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ABSTRACT Differentiation of the Drosophila compound eye from the eye imaginal disc is a
progressive process: columns of cells successively differentiate in a posterior to anterior se-
quence, clusters of cells form at regularly spaced intervals within each column, and individual
photoreceptors differentiate in a defined order within each cluster. The progression of differen-
tiation across the eye disc is driven by a positive autoregulatory loop of expression of the secreted
molecule Hedgehog, which is temporally delayed by the intercalation of a second signal, Spitz.
Hedgehogrefines the spatial position at which each column initiates its differentiation by inducing
secondary signals that act over different ranges to control the expression of positive and negative
regulators. The position of clusters within each column is controlled by secreted inhibitory signals
from clusters in the preceding column, and a single founder neuron, R8, is singled out within each
cluster by Notch-mediated lateral inhibition. R8 then sequentially recruits surrounding cells to
differentiate by producing a short-range signal, Spitz, which induces a secondary short-range
signal, Delta. Intrinsic transcription factors act in combination with these two signals to produce
cell-type diversity within the ommatidium. The Hedgehog and Spitz signals are transported along
the photoreceptor axons and reused within the brain as long-range and local cues to trigger the
differentiation and assembly of target neurons.
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Introduction

The Drosophila compound eye is a highly organized structure
that constitutes an excellent developmental system in which to
address the molecular and cellular mechanisms of pattern forma-
tion (Wolff and Ready, 1993). The retina is composed of 750-800
identical units called ommatidia, which are organized into a
regular hexagonally packed array. Each ommatidial unit contains
eight photoreceptors (R1-R8), four cone cells and two primary
pigment cells arranged in a stereotypic pattern, and these units
are surrounded by a lattice of secondary and tertiary pigment
cells. The photoreceptors project axons into the optic lobes of the
brain, where they form retinotopic projections in two separate
ganglia, the lamina and the medulla (Clandinin and Zipursky,
2002).

The transformation leading from an unpatterned epithelial
monolayer within the larval eye imaginal disc to the highly ordered
adult eye has been extensively studied during the three decades
since it was first introduced as an experimental system (Ready et
al., 1976). The eye disc is specified in the embryonic and early

larval stages through the action of a network of transcription
factors known as the retinal determination genes (Silver and
Rebay, 2005). Pattern formation and ommatidial differentiation
begin in the third larval instar with the appearance of a groove
called the morphogenetic furrow (MF) at the posterior margin of
the eye disc (Ready et al., 1976). This indentation in the epithe-
lium, which results from an apical constriction and apical-basal
contraction of the cells, sweeps progressively across the eye disc
from posterior to anterior over a 2-day period. Cells anterior to the
MF are undifferentiated and proliferate asynchronously, whereas
cells posterior to the MF are organized into columns of regularly
spaced clusters within which photoreceptor differentiation occurs
in a defined sequence (Tomlinson and Ready, 1987, Wolff and
Ready, 1991). An average of 30 columns, each initiated every 90-
120 minutes, will form the entire retinal field. Unlike otherimaginal
discs, which are patterned by organizers formed at stable bound-
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aries between cellular territories, the eye disc has a pro-
gressive pattern of differentiation controlled by signals that
are constantly changing their spatial positions.

One critical signal driving the initiation and progression
ofthe MFis the secreted protein Hedgehog (Hh) (Heberlein
etal., 1995, Heberlein et al., 1993b, Ma et al., 1993). Hh is
expressed at the posterior margin of the eye disc prior to
MF initiation, and induces differentiation of anterior cells;
as they differentiate into photoreceptors, these cells also
begin to express hh and can therefore act on cells anterior
to them (Heberlein and Moses, 1995). One target of Hh
signaling is the Bone Morphogenetic Protein (BMP) family
member Decapentaplegic (Dpp), which functions redun-
dantly with Hh in MF progression (Burke and Basler, 1996,
Curtiss and Mlodzik, 2000, Greenwood and Struhl, 1999,
Heberlein etal., 1993b, Wiersdorff etal., 1996). Another Hh
target is the basic Helix-Loop-Helix (bHLH) transcription
factor Atonal (Ato), which is required for the specification of
R8 cells, the first photoreceptors to differentiate in each
cluster. Ato is initially expressed in a broad stripe just
anterior to the MF, and its expression is gradually refined to J
single R8 cells within the MF in a process requiring lateral i
inhibition mediated by the Notch receptor (Baker and i
Zitron, 1995, Dokucu et al., 1996, Jarman et al., 1994, i
Jarman et al., 1995). i

