general	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
XRayPhotonLuminosityIn- RestframeWithoutRecent- AGNHeating Total rest-frame Xray photoheated by AGN.	3 on lumine	float64	,	× clude	× gas tl		× vas rec	cently	general	$1.36693e10 \rightarrow 1.367e10$
XRayPhotonLuminosityIn- RestframeWithoutRecent- AGNHeatingCoreExcision Total rest-frame Xray photoheated by AGN. Excludes gas in the			hree bands. Ex	× clude	× gas tl		× vas re	✓ cently	general	$1.36693e10 \rightarrow 1.367e10$
XRayPhotonLuminosityWithout- RecentAGNHeating Total observer-frame Xray p heated by AGN.	3 hoton lun	float64	,	× xclude	× e gas t		× was re	✓ cently	general	$1.36693e10 \rightarrow 1.367e10$

Name	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
Description										
XRayPhotonLuminosityWithout- RecentAGNHeatingCore- Excision ¹²	3	float64	1/t	×	×	×	×	1	general	$1.36693e10 \rightarrow 1.367e$
Total observer-frame Xray planeted by AGN. Excludes gas in the				xclude	e gas t	that v	vas re	cently		
Angular Momentum Gas ¹⁹ Total angular momentum of mass velocity.	3 the gas,		$L^2 \cdot M/t$ to the centre of	✓ poten		-		✓ atre of	gas	$1.36693e10 \rightarrow 1.367e$
DiscToTotalGasMassFraction Fraction of the total gas mas	1 ss that is	float32 co-rotatir	dimensionless	1	1	✓	×	1	gas	$1.36693e10 \rightarrow 1.367e$
GasCentreOfMass Centre of mass of gas.	3	float64	$\mathbf{a}\cdot\mathbf{L}$	×	×	×	×	1	gas	1 pc accurate
GasCentreOfMassVelocity Centre of mass velocity of ga	3 us.	float32	$a\cdot L/t$	×	×	×	×	1	gas	0.1 km/s accurate
GasInertiaTensor 3D inertia tensor computed a centre. Diagonal components and o Only calculated when we have more	ne off-dia	gonal tria	e gas mass distrangle as $(1,1)$, $(2$			ative				$1.36693e10 \rightarrow 1.367e$

	\	٠	þ
(_	

	Name Description	Shape	Туре	Units	SH	ES	IS	EP	SO	Category	Compression
	GasInertiaTensorNoniterative 3D inertia tensor computed the halo centre. Diagonal compor (1,3), (2,3). Only calculated when	nents and	one off-di	n from the gas miagonal triangle	ass d	istribı	ution		ive to	gas	$1.36693e10 \rightarrow 1.367e10$
	GasInertiaTensorReduced Reduced 3D inertia tensor of the halo centre. Diagonal comport (1,3), (2,3). Only calculated when	nents and	iteratively one off-di	iagonal triangle	ass d	istribı	ution	, relati		gas	$1.36693e10 \rightarrow 1.367e10$
20	GasInertiaTensorReduced- Noniterative Reduced 3D inertia tensor relative to the halo centre. Diagona (1,2), (1,3), (2,3). Only calculated	al compon	ents and c	le iteration from one off-diagonal t	the griangl	gas m	ass c	listribı	,	gas	$1.36693e10 \rightarrow 1.367e10$
	GasProjectedVelocityDispersion ²⁰ Mass-weighted velocity dispector of mass velocity.			,				✓ e to th		gas	$1.36693e10 \rightarrow 1.367e10$
	GasVelocityDispersionMatrix ²¹ Mass-weighted velocity disp velocity. The order of the component	ersion of	the gas.		e to t	he ga	s cen	tre of		gas	$1.36693e10 \rightarrow 1.367e10$
	${ m HalfMassRadiusGas}^4$ Gas half mass radius.	1	float32	$\mathbf{a} \cdot \mathbf{L}$	✓	1	✓	✓	×	gas	$1.36693 \mathrm{e} 10 \to 1.367 \mathrm{e} 10$

