Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Biochemical characterization of translesion synthesis by Sulfolobus acidocaldarius DNA polymerases

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

To study the DNA synthesis mechanism of Sulfolobus acidocaldarius, a thermophilic species from Crenarchaeota, two DNA polymerases of B family(polB1 and polB3), and one DNA polymerase of Y family(polIV) were recombinantly expressed, purified and biochemically characterized. Both DNA polymerases polB1(Saci_1537) and polB3(Saci_0074) possessed DNA polymerase and 3’ to 5’ exonuclease activities; however, both the activities of B3 were very inefficient in vitro. The polIV(Saci_0554) was a polymerase, not an exonuclease. The activities of all the three DNA polymerases were dependent on divalent metal ions Mn2+ and Mg2+. They showed the highest activity at pH values ranging from 8.0 to 9.5. Their activities were inhibited by KCl with high concentration. The optimal reaction temperatures for the three DNA polymerases were between 60 and 70 °C. Deaminated bases dU and dI on DNA template strongly hindered primer extension by the two DNA polymerases of B family, not by the DNA polymerase of Y family. DNA polymerase of Y Family bypassed the two AP site analogues dSpacer and propane on template more easily than DNA polymerases of B family. Our results suggest that the three DNA polymerases coordinate to fulfill various DNA synthesis in Sulfolobus acidocaldarius cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacNeill S., Subcell Biochem., 2012, 62, 1

    Article  CAS  Google Scholar 

  2. Chen D., Yue H., Spiering M. M., Benkovic S. J., J. Biol. Chem., 2013, 28829, 20807

    Article  CAS  Google Scholar 

  3. Hubscher U., Maga G., Spadari S., Annu. Rev. Biochem., 2002, 71, 133

    Article  CAS  Google Scholar 

  4. Choi J. Y., Eoff R. L., Pence M. G., Wang J., Martin M. V., Kim E. J., Folkmann L. M., Guengerich F. P., J. Biol. Chem., 2011, 28636, 31180

    Article  CAS  Google Scholar 

  5. O’Donnell M., Langston L., Stillman B., Cold Spring Harb. Perspect. Biol., 2013, 5(7), a010108

    Google Scholar 

  6. Sarmiento F., Long F., Cann I., Whitman W. B., Archaea, 2014, 75946, 1

    Article  Google Scholar 

  7. Yamtich J., Sweasy J. B., Biochim. Biophys. Acta, 2010, 18045, 1136

    Article  CAS  Google Scholar 

  8. Grabowski B., Kelman Z., Annu. Rev. Microbiol., 2003, 57, 487

    Article  CAS  Google Scholar 

  9. Yang W., Biochemistry, 2014, 5317, 2793

    Article  CAS  Google Scholar 

  10. Ohmori H., Friedberg E. C., Fuchs R. P., Goodman M. F., Hanaoka F., Hinkle D., Kunkel T. A., Lawrence C. W., Livneh Z., Nohmi T., Prakash L., Prakash S., Todo T., Walker G. C., Wang Z., Woodgate R., Mol. Cell, 2001, 81, 7

    Article  CAS  Google Scholar 

  11. Rivera M. C., Lake J. A., Nature, 2004, 4317005, 152

    Article  CAS  Google Scholar 

  12. Lindahl T., Nyberg B., Biochemistry, 1974, 1316, 3405

    Article  CAS  Google Scholar 

  13. Lin L., Liu Y. F., Liu X. P., Liu J. H., Chem. Res. Chinese Universities, 2012, 283, 477

    CAS  Google Scholar 

  14. Brock T. D., Brock K. M., Belly R. T., Weiss R. L., Arch. Mikrobiol., 1972, 841, 54

    Article  CAS  Google Scholar 

  15. Chen L., Brügger K., Skovgaard M., Redder P., She Q., Torarinsson E., Greve B., Awayez M., Zibat A., Klenk H. P., Garrett R. A., J. Bacteriol., 2005, 18714, 4992

    Article  CAS  Google Scholar 

  16. Wagner M., van Wolferen M., Wagner A., Lassak K., Meyer B. H., Reimann J., Albers S. V., Front. Microbiol., 2012, 3, 214

    Article  Google Scholar 

  17. Waters L. S., Minesinger B. K., Wiltrout M. E., D’Souza S., Woodruff R. V., Walker G. C., Microbiol. Mol. Biol. Rev., 2009, 731, 134

    Article  CAS  Google Scholar 

  18. Liu X. P., Liu J. H., Protein Sci., 2010, 195, 967

    CAS  Google Scholar 

  19. Bauer R. J., Begley M. T., Trakselis M. A., Biochemistry, 2012, 519, 1996

    Article  CAS  Google Scholar 

  20. Greagg M. A., Fogg M. J., Panayotou G., Evans S. J., Connolly B. A., Pearl L. H., Proc. Natl. Acad. Sci. USA, 1999, 9616, 9045

    Article  CAS  Google Scholar 

  21. Zhang L., Zhang L., Liu Y., Yang S., Gao C., Gong H., Feng Y., He Z. G., Proc. Natl. Acad. Sci. USA, 2009, 10619, 7792

    Article  CAS  Google Scholar 

  22. Greenough L., Kelman Z., Gardner A. F., J. Biol. Chem., 2015, 29020, 12514

    Article  CAS  Google Scholar 

  23. Cubonová L., Richardson T., Burkhart B. W., Kelman Z., Connolly B. A., Reeve J. N., Santangelo T. J., J. Bacteriol., 2013, 19510, 2322

    Article  Google Scholar 

  24. Hartman A. L., Norais C., Badger J. H., Delmas S., Haldenby S., Madupu R., Robinson J., Khouri H., Ren Q., Lowe T. M., Maupin-Furlow J., Pohlschroder M., Daniels C., Pfeiffer F., Allers T., Eisen J. A., PLoS One, 2010, 5(3), e9605

    Article  Google Scholar 

  25. Allers T., Ngo H. P., Mevarech M., Lloyd R. G., Appl. Environ. Microbiol., 2004, 702, 943

    Article  CAS  Google Scholar 

  26. Ling H., Boudsocq F., Woodgate R., Yang W., Cell, 2001, 1071, 91

    Article  CAS  Google Scholar 

  27. Sale J. E., Lehmann A. R., Woodgate R., Nat. Rev. Mol. Cell Biol., 2012, 133, 141

    Article  CAS  Google Scholar 

  28. Boudsocq F., Kokoska R. J., Plosky B. S., Vaisman A., Ling H., Kunkel T. A., Yang W., Woodgate R., J. Biol. Chem., 2004, 27931, 32932

    Article  CAS  Google Scholar 

  29. Kokoska R. J., Bebenek K., Boudsocq F., Woodgate R., Kunkel T. A., J. Biol. Chem., 2002, 27722, 19633

    Article  CAS  Google Scholar 

  30. Kath J. E., Jergic S., Heltzel J. M., Jacob D. T., Dixon N. E., Sutton M. D., Walker G. C., Loparo J. J., Proc. Natl. Acad. Sci. USA, 2014, 11121, 7647

    Article  CAS  Google Scholar 

  31. Sakofsky C. J., Foster P. L., Grogan D. W., DNA Repair(Amst.), 2012, 114, 391

    Article  CAS  Google Scholar 

  32. Wilson R. C., Pata J. D., Mol. Cell, 2008, 296, 767

    Article  CAS  Google Scholar 

  33. Elshawadfy A. M., Keith B. J., Ee Ooi H., Kinsman T., Heslop P., Connolly B. A., Front. Microbiol., 2014, 5, 224

    Article  Google Scholar 

  34. Cann I. K., Ishino S., Nomura N., Sako Y., Ishino Y., J. Bacteriol., 1999, 18119, 5984

    CAS  Google Scholar 

  35. Makarova K. S., Krupovic M., Koonin E. V., Front. Microbiol., 2014, 5, 354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to Xipeng Liu.

Additional information

Supported by the National Natural Science Foundation of China(No.31371260) and the Natural Science Foundation of Shanghai City, China(No.12ZR1413700).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Xia, X. & Liu, X. Biochemical characterization of translesion synthesis by Sulfolobus acidocaldarius DNA polymerases. Chem. Res. Chin. Univ. 32, 226–233 (2016). https://doi.org/10.1007/s40242-016-5337-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s40242-016-5337-x

Keywords