R8 orchestrates subsequent ommatidial development :
by recruiting surrounding uncommitted cells to differentiate ,
into other photoreceptors, cone cells and pigment cells.
Secretion of the Epidermal growth factor receptor (EGFR)
ligand Spitz (Spi) from R8 and subsequently recruited cells
promotes the sequential differentiation of photoreceptors
R2/R5, R3/R4, R1/R6, R7, the cone cells and the primary
pigment cells, as well as the survival of secondary and
tertiary pigment cells (Freeman, 1996, Miller and Cagan,
1998). The Notch ligand Delta (DI) acts as a critical second-
ary signal for several of the later differentiating cell types
(Flores etal., 2000, Nagaraj and Banerjee, 2007, Tomlinson
and Struhl, 2001, Tsuda et al., 2002). The founder role of
R8 cells makes their specification and spacing critical for
the organization of the adult eye. Both Hh and Spi are also
transported along the photoreceptor axons and act on photore-
ceptor target cells in the brain (Huang and Kunes, 1996, Huang et
al., 1998), coordinating the development of the two tissues. We
will describe the current understanding of the mechanistic basis
of pattern formation in this relatively simple system.

Progression of the morphogenetic furrow: a delayed
autoregulatory loop

The MF initiates in the third larval instar at the dorso-ventral
midpoint of the posterior margin of the eye disc. hh expression is
activated at the center of the posterior margin in second instar eye
discs (Cavodeassi et al., 1999, Cho et al., 2000) by members of
the odd-skipped family of genes (Bras-Pereira et al., 2006).
Notch, whichis activated at the dorsoventral midline by asymmet-
ric distribution of its ligands and the glycosyltransferase Fringe,
also contributes to MF initiation, as do Dpp, the JAK/STAT
pathway ligand Unpaired, and the EGFR (Burke and Basler,
1996, Cavodeassi et al., 1999, Cho and Choi, 1998, Dominguez
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Fig. 1. A delayed autoregulatory loop of hedgehog (Hh) expression drives
morphogenetic furrow (MF) progression. Hh is secreted by differentiating
photoreceptors, primarily R2 and R5, and diffuses anteriorly to activate ato
expression in the MF. Ato then promotes R8 specification and expression of the
proteases Rho and Ru, which cleave the Spi precursor to produce active Spi. Spi
acts locally to enhance the activity of the transcription factor Pnt, which together
with So activates an eye-specific enhancer of the hh gene. The resulting Hh
expression reiterates the cycle, which repeats approximately every 2 hin a spatial
progression from posterior to anterior.

and de Celis, 1998, Ekas et al., 2006, Kumar and Moses, 2001,
Papayannopoulos et al., 1998, Tsai et al., 2007, Wiersdorff et al.,
1996). The temporal control of initiation is not fully understood,; it
may be triggered by the hormone ecdysone (Niwa et al., 2004), or
by growth of the eye disc that brings the posterior margin out of the
range of anterior inhibitory signals (Kenyon et al., 2003, Ma and
Moses, 1995, Treisman and Rubin, 1995).

While MF initiation is a unique developmental event, its pro-
gression occurs as a repeated sequence of events driven by an
autoregulatory feedback loop. Cells that receive the Hh signal in
and anterior to the MF are induced to differentiate as photorecep-
tors; as they differentiate posterior to the MF, these photorecep-
tors themselves begin to express hh, allowing them to drive the
differentiation of more anterior cells (Dominguez and Hafen,
1997, Heberlein et al., 1995, Heberlein et al., 1993b, Ma et al.,
1993, Strutt and Mlodzik, 1995). This cyclical induction of Hh
during MF progression depends on an enhancer element ofthe hh
gene that reproduces hh expression specifically in photoreceptor
cells; deletions of this elementresultin loss of hhexpressionin the



photoreceptors and arrest MF progression (Rogers et al., 2005).
This element is directly regulated by Pointed (Pnt), the transcrip-
tion factor downstream of EGFR signaling (O’Neill et al., 1994,
Rogers et al.,, 2005). Cells that receive the Hh signal from
photoreceptors posterior to them turn on atonal expression,
leading to the specification of R8 cells. R8 then secretes Spi,
which acts through the EGFR to activate Pnt in the neighboring
cells. Pnt promotes the differentiation of these cells into photore-
ceptors (O'Neill et al.,, 1994), and simultaneously activates hh
expression. This regulation of hh by Pnt, which is itself an indirect
target of Hh signaling, creates a positive feedback loop that drives
anterior propagation of hh expression and the MF (Fig. 1).