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
KappaCorotGas ²² Kappa-corot for gas, relative the gas.	1 re to the o		dimensionless potential and the						gas	$1.36693 \mathrm{e} 10 o 1.367 \mathrm{e} 10$
KineticEnergyGas ²³ Total kinetic energy of the §			U			✓	×	✓	gas	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
ProjectedGasInertiaTensor- Noniterative 2D inertia tensor computed to the halo centre. Diagonal compaction calculated when we have more that	onents a	nd one of	on from the gas	mass		ibuti	on, re		gas	$1.36693e10 \rightarrow 1.367e10$
ProjectedGasInertiaTensor- ReducedNoniterative Reduced 2D inertia tensor relative to the halo centre. Diagon Only calculated when we have more	al compo	nents and	one off-diagonal	the	gas m	ass c	listrib	ution,	gas	$1.36693e10 \rightarrow 1.367e10$
AngularMomentumDarkMatter ¹⁹ Total angular momentum of centre of mass velocity.			,		of po		× ial an	✓ d DM	dm	$1.36693e10 \rightarrow 1.367e10$

	Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
	DarkMatterInertiaTensor 3D inertia tensor computed centre. Diagonal components and components and components and components are considered when we have more	ne off-dia	igonal tria	e DM mass distrangle as (1,1), (2			ative			dm	$1.36693e10 \rightarrow 1.367e10$
	DarkMatterInertiaTensor- Noniterative 3D inertia tensor computed to the halo centre. Diagonal compo- (1,3), (2,3). Only calculated when	onents and	d one off-	on from the DM			ributi			dm	$1.36693e10 \rightarrow 1.367e10$
22	DarkMatterInertiaTensorReduced Reduced 3D inertia tensor of the halo centre. Diagonal compone (1,3), (2,3). Only calculated when	ents and	one off-d	y from the DM riagonal triangle			ution			dm	$1.36693e10 \rightarrow 1.367e10$
	DarkMatterInertiaTensor- ReducedNoniterative Reduced 3D inertia tensor of relative to the halo centre. Diagona (1,2), (1,3), (2,3). Only calculated	l compon	ents and o	one off-diagonal	n the l		nass d			dm	$1.36693e10 \rightarrow 1.367e10$
	DarkMatterProjectedVelocity- Dispersion ²⁰ Mass-weighted velocity disperente of mass velocity.	1 ersion of	float32 the DM a	,	× ion ax	× xis, rel		✓ to th	× e DM	dm	$1.36693e10 \rightarrow 1.367e10$

	Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
	DarkMatterVelocityDispersion- Matrix ²¹ Mass-weighted velocity disp	6	float32	t-	✓ od rele			X DM		dm	$1.36693e10 \rightarrow 1.367e10$
	of mass velocity. The order of the										
	HalfMassRadiusDarkMatter ⁴ Dark matter half mass radiu	1 is.	float32	$\mathbf{a}\cdot\mathbf{L}$	1	✓	1	1	×	dm	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
23	MaximumDarkMatterCircular- Velocity Maximum circular velocity of ticle softening lengths	1 calculated	float32 using da	,	✓ les wh	× en ace		× sing fo	× r par-	dm	$1.36693e10 \rightarrow 1.367e10$
	MaximumDarkMatterCircular- VelocityRadius Radius at which MaximumI	1 DarkMatt	float32 erCircular	_	✓ ned.	×	×	×	×	dm	$1.36693e10 \rightarrow 1.367e10$
	AngularMomentumStars ¹⁹ Total angular momentum of of mass velocity.	3 f the stars		$L^2 \cdot M/t$ to the centre of	✓ poter	✓ ntial a	-	× tellar	✓ centre	star	$1.36693e10 \rightarrow 1.367e10$
	DiscToTotalStellarMassFraction Fraction of the total stellar	1 mass that	float32 t is co-rot		1	✓	1	×	1	star	$1.36693 \mathrm{e} 10 \to 1.367 \mathrm{e} 10$

	Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
	KappaCorotStars ²² Kappa-corot for stars, relative the stars.	1 re to the		dimensionless potential and th				× veloc	× ity of	star	$1.36693e10 \rightarrow 1.367e10$
	KineticEnergyStars ²³ Total kinetic energy of the st	1 ars, relat	float64 ive to the	U	× f mass			×	1	star	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
	LuminosityWeightedMeanStellar- Age Luminosity weighted mean st		float32 The wei		✓ d lum	✓ inosity	•	×	×	star	$1.36693e10 \rightarrow 1.367e10$
24	MassWeightedMeanStellarAge Mass weighted mean stellar a	1 ige.	float32	t	✓	✓	✓	×	×	star	$1.36693e10 \rightarrow 1.367e10$
	ProjectedStellarInertiaTensor- Noniterative 2D inertia tensor computed in to the halo centre. Diagonal compo- calculated when we have more than	onents ar	nd one off	from the stellar				on, re		star	$1.36693e10 \rightarrow 1.367e10$
	ProjectedStellarInertiaTensor- ReducedNoniterative Reduced 2D inertia tensor cor relative to the halo centre. Diagona Only calculated when we have more	l compor	nents and	iteration from the one off-diagonal	he ste			istribı		star	$1.36693e10 \rightarrow 1.367e10$

