Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Friction
  3. Article

Selection of micro-fabrication techniques on stainless steel sheet for skin friction

  • Review Article
  • Open access
  • Published: 15 June 2016
  • Volume 4, pages 89–104, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Friction Aims and scope
Selection of micro-fabrication techniques on stainless steel sheet for skin friction
Download PDF
  • S. Zhang1,
  • X. Zeng1,2,
  • D. T. A. Matthews3,
  • A. Igartua4,
  • E. Rodriguez-Vidal4,
  • J. Contreras Fortes5,
  • V. Saenz de Viteri4,
  • F. Pagano4,
  • B. Wadman6,
  • E. D. Wiklund6 &
  • …
  • E. van der Heide1,7 
  • 2214 Accesses

  • Explore all metrics

Abstract

This review gives a concise introduction to the state-of-art techniques used for surface texturing, e.g., wet etching, plasma etching, laser surface texturing (LST), 3D printing, etc. In order to fabricate deterministic textures with the desired geometric structures and scales, the innovative texturing technologies are developed and extended. Such texturing technology is an emerging frontier with revolutionary impact in industrial and scientific fields. With the help of the latest fabrication technologies, surface textures are scaling down and more complex deterministic patterns may be fabricated with desired functions, e.g., lotus effect (hydrophobic), gecko feet (adhesive), haptic tactile, etc. The objective of this review is to explore the surface texturing technology and its contributions to the applications.

Article PDF

Download to read the full article text

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Materials Characterization Technique
  • Microengraving
  • Surface patterning
  • Surface Spectroscopy
  • Laser Material Processing
  • Nanofabrication and Nanopatterning
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Wiklund D. Tribology of stamping the influence of designed steel sheet surface topography on friction. PhD Thesis. Chalmers Tekniska Hogskola, Gothenburg, Sweden, 2006.

    Google Scholar 

  2. Pettersson U, Jacobson S. Influence of Surface Texture on Boundary Lubricated Sliding Contacts. Tribol Int 36: 857–864 2003

    Article  Google Scholar 

  3. Sugihara T, Enomoto T. Wear resistance of cutting tools having micro textured surfaces. Precision Engineering 37(4): 888–896 2013

    Article  Google Scholar 

  4. Tang W, Zhou Y K, Zhu H, Yang H F. The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact. Appl Surf Sci 273: 199–204 2013

    Article  Google Scholar 

  5. Ling F F. Fractals, engineering surfaces and tribology. Wear 136: 141–156 1990

    Article  Google Scholar 

  6. Zahouani H, Vargiolu R, Loubet J L. Fractal models of surface topography and contact mechanics. Mathematical and Computer Modelling 28: 517–534 1998

    Article  MATH  Google Scholar 

  7. Bruzzone A A G, Costa H L. Functional characterization of structured surfaces for tribological applications. Procedia CIRP 12: 456–461 2013

    Article  Google Scholar 

  8. Ibatan T, Uddin M S, Chowdhury M A K. Recent development of surface texturing in enhancing tribological performance of bearing sliders. Surf Coat Technol 272: 102–120 2015

    Article  Google Scholar 

  9. Wiklund D, Rosen B G, Gunnarsson L. Frictional mechanisms in mixed lubricated regime in steel sheet metal forming. Wear 264: 474–479 2008

    Article  Google Scholar 

  10. Groenendijk M N W, Meijer J. Surface microstructures obtained by femtosecond laser pulses. CIRP Annals 55(1): 183–186 2006

    Article  Google Scholar 

  11. Yan X, Li W, Aberle G A, Venkataraj S. Investigation of the thickness effect on material and surface texturing properties of sputtered ZnO:Al films for thin-film Si solar cell applications. Vacuum 123:151–159 (2016)

    Article  Google Scholar 

  12. Khatri B C, Sharma C S. Influence of textured surface on the performance of non-recessed hybrid journal bearing operating with non-newtonian lubricant. Tribol Int 95: 221–235 2016