A temporal delay is introduced into this loop by the indirect
effect of Hh on Spi production. An inactive precursor form of Spi
isproducedinall cells, but secretion of the active form requires the
activities of the chaperone protein Star and the proteases Rhom-
boid (Rho) or Roughoid/Rhomboid-3 (Ru) (Freeman et al., 1992a,
Shilo, 2003, Wasserman et al., 2000). rho and ru are required in
the R8 cell (Wasserman et al., 2000), where their expression is
regulated by Ato, a direct target of Hh signaling (Baonza et al.,
2001, Dominguez, 1999). Activation of the hh enhancer by Pnt
thus requires reception and transduction of the Hh signal, tran-
scription and translation of Ato, transcription and translation of
Rho and Ru, processing and secretion of Spi, and reception and
transduction of the Spi signal. An additional level of regulation
ensures that this mechanism is specific to the eye disc. Pnt
binding sites alone are not sufficient to drive hh expression in
photoreceptors (Rogers et al., 2005); the enhancer also contains
essential binding sites for the retinal determination protein Sine
oculis (So) (Pauli et al., 2005). So is specifically expressed in the
eye field (Cheyette et al., 1994), restricting the control of hh
expression by EGFR signaling to this developmental system.

Superimposed on this basic autoregulatory loop are a variety
of other mechanisms that constrain the pace of MF progression.
Several repressors of photoreceptor differentiation present in the
region anterior to the MF are controlled by long-range and short-
range ligands that are themselves targets of Hh signaling (Fig. 2).
Dpp, which is expressed in a stripe of cells within the MF in a Hh-
dependent manner (Heberlein et al., 1993b, Masucci et al., 1990),
acts at a long range to repress the expression of Homothorax
(Hth), a transcription factor that prevents retinal differentiation in
the anterior of the eye disc (Bessa et al., 2002). This repression
of hth allows cells to enter a preproneural state in which they are
able to respond to Hh. Dpp also activates the expression of hairy
in a stripe anterior to the MF (Greenwood and Struhl, 1999); Hairy
is a repressor of ato and acts in combination with another
anteriorly expressed HLH protein, Extramacrochaetae, to pre-
vent cells from initiating the differentiation process prematurely
(Brown et al., 1995). Since Hth has been shown to repress hairy
(Bessa et al., 2002), it is possible that the effect of Dpp on hairy
is mediated indirectly through hth repression.

Down-regulation of hairy expression, which relieves the re-
pression of ato, requires a short-range signal that is provided by
Delta (DI), a transmembrane ligand for the Notch receptor ex-
pressed in the MF under the redundant control of Hh and Dpp
(Baonza and Freeman, 2001, Baonza and Freeman, 2005, Parks
et al., 1995). Misexpression of Dpp does not result in ectopic
photoreceptor differentiation in most regions of the eye disc
(Chanut and Heberlein, 1997, Pignoni and Zipursky, 1997);
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however, coexpression of Dpp with DI can induce neural differen-
tiation anywhere anterior to the MF, indicating that these signals
are sufficient to induce a preproneural state that will progress to
a proneural state (Baonza and Freeman, 2001). Through its
activation of Dpp and DI, Hh thus activates hairy expression at a
long range and represses it at a shorter range, allowing precise
spatial control of the initiation of ato expression. Hh also appears
to be capable of repressing hairy by another mechanism in the
absence of Notch signaling (Fu and Baker, 2003). The restriction
of ato expression to single R8 photoreceptors is likewise Hh-
dependent; Hh induces three negative regulators of ato expres-
sion, rough, Bar, and daughterless, in cells adjacent to R8
(Dokucu et al., 1996, Dominguez, 1999, Lim and Choi, 2003, Lim
and Choi, 2004, Lim et al., 2008). The onset of expression of these
genes is delayed relative to ato because like hh itself, they are
indirectly induced by EGFR signaling (Dominguez et al., 1998,
Lim and Choi, 2004).

