FasterSNN is a lightweight spiking neural network for Alzheimer's disease diagnosis from 3D MRI scans. It combines bio-inspired LIF neurons with efficient region-adaptive convolutions and multi-scale attention, achieving 89.44% accuracy on ADNI data while using 152× less energy than traditional CNNs. The model's sparse event-driven computation and interpretable architecture make it ideal for clinical deployment.
Figure: FasterSNN Architecture
FasterSNN/
├── README.md
├── requirement.txt
├── main.py
├── train.py
├── test.py
├── util.py
├── model.py
├── dataloader.py
├── plot.py
- Novel Hybrid Architecture: Combines bio-inspired LIF neurons, region-adaptive convolution, and multi-scale spiking attention for efficient AD diagnosis.
- Energy Efficiency: Achieves state-of-the-art accuracy with only 1.15J energy consumption, making it practical for resource-limited settings.
- Clinical Impact: Focuses on early MCI detection (90% accuracy in AIBL dataset) using cost-effective MRI data.
- Open Science: Provides complete source code and pretrained models for reproducibility and community adaptation.
Figure: Rodar map And Bubble map of FasterSNN on ADNI dataset
FasterSNN integrates three key innovations:
- LIF Neurons: Mimic biological spiking behavior for sparse, energy-efficient computations.
- Region-Adaptive Convolution:
- Core regions: Standard 3D convolution for rich feature extraction.
- Edge regions: Depthwise separable convolution for efficiency.
- Multi-Scale Fusion Pyramid:
- 4-level feature pyramid with learnable cross-layer weights.
- SWA module dynamically balances channel/spatial attention (α=β=0.5).
Key Equations:
- Membrane potential update:
Vₜ = λVₜ₋₁ + (1/T)∑xₜ⁽ⁱ⁾ - Multi-scale fusion:
F_fusion = ∑wᵢ⋅Pool(Conv₁ₓ₁(X_out))
Python == 3.10
torch == 2.4.1
nibabel == 5.2.1
numpy == 1.24.4
scikit-learn == 1.3.2
matplotlib == 3.7.5
seaborn == 0.13.2
tqdm == 4.67.1
Organize MRI data in NIfTI format with the following directory structure:
dataset/
├── train/
│ ├── AD/
│ ├── MCI/
│ └── CN/
└── test/
├── AD/
├── MCI/
└── CN/
python train.py \
--epochs 20 \
--lr 1e-3 \
--weight_decay 1e-3 \
--device cuda:0 # GPU recommended| Parameter | Value | Description |
|---|---|---|
| Batch size | 16 | Input batch size |
| Input dimensions | 64×64×64 | MRI volume resolution |
| Time steps | 2 | Temporal simulation steps |
| Learning rate | 1e-3 | Initial learning rate |
| LR scheduler | ReduceLROnPlateau | Patience=3, factor=0.5 |
| Membrane decay (λ) | 0.9 | LIF neuron potential decay rate |
python test.py \
--batch_size 16 \
--device cuda:0| Model | Accuracy | Precision | Recall | F1-score | Kappa | AVG AUC | Energy (J) | Train time (s) | Parameter (M) | Time Step |
|---|---|---|---|---|---|---|---|---|---|---|
| ResNet50 | 0.8380 | 0.8392 | 0.8380 | 0.8370 | 0.7516 | 0.9414 | 117.74 | 17 | 46.16 | - |
| ResNet101 | 0.8521 | 0.8569 | 0.8521 | 0.8534 | 0.7738 | 0.9422 | 175.39 | 20 | 85.21 | - |
| FCN | 0.8732 | 0.8837 | 0.8732 | 0.8727 | 0.8050 | 0.9396 | 271.44 | 19 | 10.09 | - |
| ViT3D | 0.7958 | 0.8124 | 0.7958 | 0.7984 | 0.6870 | 0.9261 | 131.94 | 15 | 88.26 | - |
| M3T | 0.8310 | 0.8362 | 0.8310 | 0.8321 | 0.6385 | 0.8788 | 2726.73 | 73 | 29.23 | - |