- 1	. •
f.	$\overline{}$
	17

	Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
	StellarCentreOfMass Centre of mass of stars.	3	float64	$\mathbf{a}\cdot\mathbf{L}$	×	/	1	×	1	star	1 pc accurate
	StellarCentreOfMassVelocity Centre of mass velocity of s	3 stars.	float32	$a \cdot L/t$	×	✓	✓	×	✓	star	0.1 km/s accurate
	StellarInertiaTensor 3D inertia tensor compute halo centre. Diagonal components (2,3). Only calculated when we ha	s and one o	off-diagon	al triangle as (1						star	$1.36693e10 \rightarrow 1.367e10$
25	StellarInertiaTensorNoniterative 3D inertia tensor computed to the halo centre. Diagonal comp (1,3), (2,3). Only calculated when	onents and	d one off-	n from the stella diagonal triangle			ributi			star	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
	StellarInertiaTensorReduced Reduced 3D inertia tensor to the halo centre. Diagonal comp (1,3), (2,3). Only calculated when	onents and	d one off-	y from the stella diagonal triangle	r mas		ributi			star	$1.36693e10 \rightarrow 1.367e10$
	StellarInertiaTensorReduced- Noniterative Reduced 3D inertia tensor of relative to the halo centre. Diagon (1,2), (1,3), (2,3). Only calculated	al compon	ents and o	one off-diagonal	the ste		nass d			star	$1.36693e10 \rightarrow 1.367e10$

	Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
	StellarInitialMass Total stellar initial mass.	1	float32	M	1	1	✓	1	1	star	$1.36693 \mathrm{e} 10 o 1.367 \mathrm{e} 10$
	StellarLuminosity ²⁴ Total stellar luminosity in th	9 ne 9 GAN	float32 IA bands	dimensionless	✓	✓	✓	✓	✓	star	$1.36693e10 \rightarrow 1.367e10$
	StellarMassFractionInIron Total stellar mass fraction in	1 n iron.	float32	dimensionless	×	✓	✓	×	✓	star	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
	StellarMassFractionInOxygen Total stellar mass fraction in	1 n oxygen.	float32	dimensionless	×	✓	✓	×	✓	star	$1.36693 \mathrm{e} 10 \to 1.367 \mathrm{e} 10$
26	StellarProjectedVelocity- Dispersion ²⁰ Mass-weighted velocity disp	1	float32	,	X	X		/	X	star	$1.36693e10 \rightarrow 1.367e10$
	stellar centre of mass velocity.	ersion or	the stars	s along the proj	ection	i axis	, reia	urve i	o the		
	StellarVelocityDispersionMatrix ²¹ Mass-weighted velocity disperson was velocity. The order of the con-	ersion of			tive t	o the	stella		tre of	star	$1.36693e10 \rightarrow 1.367e10$
	AngularMomentumBaryons ¹⁹ Total angular momentum of baryonic centre of mass velocity.	3 baryons		$L^2 \cdot M/t$ stars), relative to	the o	✓ centre	✓ of po	× otentia	✓ al and	baryon	$1.36693e10 \rightarrow 1.367e10$
	HalfMassRadiusBaryons Baryonic (gas and stars) hal	1 f mass ra	float32 dius.	$\mathbf{a}\cdot\mathbf{L}$	1	1	✓	1	×	baryon	$1.36693 \mathrm{e} 10 \to 1.367 \mathrm{e} 10$

Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
KappaCorotBaryons ²² Kappa-corot for baryons (gas of mass velocity of the baryons.	1 s and sta	float32 ars), relati							baryon	$1.36693\mathrm{e}10 ightarrow 1.367\mathrm{e}10$
HaloCatalogueIndex Index of this halo in the orig	1 inal halo	int64 finder ca	dimensionless talogue (first hal		× index		×	×	Input	no compression
HaloCentre The centre of the subhalo as positions. For VR and HBTplus the subhalo.		•	lo finder. Used	as ref		e for	all re	lative		1 pc accurate
IsCentral Whether the halo finder flags	1 ged the h	int64 nalo as cer	dimensionless atral (1) or satell			×	×	×	Input	no compression
NumberOfBoundParticles Total number of particles bot	1 und to th	int64 ne subhalo	dimensionless	×	×	×	×	×	Input	no compression
Depth Level of the subhalo in the m	1 nerging h	uint64 ierarchy.	dimensionless	×	×	×	×	×	HBTplus	no compression
DescendantTrackId TrackId of the descendant of	1 this sub	int64 halo.	dimensionless	×	×	×	×	×	HBTplus	no compression
HostFOFId ID of the host FOF halo of the state of the st	1 his subha	int64 alo. Hostl	dimensionless ess halos have H					×	HBTplus	no compression