    Article  Google Scholar 

  13. Yu S S, Zhang S, Xia Z W, Liu S, Lu H J, Zeng X T. Textured hybrid nanocomposite coatings for surface wear protection of sports equipment. Surf Coat Technol 287: 76–81 2016

    Article  Google Scholar 

  14. Barnes C J, Childs T H C, Henson B, Southee C H. Surface finish and touch-A case study in a new human factors tribology. Wear 257: 740–750 2004

    Article  Google Scholar 

  15. Van Kuilenburg J, Masen M A, van der Heide E. The role of the skin microrelief in the contact behaviour of human skin: Contact between the human finger and regular surface textures. Tribol Int 65: 81–90 2013

    Article  Google Scholar 

  16. Klatzky R L, Pawluk D. Haptic perception of material properties and implications for applications. Proceedings of the IEEE 101: 2081–2092 2013

    Google Scholar 

  17. Klatzky R L, Lederman S J. Tactile roughness perception with a rigid link interposed between skin and surface. Perception & Psychophysics 61: 591–607 1999

    Article  Google Scholar 

  18. Skedung L, Danerlov K, Olofsson U, Johannesson C M, Aikala M, Kettle J, Arvidsson M, Berglund B, Rutland M W. Tactile perception: Finger friction, surface roughness and perceived coarseness. Tribol Int 44: 505–512 2011

    Article  Google Scholar 

  19. Skedung L, Arvidsson M, Chung J Y, Stafford C M, Berglund B, Rutland M W. Feeling small: Exploring the tactile perception limits. Sci Rep 3: 1–6 2013

    Article  Google Scholar 

  20. Tomlinson S E, Carre M J, Lewis R, Franklin S E. Human finger contact with small, triangular ridged surfaces. Wear 271: 2346–2353 2011

    Article  Google Scholar 

  21. Veijgen N K. Skin friction: A novel approach to measuring in vivo human skin. PhD Thesis. University of Twente, Enschede, the Netherlands, 2013.

    Google Scholar 

  22. Derler S, Huber R, Feuz H P, Hadad M. Influence of surface microstructure on the sliding friction of plantar skin against hard substrates. Wear 267(5–8): 1281–1288 (2009)

    Article  Google Scholar 

  23. Adams M J, Briscoe B J, Johnson S A. Friction and lubrication of human skin. Tribol Lett 26(3): 239–253 2007

    Article  Google Scholar 

  24. Duvefelt K, Olofsson U, Johannesson C M, Skedung L. Model for contact between finger and sinusoidal plane evaluate adhesion and deformation component of friction. Tribol Int 96: 389–394 2016

    Article  Google Scholar 

  25. Prodanov N, Gachot C, Rosenkanz A, Muchlich F, Muser M H. Contact mechanics of laser-textured surfaces. Tribol Lett 50: 41–48 2013

    Article  Google Scholar 

  26. Khodai M, Parvin N. Pressure measurement and some observation in lost foam casting. J Mater Process Technol 206(1–3): 1–6 (2008)

    Article  Google Scholar 

  27. Li J, Chen R, Ke W. Microstructure and mechanical properties of Mg-Gd-Y-Zr alloy cast by metal mould and lost foam casting. Transactions of Nonferrous Metals Society of China 21(4): 761–766 2011

    Article  Google Scholar 

  28. Ferro P, Fabrizi A, Cervo R, Carollo C. Effect of inoculant containing rare earth metals and bismuth on microstructure and mechanical properties of heavy-section near-eutectic ductile iron castings. J Mater Process Technol 213(9): 1601–1608 2013

    Article  Google Scholar 

  29. McGinley E L, Moran G P, Fleming G J P. Biocompatibility effects of indirect exposure of base-metal dental casting alloys to a human-derived three-dimensional oral mucosal model. Journal of Dentistry 41(11): 1091–1100 2013

    Article  Google Scholar 

  30. Li B, Ren M, Yang C, Fu H. Microstructure of Zn-Al4 alloy microcastings bymicro precision casting based on metal mold. Transactions of Nonferrous Metals Society of China 18: 327–332 2008