| AAGN | 0.8169 | 0.8207 | 0.8451 | 0.8169 | 0.7630 | 0.9418 | 11412.47 | 192 | 197.51 | - |
| VGGSNN | 0.8169 | 0.8347 | 0.8169 | 0.8205 | 0.7963 | 0.9266 | 602.43 | 17 | 10.08 | 16 |
| ResSNN | 0.7183 | 0.7352 | 0.7183 | 0.7197 | 0.5686 | 0.8678 | 1.10 | 22 | 5.85 | 4 |
| TCJA | 0.8028 | 0.8134 | 0.8028 | 0.8059 | 0.7016 | 0.9003 | 513.65 | 34 | 2.87 | 16 |
| SPT | 0.7676 | 0.7885 | 0.7676 | 0.7638 | 0.6511 | 0.9219 | 19.57 | 47 | 9.64 | 2 |
| PointNet | 0.7958 | 0.7885 | 0.7958 | 0.7904 | 0.6854 | 0.9068 | 1.47 | 43 | 3.47 | 16 |
| Ours | 0.8944 | 0.8972 | 0.8944 | 0.8943 | 0.8394 | 0.9854 | 1.15 | 15 | 43.11 | 2 |
| Model | Accuracy | Precision | Recall | F1-score | Kappa | AVG AUC | Energy (J) | Train time (s) | Parameter (M) | Time Step |
|---|---|---|---|---|---|---|---|---|---|---|
| ResNet50 | 0.7864 | 0.7887 | 0.7864 | 0.7862 | 0.6757 | 0.9014 | 104.39 | 17 | 46.16 | - |
| ResNet101 | 0.7621 | 0.7891 | 0.7621 | 0.7631 | 0.6423 | 0.9022 | 155.50 | 20 | 85.21 | - |
| FCN | 0.8350 | 0.8539 | 0.8350 | 0.8346 | 0.7470 | 0.9174 | 239.54 | 19 | 10.09 | - |
| ViT | 0.6942 | 0.6943 | 0.6942 | 0.6866 | 0.5326 | 0.8346 | 116.10 | 15 | 88.26 | - |
| M3T | 0.7573 | 0.7563 | 0.7573 | 0.7548 | 0.6327 | 0.8867 | 2479.65 | 68 | 29.23 | - |
| AAGN | 0.8256 | 0.8266 | 0.8252 | 0.8247 | 0.7209 | 0.9151 | 10503.74 | 173 | 197.51 | - |
| VGGSNN | 0.7913 | 0.7916 | 0.7913 | 0.7905 | 0.7245 | 0.8970 | 545.80 | 20 | 10.08 | 16 |
| ResSNN | 0.5874 | 0.5893 | 0.5874 | 0.5873 | 0.3546 | 0.7424 | 0.97 | 22 | 5.85 | 4 |
| TCJA | 0.7282 | 0.7563 | 0.7282 | 0.7297 | 0.7016 | 0.8603 | 465.35 | 32 | 2.87 | 16 |
| SPT | 0.6505 | 0.6557 | 0.6505 | 0.6523 | 0.4732 | 0.8083 | 17.78 | 47 | 9.64 | 2 |
| PointNet | 0.6893 | 0.7024 | 0.6893 | 0.6776 | 0.5347 | 0.8307 | 1.32 | 43 | 3.47 | 16 |
| Ours | 0.8737 | 0.8714 | 0.8727 | 0.8681 | 0.8094 | 0.9364 | 1.01 | 12 | 43.11 | 2 |
Figure: Confusion matrix of FasterSNN on ADNI dataset
| Model | Accuracy | Precision | Recall | F1-score | Kappa | AVG AUC | Energy (J) | Train time (s) | Parameter (M) | Time Step |
|---|---|---|---|---|---|---|---|---|---|---|
| w/o LIF | 0.8662 | 0.8664 | 0.8662 | 0.8612 | 0.7931 | 0.9529 | 3.81 | 17 | 43.11 | 1 |
| w/o MSF | 0.7465 | 0.7318 | 0.7362 | 0.6831 | 0.6082 | 0.8967 | 1.15 | 15 | 43.05 | 2 |
| Ours | 0.8944 | 0.8972 | 0.8944 | 0.8943 | 0.8394 | 0.9854 | 1.15 | 15 | 43.11 | 2 |
| Model | Accuracy | Precision | Recall | F1-score | Kappa | AVG AUC | Energy (J) | Train time (s) | Parameter (M) | Time Step |
|---|---|---|---|---|---|---|---|---|---|---|
| w/o LIF | 0.8495 | 0.8485 | 0.8495 | 0.8480 | 0.7802 | 0.9395 | 3.34 | 17 | 43.11 | 1 |
| w/o MSF | 0.8398 | 0.8410 | 0.8398 | 0.8381 | 0.7587 | 0.9148 | 1.01 | 15 | 43.05 | 2 |
| Ours | 0.8737 | 0.8714 | 0.8727 | 0.8681 | 0.8094 | 0.9364 | 1.01 | 12 | 43.11 | 2 |
@article{wu2025towards,
title={Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model},
author={Wu, Changwei and Chen, Yifei and Du, Yuxin and Zong, Jinying and Dong, Jie and Liu, Mingxuan and Peng, Yong and Fan, Jin and Qin, Feiwei and Wang, Changmiao},
journal={arXiv preprint arXiv:2506.09695},
year={2025}
}