∞

	Name Description	Shape	Type	Units	SH	ES	IS	EP	SO	Category	Compression
	LastMaxMass Maximum mass of this subl	1 nalo across	float32 s its evolu		×	×	×	×	×	HBTplus	$1.36693e10 \rightarrow 1.367e10$
	LastMaxVmaxPhysical Largest value of maximum	1 circular ve	float32 elocity of	,		× evolu			×	HBTplus	$1.36693 \mathrm{e} 10 \rightarrow 1.367 \mathrm{e} 10$
	NestedParentTrackId TrackId of the parent of thi	1 s subhalo.	int64	dimensionless	×	×	×	×	×	HBTplus	no compression
•	SnapshotIndexOfBirth Snapshot when this subhalo	1 was form	int64 ed.	dimensionless	×	×	×	×	×	HBTplus	no compression
000	SnapshotIndexOfLastMaxMass Latest snapshot when this s	1 subhalo ha			×	×	×	×	×	HBTplus	no compression
	SnapshotIndexOfLastMaxVmax Latest snapshot when this s			dimensionless est maximum cir				×	×	HBTplus	no compression
	TrackId Unique ID for this subhalo	1 which is c				×	×	×	×	HBTplus	no compression
	Centres Centre of mass of the host F	3 OF halo o	float64 f this sub		×	× and h			× halos.	FOF	1 pc accurate
	Masses Mass of the host FOF halo	1 of this sub	float32 ohalo. Ze		× nd hos	×	× subha	× alos.	×	FOF	$1.36693e10 \rightarrow 1.367e10$

Name		Shape	Type	Units	SH	ES	$_{\rm IS}$	EP	SO	Category	Compression
	Description										
Sizes	Number of particles in the los.	1 e host FOF	uint64 halo of	dimensionless this subhalo. Ze							no compression
		4	:+01	1:	~	~	~	~	~	COAD	no communication
Host H subha	IaloIndex Index (within the SOAP los.	arrays) of	int64 the top l	dimensionless evel parent of the						SOAP	no compression
subha	Index (within the SOAP	1	the top l	evel parent of the	his su	ıbhalo	1	for c	entral	SOAP	no compression

5 Non-trivial properties

¹The centre of mass and centre of mass velocity are computed using all particle types except neutrinos (since neutrinos can never be bound to a halo).

²The concentration is computed using the method described in Wang et al. (2023), but using a fifth order polynomial fit to the R1-concentration relation for 1 < c < 1000. Therefore we set a floor of 1 and a ceiling of 1000 for the values calculated by SOAP. This method assumes halos have an NFW profile, and is only calculated for the following SO variations: 200_{crit} , 200_{mean} , and BN98. Neutrinos are included in the calculation of total concentration. The first moment of the density distribution, R1, can be estimated from the concentration. From R1 the Einasto concentration can be calculated. It also possible to estimate other properties, such as V_{max} , by using the R1 value and assuming an NFW profile.

³The oxygen and iron masses are computed from SmoothedElementMassFractions and not ElementMassFractions, since the latter were not output in the FLAMINGO snapshots. Metal mass fractions on the other hand are based on MetalMassFractions.

⁴The half mass radius is determined from linear interpolation of the cumulative mass profile obtained after sorting all particles by radius. For the projected halos (PA), SOAP uses the 2D radius (distance to the projection axis) instead of the 3D radius.

⁵The maximum circular velocity and the radius where it is reached are computed using

$$v_{\text{max}} = \sqrt{\frac{GM(\leq r)}{r}},\tag{1}$$

where the cumulative mass $M(\leq r)$ includes all particles within the radius r, and includes the contribution of the particle(s) at r=0. The radius is computed relative to the centre of potential. The softened $v_{\rm max}$ value is calculated using the same method, except the particle radius has a floor of the softening length. An alternative way to calculate $v_{\rm max}$ is to estimate it from the halo concentration by assuming an NFW profile. We store the radius of the unsoftened maximum circular velocity. If the softened and unsoftened maximum circular velocities are equal, then their radii will also be equal. If the values are not equal, then the radius of the softened maximum circular velocity will be the simulation softening length.