    Article  Google Scholar 

  31. Adithyavairavan M, Subbiah S. A morphological study on direct polymer cast micro-textured hydrophobic surfaces. Surf Coat Technol 205: 4764–4770 2011

    Article  Google Scholar 

  32. Chao B, Cheng H, Nien L, Chen M, Nagao T, Li J, Hsueh C. Anti-reflection textured structures by wet etching and island lithography for surface-enhanced raman spectroscopy. Appl Surf Sci 357(A): 615–621 (2015)

    Article  Google Scholar 

  33. Chen W, Lin J, Hu G, Han X, Liu M, Yang Y, Wu Z, Liu Y, Zhang B. GaN nanowire fabricated by selective wet-etching of gan micro truncated-pyramid. Journal of Crystal Growth 426: 168–172 2015

    Article  Google Scholar 

  34. Kumar M D, Kim H, Kim J. Periodically patterned si pyramids for realizing high efficient solar cells by wet etching process. Solar Energy 117: 180–186 2015

    Article  Google Scholar 

  35. Jaeger R C. Introduction to Microelectronic Fabrication, 2 ed. Auburn, Upper Saddle River-Prentice Hall, 2002.

    Google Scholar 

  36. Bauhuber M, Mikrievskij A, Lechner A. Isotropic wet chemical etching of deep channels with optical surface quality in silicon with hna based etching solution. Mater Sci Semiconduct Process 16: 1428–1433 2013

    Article  Google Scholar 

  37. Mondiali V, Lodari M, Chrastina D, Barget M, Bonera E, Bollani M. Micro and nanofabrication of SiGe/Ge bridges and membrances by wet-anisotropic etching. Mciroelectr Eng 141: 256–260 2015

    Article  Google Scholar 

  38. Reshak A H, Shahimin M M, Shaar S, John N. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application. Progress in Biophysics and Molecular Biology 113(2): 327–332 2013

    Article  Google Scholar 

  39. Lee Y, Kim H, Hussain S Q, Han S, Balaji N, Lee Y, Lee J, Yi J. Study of metal assisted anisotropic chemical etching of silicon for high aspect ratio in crystalline silicon solar cells. Mater Sci Semiconduct Process 40: 391–396 2015

    Article  Google Scholar 

  40. Faust J W, Palik E D. Study of the orientation dependent etching and initial anodizationg of Si in aqueous KOH. J Electrochem Soc 130: 1413–1420 1983

    Article  Google Scholar 

  41. Seidel H. The mechanism of anisotropic, electrochemical silicon etching in alkaline solutions. IEEE In Solid-State Sencor and Actuator Conference, 1990: 86–91.

    Google Scholar 

  42. Linde H G, Austin L W. Catalytic control of anistropic silicon etching. Sensors and Actuators A 49: 181–185 1995

    Article  Google Scholar 

  43. Sheeja D, Tay B K, Yu Y J, Chua D H C, Milne W I, Miao J, Fu Y Q. Fabrication of amorphous carbon cantilever structures by isotropic and anisotropic wet etching methods. Diamond and Related Materials 12(9): 1495–1499 2003

    Article  Google Scholar 

  44. Lim C S, Hong M H, Senthil Kumar A, Rahman M, Liu X D. Fabrication of concave micro lens array using laser patterning and isotropic etching. International Journal of Machine Tools & Manufacture 46: 552–558 2005

    Article  Google Scholar 

  45. Freires de Queiroz J D, Maria de Sousa Leal A, Terada M, Agnez-Lima L F, Costa I, Cristhina de Souza Pinto N, Batistuzzo de Medeiros S R. Surface Modification by argon plasma treatment improves antioxidant defense ability of CHO-k1 cells on titanium surfaces. Toxicology in Vitro 28: 381–387 2014

    Article  Google Scholar 

  46. Donnelly V M, Kornblit A. Plasma etching: Yesterday, today, and tomorrow. Journal of Vacuum Science & Technology A 31(5): 1–48 2013