Itis interesting that the mechanisms controlling Hh signaling in
the eye disc differ from those used in the wing disc. The transcrip-
tion factor Cubitus interruptus (Ci) is processed into its repressor
form (Ci75) in anterior wing disc cells that fail to receive the Hh
signal, and represses hh expression in these cells (Aza-Blanc et
al., 1997, Dominguez et al., 1996, Methot and Basler, 1999). This
suggests that positive autoregulation through inhibition of Ci75
productionisintrinsic to the Hh pathway. This mechanism mustbe
actively suppressed in the cells at the anterior-posterior boundary
of the wing disc, which receive Hh signaling but do not express hh
(Apidianakis et al., 2001). However, Ci75 is not involved in hh

antenna
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Fig. 2. Hedgehog (Hh) induces long-range and short-range second-
ary signals that control the precise position of the morphogenetic
furrow (MF). Hh acts over a short range to induce the expression of Dpp,
which diffuses over a long range to turn off hth and turn on hairy,
establishing a preproneural domain (PPN). Hh and Dpp also induce the
expression of Delta, a transmembrane ligand that acts on adjacent cells
to turn off hairy and allow ato expression, initiating photoreceptor
differentiation.
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autoregulation in the eye disc; ¢i mutant clones do not result in
premature photoreceptor differentiation (Fu and Baker, 2003,
Pappu et al., 2003), although Hh misexpression does (Heberlein
et al., 1995), and ectopic Ci75 cannot repress hhin the eye disc
(Lee et al., 2002). In the wing disc, Hh limits its own diffusion by
upregulating the expression of Patched, a receptor that binds and
sequesters Hh (Chen and Struhl, 1996). In the eye disc, Hh
transport seems instead to be limited by apical constriction of cells
in the MF, a shape change that is also Hh-dependent (Benlali et
al., 2000, Corrigall et al., 2007, Escudero et al., 2007, Heberlein
et al., 1995, Schlichting and Dahmann, 2008). Finally, Hh-ex-
pressing cells in the posterior compartment of the wing disc fail to
respond to Hh signaling because the transcription factor Engrailed
represses the expression of c¢i (Tabata et al., 1995). In the eye
disc, responsiveness to Hh is downregulated posterior to the MF
by degradation of the Ci protein following its ubiquitination by an
SCF complex containing Cullin 3 and Roadkill/Hh-induced MATH
and BTB-containing protein, the same mechanism used in cells
receiving high levels of Hh at the anterior-posterior boundary of
the wing disc'(Kent et al., 2006, Ou et al., 2002, Ou et al., 2007,
Zhang et al., 2006). The eye disc has integrated several second-
ary signals downstream of Hh to allow controlled movement of the
boundary of Hh expression, which is stable throughout develop-
ment in the wing disc.

Spacing of photoreceptor clusters is achieved through
inhibitory mechanisms

To achieve a precisely ordered array of ommatidia in the adult
eye, clusters within each column must initiate at regularly spaced
intervals, and each column must also be offset from the preceding
column. Each cluster initiates with the specification of its R8 cell,
which depends on the proneural gene ato (Frankfort and Mardon,
2002). Tight control of atoexpressionis thus essential to guarantee
the precision of the final lattice. ato is initially expressed in all cells
in a stripe just ahead of the MF, and becomes restricted first to
regularly spaced intermediate groups of about twenty cells, then to
R8 equivalence groups of two to three cells, and finally to single
cells that are the future R8 cells of each ommatidium (Fig. 3)(Baker
et al., 1996, Dokucu et al., 1996, Jarman et al., 1995).

Spacing of the intermediate groups is thought to involve an
inhibitory signal from clusters in the preceding column that pre-
vents new groups from forming directly anterior to existing clusters
(Fig. 3A). The secreted glycoprotein Scabrous (Sca), which is
expressed in a subset of cells in the intermediate groups and
reaches its highest level in R8 (Baker et al., 1990, Baker et al.,
1996, Baker and Zitron, 1995, Mlodzik et al., 1990a), is a candidate
for this signal. Sca secreted by R8 cells in posterior clusters is
thought to diffuse anteriorly to repress ato expression between the
forming intermediate groups; in sca mutants, R8 cells form too
close together (Baker and Zitron, 1995, Lee et al., 1996). The
receptor for this activity of Sca is unknown. Although Sca interacts
with Notch in other contexts (Baker and Zitron, 1995, Li et al., 2003,
Powell et al., 2001), intermediate group spacing is unaffected by
inactivation of Notch (Baker and Zitron, 1995, Lee et al., 1996). The
formation of intermediate groups coincides with organization of
cellsinto clusters, in part because Ato activates the transcription of
DE-cadherin (Baker and Yu, 1998, Brown et al., 2006). Sca has
been shown to alter DE-Cadherin localization and cell adhesion in
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Fig. 3. Inhibitory signals control cluster spacing and R8 specification.
(A) Spacing of intermediate groups is controlled by inhibitory signals from
clusters in the preceding column, including Sca and a second factor
downstream of EGFR signaling. (B) The process of restriction of Ato
expression within the MF from a continuous stripe of cells to intermedi-
ate groups, 3-cell R8 equivalence groups, and single R8 cells. R8 selec-
tion requires local lateral inhibition mediated by Notch and Sca.