⁶The most massive black hole is identified based on the BH subgrid mass (i.e. the same mass that goes into BlackHolesSubgridMass).

⁷The neutrino masses exist in two flavours. RawNeutrinoMass is obtained by simply summing the neutrino particle masses, while the noise suppressed version, NoiseSuppressedNeutrinoMass is defined as

$$M_{\nu, NS} = \sum_{i} m_i w_i + \frac{4\pi}{3} \rho_{\nu} R_{SO}^3,$$
 (2)

where w_i are the neutrino weights (which can be negative), and ρ_{ν} is the background density of neutrinos that is also used in the SO radius calculation. The latter is obtained from the snapshot header.

⁸When distinguishing between star-forming and non star-forming gas and computing the total star formation rate, we have to be careful about the interpretation of the StarFormationRates dataset in the snapshots, since negative values in that dataset are used to store another quantity, the last scale factor when that particular gas particle was star-forming. Star-forming gas is then gas for which StarFormationRates is strictly positive, and the total star formation rate is the sum of only the strictly positive values.

⁹The Compton y parameter is computed as in McCarthy et al. (2017):

$$y = \sum_{i} \frac{\sigma_T}{m_e c^2} n_{e,i} k_B T_{e,i} \frac{m_i}{\rho_i},\tag{3}$$

where σ_T is the Thomson cross section, m_e the electron mass, c the speed of light and k_B the Boltzmann constant. $n_{e,i}$ and $T_{e,i}$ are the electron number density and electron temperature for gas particle i, while $V_i = m_i/\rho_i$ is the SPH volume element that turns the sum over all particles i within the inclusive sphere into a volume integral. Note that the snapshot already contains the individual y_i values for the SPH particles, computed from the cooling tables during the simulation.

¹⁰The Doppler B parameter is computed as in Roncarelli et al. (2018):

$$b = \frac{\sigma_T}{c} \sum_{i} n_{e,i} v_{r,\text{obs},i} \frac{m_i}{\rho_i A_{\text{obs}}}, \tag{4}$$

where σ_T is the Thomson cross section, c the speed of light, $n_{e,i}$ the electron number density for gas particle i, with $V_i = m_i/\rho_i$ the corresponding SPH particle volume. The relative peculiar velocity is taken relative to the box and along a line of sight towards a particular observer, so

$$v_{r,\text{obs},i} = \vec{v}_i \cdot \frac{(\vec{x}_i - \vec{x}_{\text{obs}})}{|\vec{x}_i - \vec{x}_{\text{obs}}|},\tag{5}$$

with \vec{x}_i and \vec{v}_i the physical position and velocity of particle i, and $\vec{x}_{\rm obs}$ the arbitrary observer position.

The surface area $A_{\rm obs}$ that turns the volume integral into a line integral is that of the aperture for which b is computed, i.e. $A_{\rm obs} = \pi R_{\rm SO}^2$.

As the observer position we use the position of the observer for the first lightcone in the simulation, or the centre of the box if no lightcone was present. This choice is arbitrary and can be adapted. Since $\vec{x}_{\rm obs}$ can in principle coincide with \vec{x}_i , we make sure $v_{r,{\rm obs},i}$ is set to zero in this case to avoid division by zero.

¹¹The Compton Y-weighted temperature is computed as

$$T = \frac{1}{\sum_{i} y_i} \sum_{i} y_i T_i,\tag{6}$$

¹²Core excised quantities Excludes the inner region of the halo when computing the quantity. It is only calculated for SO/500_crit. Any core excised calculation only uses the particles for which

$$0.15R_{500c} \le \mathbf{r} \ge R_{500c} \tag{7}$$

¹³The mass-weighted temperature is computed as

$$T = \frac{1}{\sum_{i} m_i} \sum_{i} m_i T_i, \tag{8}$$

and the GasTemperatureWithoutRecentAGNHeating variant uses the same definition, but excludes particles that satisfy

LastAGNFeedbackScaleFactors_i
$$\geq a - 15 \text{Myr}$$
 (9)

and

$$0.1\Delta T_{\text{AGN}} \le T_i \le 10^{0.3} \Delta T_{\text{AGN}},\tag{10}$$

using the same parameters as used internally by SWIFT and with a the current scale factor.