    Article  Google Scholar 

  47. Coburn J W, Winters H F. Plasma etching—A discussion of mechanisms. Journal of Vacuum Science & Technology 16: 391 1979

    Article  Google Scholar 

  48. Davidse P D. RF sputter etching—A universal etch. Journal of Electrochemical Society: Solid State Science 116(1): 100–103 1969

    Article  Google Scholar 

  49. Hosokawa N, Matsuzaki R, Asamaki T. RF sputter-etching by fluoro-chloro-hydrocarbon gases. Japanese Journal of Applied Physics 13: 435–438 1974

    Article  Google Scholar 

  50. Aizawa T, Fukuda T. Oxygen Plasma etching of diamondlike carbon coated mold-die for micro-texturing. Surf Coat Technol 215: 364–368 2013

    Article  Google Scholar 

  51. 3D Systems Inc. Company set up for stereolithography. CAD in Industry 19(4): 223 1987

    Google Scholar 

  52. Sachs E, Cima M, Cornie J, Brancazio D, Bredt J, Curodeau A, Fan T, Khanuja S, Lauder A, Lee J, Michaels S. Three-dimensional printing; the physics and implications of additive manufacturing. CIRP Annals—Manufacturing Technology 42(1): 257–260 1993

    Article  Google Scholar 

  53. Lam C X F, Mo X M. Scaffold development using 3D printing with a starch-based polymer. Materials Science & Engineering, C: Biomimetic and Supramolecular Systems C 20(1–2): 49–56 (2002)

    Article  Google Scholar 

  54. Moon J, Caballero J E. Ink-jet printing of binders for ceramic components. Journal of the American Ceramic Society 85(4): 755–762 2002

    Article  Google Scholar 

  55. Seitz H, Rieder W. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research, Part B, Applied Biomaterials 74(2): 782–788 2005

    Article  Google Scholar 

  56. Utela B, Storti D, Anderson R, Ganter M. A review of process development steps for new material systems in three dimensional printing (3DP). J Manufact Process 10: 96–104 2008

    Article  Google Scholar 

  57. Han Y, Wei C, Dong J. Super-resolution electrohydrodynamic (EHD) 3D printing of micro-structures using phase-change inks. Manufact Lett 2: 96–99 2014

    Article  Google Scholar 

  58. Dunn A, Wlodarczyk K L, Carstensen J V, Hansen E B, Gabzdyl J, Harrison P M, Shephard J D, Hand D P. Laser surface texturing for high friction contacts. Applied Surface Science 357(B): 2313–2319

  59. Kurella A, Dahotre B N. Review paper: Surface modification for bioimplatns: The role of laser surface engineering. Journal of Biomaterials Applications 20: 5–50 2005

    Article  Google Scholar 

  60. Wang Y, Yang H, Hao J, Han Q, Fang L, Ge S. Experiment research on fabrication & wettability of micro- and nanoscale surface textured by ultrafast laser. Lasers In Engineering 21(3-4): 241–254 (2011)

    Google Scholar 

  61. Kumari R, Scharnweber T, Pfleging W, Besser H, Majumdar J D. Laser Surface textured titanium alloy (Ti-6Al-4V)—Part II—Studies on bio-compatibility. Appl Surf Sci 357(A): 750–758 (2015)

    Article  Google Scholar 

  62. Wong RCP, Hoult AP, Kim JK, Yu TX. Improvement of adhesive bonding in aluminium alloys using a laser surface texturing process. J Mater Process Technol 63: 579–584 1997

    Article  Google Scholar 

  63. Geiger M, Roth S, Becker W. Influence of laser-produced microstructures on the tribological behavior of ceramics. Surf Coat Technol 100-101: 17–22 (1998)

    Article  Google Scholar 

  64. Geiger M, Popp U, Engel U. Eximer laser micro texturing of cold forging tool surface-influence on tool life. CIRP Annals 51: 231–234 2002

    Article  Google Scholar 

  65. Wang X, Kato K, Adachi K, Aizawa K. The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribol Int 34(10): 703–711 2001