the notum (Renaud and Simpson, 2001), suggesting another
possible mechanism for its effect on intermediate group spacing.

There may be another signal important for intermediate group
spacing that is induced by EGFR signaling. Some studies have
shown that EGFR mutant clones have a non-autonomous effect on
spacing, suggesting that EGFR affects the secretion of a second-
ary factor involved in the restriction of ato expression (Chen and
Chien, 1999, Spencer et al., 1998). Since Ato activates rho
expression (Baonza et al., 2001), leading to secretion of Spi and
activation of the EGFR pathway, this mechanism would function as
a delayed feedback inhibitory loop that transmits spacing informa-
tion from one column to the next, ensuring that successive columns
are out of phase. The secreted signal involved has not been
identified. One candidate is Argos (Aos), which is expressed in
response to EGFR signaling and diffuses over a long range to bind
the EGFR ligand Spi and antagonize its activity (Klein et al., 2004,
Schweitzer et al., 1995, Spencer et al., 1998). However, aos
mutant clones show normal spacing unless the clones are very
large (Baonza et al., 2001, Yang and Baker, 2001), indicating that
Aos does not transmit precise positional information about the
location of each cluster. The molecule downstream of EGFR
signaling mustactin parallel to Scain spacing intermediate groups,
as EGFR sca double mutant clones have a more severe spacing
defect than either single mutant (Baonza et al., 2001). Since sca
expression also depends on ato (Lee et al., 1996), both signals



would operate through the same regulatory logic. However, the
role of EGFR in the spacing process has been disputed (Rodrigues
et al., 2005).

Restriction of ato expression to a single R8 precursor cell within
each intermediate group depends on lateral inhibition through the
Notch receptor. The process of lateral inhibition has been well
described during embryonic neurogenesis (Campos-Ortega and
Jan, 1991). Slight differences between neighboring cells in the
level of expression of the Notch ligand DI are amplified because
cells that receive a stronger Notch signal express less DI. This
process allows a single cell to be selected as the DI-expressing
neuron from a group of cells with equal potential (Bray, 1998). This
mechanism appearsto be conserved in the eye; when either Notch
or Dlis inactivated using a temperature-sensitive allele, all cells in
the intermediate groups continue to express ato and differentiate
into extra R8 cells (Baker et al., 1996, Baker and Yu, 1998, Baker
and Zitron, 1995, Cagan and Ready, 1989a, Frankfortand Mardon,
2002) (Fig. 3B). This change from a positive effect of Notch and DI
on the early stripe of ato expression, described in section 2, to a
negative effect on ato expression in the intermediate groups
coincides with a switch in the enhancer element used to regulate
ato (Baker et al., 1996, Baker and Yu, 1997, Sun et al., 1998). The
5’ enhancer element used in the intermediate groups
requires autoregulation by Ato, and Notch signaling
appears to interfere with this autoregulatory process
(Baker et al., 1996, Sun et al., 1998).

Precise spacing of R8 cells could not be achieved
if R8 were randomly selected within the proneural
cluster, suggesting that the choice must be biased in
some way. However, examination of DI expression
did notreveal obvious differences between cellsin the
intermediate groups (Baker and Yu, 1998). One pos-
sible source of such a bias is Sca, which is secreted
by the R8 precursor and can interact with Notch to
sustain Notch signaling in surrounding cells (Baker
and Zitron, 1995, Li et al., 2003, Powell et al., 2001).
Sca appears to act within endosomes, perhaps pre-
venting endocytic down-regulation of Notch (Li et al.,
2003). Another factor restricting the choice of R8 is
Rough, a transcription factor that represses ato ex-
pression and is expressed in R2, 5, 3 and 4 under the
control of EGFR signaling (Dokucu et al., 1996,
Dominguez et al., 1998). Rough is excluded from the
R8 precursor due to repression by Senseless, a
transcription factor induced by Ato to lock in the R8
fate (Frankfort et al., 2001). However, initial specifica-
tion of the R8 precursor does not require Rough
(Pepple et al., 2008). Specification of R8 thus pro-
ceeds sequentially; the pattern of intermediate groups
isimposed by signals from the preceding column, and
a single R8 is selected within each group by biased
lateral inhibition.

Sequential differentiation within each clus-
ter depends on signaling range
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initiates the sequential recruitment of the other ommatidial cell
types. First R2/R5 and then R3/R4 are recruited to complete the
five-cell precluster; the surrounding undifferentiated cells undergo
a final cell division, the second mitotic wave, before the remaining
cells are recruited in the order R1/R6, R7, anterior and posterior
cone cells, and equatorial and polar cone cells (Tomlinson and
Ready, 1987, Wolff and Ready, 1993) (Fig. 4). During pupal
development, two primary pigment cells are recruited to surround
each ommatidium, and the lattice of secondary and tertiary pig-
ment cells is formed by death of the surplus cells (Cagan and
Ready, 1989b). All these cell fates except R8 are directly or
indirectly dependent on Spi signaling through the EGFR. Mosaic
clones lacking spi or EGFR function contain only R8 cells
(Dominguez et al., 1998, Freeman, 1994, Tio et al., 1994), and
activation of the pathway can induce additional recruitment of all
cell types except R8 (Dominguez et al., 1998, Freeman, 1996).
The dependence of all cell types on the same inductive signal
raises the question of how their differentiation is ordered in a
precise temporal sequence. This seems to be due in part to the
short range of action of the ligand Spi. Spi is initially secreted by
R8 due to Ato-dependent expression of the proteases Rho and Ru
(Baonza et al., 2001, Wasserman et al., 2000). Spi then induces
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- Specification of R2, R5
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S_p“i\-b Dl ry
R2 Ny
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- Specification of R7

L Specification of cone cells
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Fig. 4. Sequential recruitment of ommatidial cells is controlled by the short-range
ligands Spi and DI. Spi promotes the differentiation of photoreceptors R2, 5, 3, 4, 1 and

6. It also induces the expression of DI, which acts together with Spi and Boss to promote

Spatial and temporal patterning of cluster forma-
tion is achieved by controlling the differentiation of a
single photoreceptor in each cluster, R8. R8 then

R7 differentiation, together with Spi to promote cone cell differentiation, and alone to
promote primary pigment cell differentiation. Cells are added sequentially because Spi
and DI can only act over a short distance.
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the cells immediately neighboring R8 to differentiate into
R2 and R5. These cells also express Rho, under the
control of the transcription factor Rough (Freeman et al.,
1992a), as well as the chaperone protein Star (Heberlein
et al., 1993a), and can therefore produce Spi to induce
the differentiation of their neighbors in the arc-shaped
clusterinto R3 and R4 (Freeman, 1997, Wolff and Ready,
1991). It has been proposed that an autoregulatory loop
expands the expression of Rho and Ru to additional
photoreceptors as they differentiate, allowing subse-
guentwaves of recruitment (Freeman, 1997, Shilo, 2005).
However, mosaic analysis has shown little evidence of a
requirement for rho, ru, Star or spiin any photoreceptors
other than R8, 2 and 5 (Freeman, 1994, Heberlein and
Rubin, 1991, Tio et al., 1994, Wasserman et al., 2000).
Indeed, R1, 6 and 7 differentiate adjacentto R8, 2 and 5
(Tomlinson and Ready, 1987), suggesting that they are
responding to Spi produced by these cells. Spi secreted
from other photoreceptors may nevertheless contribute
to the recruitment of cone and pigment cells, which were
not examined in the mosaic studies.

One reason for the sequential, rather than simulta-
neous, recruitment of photoreceptors is likely to be the
very short range of Spi action, which is limited to 1-2 cell
diameters by several mechanisms (Miura et al., 2006,
Schlesinger et al., 2004, Wasserman et al., 2000).
Palmitoylation of the cleaved extracellular domain of Spi
tethersitto the plasma membrane, restricting its diffusion
(Miura et al., 2006). Small wing, a phospholipase Cy,
prevents the secretion of any Spi that is cleaved in the
endoplasmic reticulum by Ru (Schlesinger et al., 2004).
Finally, Spi signaling induces the expression of a se-
creted feedback inhibitor, Aos (Golembo et al., 1996),
which binds to Spi and prevents it from binding to the
EGFR (Klein et al., 2004). aos mutant eyes contain extra
photoreceptors, cone cells and pigment cells (Freeman
et al., 1992b). Aos may prevent Spi from reaching distant cells,
restricting its activity to the region where its local concentration
exceeds that of Aos (Freeman, 1997). Although mosaic studies
suggest that Aos can act over a range of about 10 cell diameters
(Freeman et al., 1992b), mathematical modeling of Aos function
in the embryo indicates that Aos could exert a long-range effect
by acting as a ligand sink, without itself diffusing over a long
distance (Reeves et al., 2005). Interestingly, a second negative
feedback loop involving the intracellular inhibitor Sprouty subse-
quently turns off aos expression in R8, 2 and 5; aos is maintained
in other photoreceptors because sprouty expression is inhibited
by the transcription factor Seven-up (Svp) expressed in these
cells (lwanami et al., 2005). This reduction in Aos production may
allow Spi levels to increase sufficiently to induce the later differ-
entiating cell types.

The use of Spi signaling to recruit all ommatidial cell types
raises the question of how diversity is generated among these
cells. Cell types are not simply determined by the level of EGFR
activity, since ectopic activation of the EGFR pathway induces
different cell types at different stages of development (Freeman,
1996, Hayashi and Saigo, 2001). One possible explanation is that
Spi signaling acts in combination with other developmental sig-
nals. For example, R7 differentiation requires the activity of a
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Fig. 5. Hh and Spi signals are transported down the photoreceptor axons to
organize the target region. Hedgehog (Hh) promotes the final division of lamina
precursor cells (LPC) posterior to the lamina furrow (LF), and through Sim, their
association with photoreceptor axons. Hh also induces the LPCs to express Dac,
which activates expression of the EGFR, allowing them to respond to Spi. Cells that
respond to Hh by expressing Dac and EGFR are colored yellow. Spi then promotes
LPC differentiation adjacent to retinal axons. Cells that respond to Spi by expressing
Elav are colored red. Release of the same signals from the cell body and the axons
coordinates morphogenesis of the eye and the lamina.

second receptor tyrosine kinase, Sevenless (Sev), as well as the
EGFR (Zipursky and Rubin, 1994). Bride of sevenless (Boss), the
ligand for Sev, is a transmembrane protein specifically expressed
in R8, which acts on the adjacent undifferentiated cell to induce its
differentiation into R7 (Zipursky and Rubin, 1994). The combina-
tion of Sev and EGFR signaling is thought to increase signal
transduction through their common downstream pathway, result-
ing in high-level expression of target genes such as prospero
(Freeman, 1996, Tio and Moses, 1997, Xu et al., 2000).
Another signal that interacts with Spi to promote cell fate
diversity is the Notch ligand DI (Fig. 4). Notch and Dl are required
for the differentiation of R7, cone cells and primary pigment cells
(Flores et al., 2000, Nagaraj and Banerjee, 2007, Tomlinson and
Struhl, 2001, Tsuda et al., 2002). Dl is itself a target of EGFR
signaling, which induces DI transcription by promoting nuclear
export and degradation of a corepressor for the Suppressor of
Hairless transcription factor (Tsuda et al., 2002). This relationship
between the two signals introduces another temporally delayed
autoregulatory loop. Spi signaling induces R1-6 to differentiate
and to express DI, DI subsequently acts in combination with Spi
to induce differentiation of R7 and the cone cells (Flores et al.,
2000, Tomlinson and Struhl, 2001, Tsuda et al., 2002). As EGFR
activationinthe cone cellsincreases during the pupal stages, they



too express DI, which is sufficient to induce differentiation of
adjacent cells into primary pigment cells (Daga et al.,, 1996,
Nagaraj and Banerjee, 2007). These cells require EGFR signal-
ing only indirectly as an activator of D/ expression in cone cells
(Nagaraj and Banerjee, 2007). DI is a transmembrane molecule
that can only signal to immediately adjacent cells (Artavanis-
Tsakonas et al., 1999); this limit on its range of action again
contributes to the ordered sequence of cell recruitment.

A third contribution to cell fate diversity comes from intrinsic
properties of the responding cells. The transcription factor Loz-
enge (Lz) is expressed in undifferentiated cells posterior to the MF
and in cells that differentiate after the second mitotic wave: R1,
R6, R7, and the cone and pigment cells (Flores et al., 1998). Its
misexpression in R3 and R4 transforms these cells into R7 cells,
due to its positive effect on R7-specific genes such as prospero
and its negative effect on genes such as seven-up that promote
the identity of R3 and R4 (Daga et al., 1996, Flores et al., 1998,
Xu et al., 2000). Lz also positively regulates the Bargenes, which
are expressed in R1 and R6 (Daga et al., 1996, Higashijima et al.,
1992). Expression of Iz itself requires the transcription factor
Glass, which is expressed in all cells posterior to the MF, and the
retinal determination protein So, but it is unknown how /z is
excluded from R8, 2, 5, 3 and 4 (Moses and Rubin, 1991, Yan et
al., 2003). Other transcription factors expressed in different sub-
sets of photoreceptors include Rough (R2, 5, 3, 4), Spalt (R3, 4),
and Svp (R3, 4, 1, 6) (Barrio et al., 1999, Kimmel et al., 1990,
Mlodzik et al., 1990b). These specific expression patterns are
likely to result from similar combinatorial control mechanisms as
well as cross-regulatory interactions (Hayashi and Saigo, 2001,
Heberlein et al., 1991). In summary, differentiation of distinct cell
types in an ordered sequence appears to be due to the combina-
tion of temporally delayed autoregulatory loops of the short-range
ligands Spi and DI with intrinsic prepatterning information in the
form of transcription factor expression.

Photoreceptors coordinate the differentiation of their
target cells in the lamina

As photoreceptor cells progressively differentiate in the eye
disc, they extend axons into the brain, where R1-6 terminate in the
lamina and R7 and R8 project through the lamina to terminate in
the medulla (Clandininand Zipursky, 2002). Within the lamina, the
bundle of photoreceptor axons from each ommatidium associates
with a cartridge composed of five lamina neurons, and these
fascicles terminate in aretinotopic pattern, recreating a map of the
visual field in the brain (Clandinin and Zipursky, 2002). Along the
anterior-posterior axis, this organization arises because signals
from the photoreceptor axons induce the formation of their target
cells. Hh, which drives the propagation of the MF within the eye
disc, is also transported along the photoreceptor axons and
released to induce the final division of lamina precursor cells
(LPCs) and their expression of the differentiation marker Dachs-
hund (Dac) (Huang and Kunes, 1996) (Fig. 5). Interestingly, this
axonal transport requires a targeting signal that lies within the C-
terminal protease domain of Hh (Chu et al., 2006), although LPCs
respond to the N-terminal secreted domain through the canonical
Hh signaling pathway (Huang and Kunes, 1998). Hh also induces
the expression of the transcription factor Single-minded, which
directs developing LPCs to associate with photoreceptor axons
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(Umetsu et al., 2006). Each column of ommatidia in the eye disc
thus induces the formation of a corresponding column of target
cells, allowing progressive posterior to anterior differentiation to
be coordinated between the eye and the brain.

In addition, Hh acts through Dac to induce LPCs to express the
EGFR, making them responsive to a second signal transported
down the axons (Chotard et al., 2005, Huang et al., 1998). Spi, the
signaling molecule that recruits photoreceptors to each omma-
tidial cluster, is also essential to direct the assembly of each
lamina cartridge (Huang et al., 1998). Spi is necessary and
sufficient for the neuronal differentiation, indicated by Elav ex-
pression, of the five lamina neurons associated with each omma-
tidial fascicle (Huang et al., 1998). The very short-range activity of
Spi presumably ensures that lamina neurons differentiate only in
the immediate vicinity of retinal axons. Coordination of eye and
brain development achieved by using the same signals in both
tissues is likely to be important to establish the spatial precision
necessary for accurate vision.

Conclusions

The progressive development of identical units within a mono-
layer epithelium makes the Drosophila eye disc an excellent
system in which to address the regulatory mechanisms of pattern
formation. Positive autoregulatory loops play an important role in
driving the progression of differentiation, and a temporal delay
can be introduced into such loops by requiring the production of
a second signal dependent on the first. The range over which
signals are distributed is also an important factor in controlling the
sequence of differentiation. Although columns differentiate se-
quentially, they can also interact with each other through secreted
signals that determine the placement of clusters. Finally, the long
processes formed by neurons allow them to act on different target
cell populations by releasing the same signals from their cell
bodies and axon terminals. Several aspects of this differentiation
process have now been described at a level at which mathemati-
cal modeling could be applied to test and extend our understand-
ing of the mechanisms involved.
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