¹⁴The satellite mass fractions is obtained by summing the masses of all particles within the inclusive sphere that are bound to a subhalo that is not the central subhalo, and dividing this by $M_{\rm SO}$. This uses the same membership information that is also used to decide what particles need to be included in the exclusive sphere and projected aperture properties. For MassFractionSatellites we only consider particles with the same FOF ID as the most bound particle in the central subhalo. For MassFractionExternal we include all particles with a FOF ID not equal to the most bound particle in the central subhalo.

¹⁵The spectroscopic-like temperature is computed as

$$T_{SL} = \frac{\sum_{i} \rho_{i} m_{i} T_{i}^{1/4}}{\sum_{i} \rho_{i} m_{i} T_{i}^{-3/4}}$$
(11)

¹⁶The spin parameter is computed following Bullock et al. (2021):

$$\lambda = \frac{|\vec{L}_{\text{tot}}|}{\sqrt{2}Mv_{\text{max}}R},\tag{12}$$

where \vec{L}_{tot} is the total angular momentum of all particles within radius R, and M their total mass. The angular momentum is computed relative to the centre of potential and the total centre of mass velocity. Since subhalos do not have a natural radius associated with them, we use the radius where the softened v_{max} is reached.

¹⁷**The thermal energy** of the gas is computed from the density and pressure, since the internal energy was not output in the FLAMINGO snapshots. The relevant equation is

$$u = \frac{P}{(\gamma - 1)\rho},\tag{13}$$

with $\gamma = 5/3$.

 $^{18}\text{X-ray}$ quantities are computed directly from the X-ray datasets in the snapshot. They are either in the emission rest-frame, or in the observed-frame of a z=0 observer, using the redshift of the snapshot as the emission redshift . The three bands are always given in the same order as in the snapshot:

- 1. eRosita low/soft (0.2 2.3 keV)
- 2. eRosita high/hard (2.3 8 keV)
- 3. ROSAT (0.5 2 keV)

¹⁹**The angular momentum** of gas, dark matter and stars is computed relative to the centre of potential (cop) and the centre of mass velocity of that particular component, and not to to the total centre of mass velocity. The full expression is

$$\vec{L}_{\text{comp}} = \sum_{i=\text{comp}} m_i \left(\vec{x}_{r,i} \times \vec{v}_{\text{comp},r,i} \right), \tag{14}$$

with the sum i over all particles of that particular component (bound to the halo), and

$$\vec{x}_{r,i} = \vec{x}_i - \vec{x}_{\text{cop}},\tag{15}$$

$$\vec{v}_{\text{comp},r,i} = \vec{v}_i - \vec{v}_{\text{com,comp}},\tag{16}$$

where

$$\vec{v}_{\text{com,comp}} = \frac{\sum_{i=\text{comp}} m_i \vec{v}_i}{\sum_{i=\text{comp}} m_i}.$$
 (17)

For FLAMINGO, we also compute the angular momentum for baryons, where the sum is then over both gas and star particles.

²⁰**The projected velocity dispersion** is computed along the projection axis. Along this axis, the velocity is a 1D quantity, so that the velocity dispersion is simply 1 value.

²¹The velocity dispersion matrix is defined as

$$V_{\text{disp,comp}} = \frac{1}{\sum_{i=\text{comp}} m_i} \sum_{i=\text{comp}} m_i \vec{v}_{\text{comp},r,i} \vec{v}_{\text{comp},r,i},$$
(18)

where we compute the relative velocity as before, i.e. w.r.t. the centre of mass velocity of the particular component of interest. While it is strictly speaking a 3×3 matrix, there are only 6 independent components. We use the following convention to output those 6 components as a 6 element array:

$$V'_{\text{disp}} = \begin{pmatrix} V_{xx} & V_{yy} & V_{zz} & V_{xy} & V_{xz} & V_{yz} \end{pmatrix}. \tag{19}$$

Other velocity dispersion definitions can be derived from this general form. The one-dimensional velocity dispersion can be calculated as

$$\sigma = \sqrt{\frac{V_{xx} + V_{yy} + V_{zz}}{3}} \tag{20}$$

 $^{22}\kappa_{\rm corot}$ is computed as in Correa et al. (2017):

$$\kappa_{\rm corot,comp} = \frac{K_{\rm corot,comp}}{K_{\rm comp}},$$
(21)

with the kinetic energy given by

$$K_{\text{comp}} = \frac{1}{2} \sum_{i=\text{comp}} m_i |\vec{v}_{\text{comp},r,i}|^2, \qquad (22)$$

the corotational kinetic energy given by

$$K_{\text{corot,comp}} = \sum_{i=\text{comp}} \begin{cases} K_{\text{rot,comp},i}, & L_{\text{comp},p,i} > 0, \\ 0, & L_{\text{comp},p,i} \le 0, \end{cases}$$
(23)

the corotational kinetic energy given by

$$K_{\text{corot,comp}} = \sum_{i=\text{comp}} \begin{cases} K_{\text{rot,comp},i}, & L_{\text{comp},p,i} > 0, \\ 0, & L_{\text{comp},p,i} \le 0, \end{cases}$$
(24)

the rotational kinetic energy given by

$$K_{\text{rot,comp},i} = \frac{1}{2} \frac{L_{\text{comp},p,i}^2}{m_i R_i^2},\tag{25}$$

the projected angular momentum along the angular momentum direction given by

$$L_{\text{comp},p,i} = \vec{L}_i \frac{\vec{L}_{\text{comp}}}{|\vec{L}_{\text{comp}}|},\tag{26}$$

and the orthogonal distance to the angular momentum vector given by

$$R_i^2 = |\vec{x}_{r,i}|^2 - \left(\vec{x}_{r,i} \frac{\vec{L}_{\text{comp}}}{|\vec{L}_{\text{comp}}|}\right),\tag{27}$$

where the angular momentum vector and the relative position and velocity are the same as above for consistency.

²³The kinetic energy of the gas and stars is computed using the same relative velocities as used for other properties, i.e. relative to the centre of mass velocity of the gas and stars respectively.

²⁴Luminosities are given in the GAMA bands and are always using the same order as in the snapshots: u, g, r, i, z, Y, J, H, K. These are rest-frame dust-free AB-luminosities of the star particles. These were computed using the BC03 (GALAXEV) models convolved with different filter bands and interpolated in log-log ($f(\log(Z), \log(age)) = \log(f(ux))$) as used in the dust-free modelling of Trayford et al. (2015). The luminosities are given in dimensionless units. They have been divided by 3631 Jy already, i.e. they can be turned into absolute AB-magnitudes (rest-frame absolute maggies) directly by applying -2.5 log10(L) without additional corrections.

6 Spherical overdensity calculations

The radius at which the density reaches a certain threshold value is found by linear interpolation of the cumulative mass profile obtained after sorting the particles by radius. The approach we use is different from that taken by VR, where both the mass and the radius are obtained from independent interpolations on the mass and density profiles (the latter uses the logarithm of the density in the interpolation). The VR approach is inconsistent, in the sense that the condition

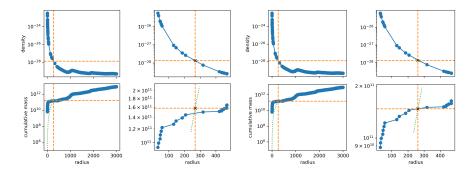


Figure 1: Density profile (top row) and cumulative mass profile (bottom row) for an example halo in a 400 Mpc FLAMINGO box. The orange lines show $\rho_{\rm target}$ and $R_{\rm SO}$ and $M_{\rm SO}$ as determined by SOAP, while the green line is the cumulative mass profile at fixed $\rho_{\rm target}$. The two left columns correspond to a run where $R_{\rm SO}$ is fixed by interpolating on the density profile (so in the top row plot), while the second two columns determine $R_{\rm SO}$ by interpolating on the cumulative mass in the bottom row plots. The right column for each pair of columns shows a zoom of the left column.

$$\frac{4\pi}{3}R_{\rm SO}^3\rho_{\rm target} = M_{\rm SO},\tag{28}$$

is not guaranteed to be true, and will be especially violated for large radial bins (the bins are generated from the particle radii by sorting the particles, so we have no control over their width). We instead opt to guarantee this condition by only finding $R_{\rm SO}$ or $M_{\rm SO}$ by interpolation and using eq. (28) to derive the other quantity.

While the interpolation of the logarithmic density profile to find $R_{\rm SO}$ is more straightforward, we found that it can lead to significant deviations between the value of $M_{\rm SO}$ and the cumulative mass in neighbouring bins that can be more than one particle mass, as illustrated in Fig. 1. The reason for this is that the cumulative mass profile at fixed density increases very steeply with radius, so that a small difference in $R_{\rm SO}$ leads to a relatively large difference in $M_{\rm SO}$. Conversely, fixing $M_{\rm SO}$ will lead to an $R_{\rm SO}$ that only deviates a little bit from the $R_{\rm SO}$ found by interpolating the density profile. However, doing so requires us to find the intersection of the cumulative mass profile at fixed density (green line in Fig. 1) with the actual cumulative mass profile, which means solving the following equation:

$$\frac{4\pi}{3}\rho_{\text{target}}R_{\text{SO}}^3 = M_{\text{low}} + \left(\frac{M_{\text{high}} - M_{\text{low}}}{R_{\text{high}} - R_{\text{low}}}\right) (R_{\text{SO}} - R_{\text{low}}), \tag{29}$$

where $R/M_{\rm low/high}$ are the bounds of the intersecting bin (which we find in the density profile). This third degree polynomial equation has no unique solution, although in practice only one of the three possible complex solutions

is real. We find this solution by using a root finding algorithm within the intersecting bin (we use Brent's method for this).

For clarity, this is the full set of rules for determining the SO radius in SOAP:

- 1. Sort particles according to radius and construct the cumulative mass profile
- 2. Discard any particles at zero radius, since we cannot compute a density for those. The mass of these particles is used as an r=0 offset for the cumulative mass profile. Since the centre of potential is the position of the most bound particle, there should always be at least one such particle.
- 3. Construct the density profile by dividing the cumulative mass at every radius by the volume of the sphere with that radius.
- 4. Find intersection points between the density profile and the target density, i.e. the radii $R_{1,2}$ and masses $M_{1,2}$ where the density profile goes from above to below the threshold:
 - (a) If there are none, analytically compute $R_{SO} = \sqrt{3M_1/(4\pi R_1 \rho_{\rm target})}$, where R_1 and M_1 are the first non zero radius and the corresponding cumulative mass. This is a special case of Eq. (29). Unless there are multiple particles at the exact centre of potential position, this radius estimate will then be based on just two particles.
 - (b) In all other cases, we use $R_{1,2}$ and $M_{1,2}$ as input for Eq. (29) and solve for $R_{\rm SO}$. The only exception is the special case where $R_1 = R_2$. If that happens, we simply move further down the line until we find a suitable interval.
- 5. From R_{SO} , we determine M_{SO} using Eq. (28).

Neutrinos — if present in the model — are included in the inclusive sphere calculation (and only here, since neutrino particles cannot be bound to a halo) by adding both their weighted masses (which can be negative), as well as the contribution from the background neutrino density. The latter is achieved by explicitly adding the cumulative mass profile at constant neutrino density to the total cumulative mass profile before computing the density profile. This is the only place where neutrinos explicitly enter the algorithm, except for the neutrino masses computed for the SOs. Neutrinos are not included in the calculation of the centre of mass and centre of mass velocity.

7 Group membership files

Before SOAP can be run we generate a set of files which contain halo membership information for each particle in the SWIFT snapshot. The datasets in these files are stored in the same order and with the same partitioning between files as the datasets in the snapshots. This allows SOAP to read halo membership

information for sub-regions of the simulation volume without reading the full halo-finder output. These files may also be useful for visualising the input halo catalogue.

The group membership files are HDF5 files with one group for each particle type, named PartType0, PartType1, ... as in the snapshots. Each group contains the following datasets:

- 1. GroupNr_bound: for each particle in the corresponding snapshot file this contains the array index of the subhalo which the particle is bound to. If a particle is not bound to any subhalo it will have GroupNr_bound=-1.
- 2. Rank_bound: the ranking by total energy of this particle within the subhalo it belongs to, or -1 if the particle is not bound to any subhalo. The particle with the most negative total energy has Rank_bound=0.
- 3. GroupNr_all: (VELOCIraptor only) for each particle in the corresponding snapshot file this contains the array index of the VR group which the particle belongs to, regardless of whether it is bound or unbound. Particles in no group have GroupNr_all=-1.
- 4. FOFGroupIDs: the 3D FOF group the particle is part of. This field is only present if a FOF snapshot is listed in the parameter file. This field is present in the snapshots themselves, but for FLAMINGO hydro simulations the FOF was regenerated. If this field is present it will overwrite the value from the snapshots when SOAP is run.

The GroupNr values stored here are zero based array indexes into the full subhalo catalogue, and not the subhalos IDs. For example the first group in the VELOCIraptor catalogue has GroupNr=0 and ID=1.

The script 'make_virtual_snapshot.py' will combine snapshot and group membership files into a single virtual snapshot file. This virtual file can be read by swiftsimio and gadgetviewer to provide halo membership information alongside other particle properties. Using the virtual file along with the spatial masking functionality within swiftsimio means it is possible to quickly load all the particles bound to a given subhalo.