    Article  Google Scholar 

  66. Kovalchenko A, Ajayi O, Erdemir A, Fenske G, Etsion I. The Effect of laser texturing of steel surfaces and speedload parameters on the transition of lubrication regime from boundary to hydrodynamic. Tribol Trans 47(2): 299–307 2004

    Article  Google Scholar 

  67. Kovalchenko A, Ajayi O, Erdemir A, Fenske G, Etsion I. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribol Int 38(3): 219–225 2005

    Article  Google Scholar 

  68. Van Kuilenburg J, Masen M A, Groenendijk M N W, Bana V, van der Heide E. An experimental study on the relation between surface texture and tactile friction. Tribol Int 48: 15–21 2012

    Article  Google Scholar 

  69. Van der Heide E, Saenz de Viteri V, Rodringuez-Vidal E, Pagano F, Wadman B, Wiklund D, Matthews D T A, Contreras Fortes J, Zhang S. Steel sheet surfaces with enhanced tactile feel. European Commission Research Programme of the Research Fund for Coal and Steel, RFSR-CT-2011-00022, 2011–2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, the Netherlands

    S. Zhang, X. Zeng & E. van der Heide

  2. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China

    X. Zeng

  3. Tata Steel, Research & Development, Ijmuiden 1970, CA, the Netherlands

    D. T. A. Matthews

  4. IK4-Tekniker, C/Ignacio Goenaga 5, Eibar, 20600, Spain

    A. Igartua, E. Rodriguez-Vidal, V. Saenz de Viteri & F. Pagano

  5. Acerinox Europa SAU, Los Barrios, Spain

    J. Contreras Fortes

  6. Swerea IVF, Argongatan 30, Molndal, 43153, Sweden

    B. Wadman & E. D. Wiklund

  7. TU Delft, Faculty of Civil Engineering and Geosciences, Stevinweg 1, Delft, 2628 CN, the Netherlands

    E. van der Heide

Authors
  1. S. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. X. Zeng
    View author publications

    Search author on:PubMed Google Scholar

  3. D. T. A. Matthews
    View author publications

    Search author on:PubMed Google Scholar

  4. A. Igartua
    View author publications

    Search author on:PubMed Google Scholar

  5. E. Rodriguez-Vidal
    View author publications

    Search author on:PubMed Google Scholar

  6. J. Contreras Fortes
    View author publications

    Search author on:PubMed Google Scholar

  7. V. Saenz de Viteri
    View author publications

    Search author on:PubMed Google Scholar

  8. F. Pagano
    View author publications

    Search author on:PubMed Google Scholar

  9. B. Wadman
    View author publications

    Search author on:PubMed Google Scholar

  10. E. D. Wiklund
    View author publications

    Search author on:PubMed Google Scholar

  11. E. van der Heide
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to S. Zhang.

Additional information

Sheng ZHANG. He received his bachelor degree in mechanical engineering in 2008 from California State University, Fresno, USA, and obtained his Ph.D degree in mechanical engineering at University of Twente, Enschede, the Netherlands. He has recently joined the State Key Laboratory of Tribology in Tsinghua University as a post-doctoral researcher in 2016. His research interests include bio-tribology and surface texture design.

Emile VAN DER HEIDE. He obtained his M.S. and Ph.D degrees in mechanical engineering from University of Twente in 1995 and 2002. His current position is a professor, chair of Skin Tribology, Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente. He has received President’s International Fellowship 2016/17 from Chinese Academy of Sciences. His research areas cover the surface engineering, biotribology and contact mechanics.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zeng, X., Matthews, D.T.A. et al. Selection of micro-fabrication techniques on stainless steel sheet for skin friction. Friction 4, 89–104 (2016). https://doi.org/10.1007/s40544-016-0115-9

Download citation

  • Received: 06 April 2016

  • Revised: 09 May 2016

  • Accepted: 18 May 2016

  • Published: 15 June 2016

  • Issue Date: June 2016

  • DOI: https://doi.org/10.1007/s40544-016-0115-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • microfabrication
  • surface texturing
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature