Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Differential effects of bicarbonate on severe hypoxia- and hypercapnia-induced cardiac malfunctions in diverse fish species

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We tested in six fish species [Pacific lamprey (Lampetra richardsoni), Pacific spiny dogfish (Squalus suckleyi), Asian swamp eel (Monopterus albus), white sturgeon (Acipenser transmontanus), zebrafish (Danio rerio), and starry flounder (Platichthys stellatus)] the hypothesis that elevated extracellular [HCO3] protects spontaneous heart rate and cardiac force development from the known impairments that severe hypoxia and hypercapnic acidosis can induce. Hearts were exposed in vitro to either severe hypoxia (~ 3% of air saturation), or severe hypercapnic acidosis (either 7.5% CO2 or 15% CO2), which reduced heart rate (in six test species) and net force development (in three test species). During hypoxia, heart rate was restored by [HCO3] in a dose-dependent fashion in lamprey, dogfish and eel (EC50 = 5, 25 and 30 mM, respectively), but not in sturgeon, zebrafish or flounder. During hypercapnia, elevated [HCO3] completely restored heart rate in dogfish, eel and sturgeon (EC50 = 5, 25 and 30 mM, respectively), had a partial effect in lamprey and zebrafish, and had no effect in flounder. Elevated [HCO3], however, had no significant effect on net force of electrically paced ventricular strips from dogfish, eel and flounder during hypoxia and hypercapnia. Only in lamprey hearts did a specific soluble adenylyl cyclase (sAC) inhibitor, KH7, block the HCO3-mediated rescue of heart rate during both hypoxia and hypercapnia, and was the only species where we conclusively demonstrated sAC activity was involved in the protective effects of HCO3 on cardiac function. Our results suggest a common HCO3-dependent, sAC-dependent transduction pathway for heart rate recovery exists in cyclostomes and a HCO3-dependent, sAC-independent pathway exists in other fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Axelsson M, Farrell AP, Nilsson S (1990) Effects of hypoxia and drugs on the cardiovascular dynamics of the Atlantic hagfish Myxine glutinosa. J Exp Biol 151:297–316

    Article  CAS  Google Scholar 

  • Bitterman JL, Ramos-Espiritu L, Diaz A, Levin LR, Buck J (2013) Pharmacological distinction between soluble and transmembrane adenylyl cyclases. J Pharmacol Exp Ther 347:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cech JJ, Rowell DM, Glasgow JS (1977) Cardiovascular responses of the winter flounder Pseudopleuronectes americanus to hypoxia. Comp Biochem Physiol A 57:123–125

    Article  Google Scholar 

  • Chen Y, Cann MJ, Litvin TN, Lourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Levin LR, Buck J (2011) Role of soluble adenylyl cyclase in the heart. Am J Physiol Heart Circ Physiol 302:H538–H543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox GK, Sandblom E, Farrell AP (2010) Cardiac responses to anoxia in the Pacific hagfish, Eptatretus stoutii. J Exp Biol 213:3692–3698

    Article  PubMed  Google Scholar 

  • Cox GK, Sandblom E, Richards JG, Farrell AP (2011) Anoxic survival of the Pacific hagfish (Eptatretus stoutii). J Comp Physiol B 181:361–371

    Article  PubMed  Google Scholar 

  • Crocker CE, Farrell AP, Gamperl AK, Cech JJ (2000) Cardiorespiratory responses of white sturgeon to environmental hypercapnia. Am J Physiol Regul Integr Comp Physiol 279:R617–R628

    Article  CAS  PubMed  Google Scholar 

  • Dombkowski RA, Russell MJ, Schulman AA, Doellman MM, Olson KR (2005) Vertebrate phylogeny of hydrogen sulfide vasoactivity. Am J Physiol Regul Integr Comp Physiol 288:R243–R252

    Article  CAS  PubMed  Google Scholar 

  • Espejo MS, Orlowski A, Ibañez AM, Di Mattía RA, Velásquez FC, Rossetti NS, Ciancio MC, De Giusti VC, Aiello EA (2020) The functional association between the sodium/bicarbonate cotransporter (NBC) and the soluble adenylyl cyclase (sAC) modulates cardiac contractility. Pflugers Arch 472:103–115

    Article  CAS  PubMed  Google Scholar 

  • Farrell AP, Smith F (2017) Cardiac form, function and physiology. In: Gamperl K, Gillis TE, Farrell AP, Brauner CJ (eds) Fish physiology, vol 36. Academic Press, New York, pp 155–264

    Google Scholar 

  • Farrell AP, Stecyk JA (2007) The heart as a working model to explore themes and strategies for anoxic survival in ectothermic vertebrates. Comp Biochem Physiol A 147:300–312

    Article  CAS  Google Scholar 

  • Farrell AP, Wood S, Hart T, Driedzic WR (1985) Myocardial oxygen consumption in the sea raven, Hemitripterus americanus: the effects of volume loading, pressure loading and progressive hypoxia. J Exp Biol 117:237–250

    Article  Google Scholar 

  • Farrell AP, Gamperl A, Hicks J, Shiels H, Jain K (1996) Maximum cardiac performance of rainbow trout (Oncorhynchus mykiss) at temperatures approaching their upper lethal limit. J Exp Biol 199:663–672

    Article  CAS  PubMed  Google Scholar 

  • Fritsche R, Nilsson S (1988) Cardiovascular responses to hypoxia in the Atlantic cod, Gadus morhua. Exp Biol 48:153–160

    Google Scholar 

  • Gesser H, Jorgensen E (1982) pHi, contractility and Ca-balance under hypercapnic acidosis in the myocardium of different vertebrate species. J Exp Biol 96:405–412

    Article  CAS  PubMed  Google Scholar 

  • Gesser H, Poupa O (1979) Effects of different types of acidosis and Ca2+ on cardiac contractility in the flounder (Pleuronectes flesus). J Comp Physiol B 131:293–296

    Article  CAS  Google Scholar 

  • Gesser H, Poupa O (1983) Acidosis and cardiac muscle contractility: comparative aspects. Comp Biochem Physiol A 76:559–566

    Article  CAS  PubMed  Google Scholar 

  • Hansen HD, Gesser H (1980) Relation between non-bicarbonate buffer value and tolerance to cellular acidosis: a comparative study of myocardial tissue. J Exp Biol 84:161–167

    Article  CAS  PubMed  Google Scholar 

  • Jensen FB, Nikinmaa M, Weber RE (1993) Environmental perturbations of oxygen transport in teleost fishes: causes, consequences and compensations. In: Rankin JC, Jensen FB (eds) Fish ecophysiology, vol 9. Springer, Dordrecht, pp 161–179

    Chapter  Google Scholar 

  • Joyce W, Gesser H, Bayley M, Wang T (2015) Anoxia and acidosis tolerance of the heart in an air-breathing fish (Pangasianodon hypophthalmus). Physiol Biochem Zool 88:648–659

    Article  PubMed  Google Scholar 

  • Kelman GR (1967) Digital computer procedure for the conversion of PCO2, into blood CO2 content. Respir Physiol 3:111–115

    Article  CAS  PubMed  Google Scholar 

  • Kent B, Peirce EC (1978) Cardiovascular responses to changes in blood gases in dogfish shark, Squalus acanthias. Comp Biochem Physiol C 60:37–44

    Article  CAS  PubMed  Google Scholar 

  • Kleinboelting S, Diaz A, Moniot S, van den Heuvel J, Weyand M, Levin LR, Buck J, Steegborn C (2014) Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate. Proc Natl Acad Sci 111:3727–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagadic-Gossmann D, Buckler KJ, Vaughan-Jones RD (1992) Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte. J Physiol 458:361–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layland J, Young IS, Altringham JD (1995) The effect of cycle frequency on the power output of rat papillary muscles in vitro. J Exp Biol 198:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Piwnica-Worms D, Lieberman M (1990) Intracellular pH regulation in cultured embryonic chick heart cells. Na+-dependent Cl/HCO3 exchange. J Gen Physiol 96:1247–1269

    Article  CAS  PubMed  Google Scholar 

  • MacCormack TJ, McKinley RS, Roubach R, Almeida-Val VM, Val AL, Driedzic WR (2003) Changes in ventilation, metabolism, and behaviour, but not bradycardia, contribute to hypoxia survival in two species of Amazonian armoured catfish. Can J Zool 81:272–280

    Article  Google Scholar 

  • Madshus IH (1988) Regulation of intracellular pH in eukaryotic cells. Biochem J 250:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvin DE, Burton DT (1973) Cardiac and respiratory responses of rainbow trout, bluegills and brown bullhead catfish during rapid hypoxia and recovery under normoxic conditions. Comp Biochem Physiol A 46:755–765

    Article  Google Scholar 

  • Mattsoff L, Nikinmaa M (1988) Effects of external acidification on the blood acid-base status and ion concentrations of lamprey. J Exp Biol 136:351–361

    Article  CAS  Google Scholar 

  • Nilsson S (1983) Anatomy of the vertebrate autonomic nervous systems. In: Autonomic nerve function in the vertebrates. Zoophysiology, vol 13. Springer, Berlin, pp 6–40. https://doi.org/10.1007/978-3-642-81974-2_2

  • Ostlund E, Bloom G, Adams-Ray J, Ritzen M, Siegman M, Nordenstam H, Lishajko F, von Euler US (1960) Storage and release of catecholamines and the occurrence of a specific submicroscopic granulation in hearts of cyclostomes. Nature 188:324–325

    Article  CAS  PubMed  Google Scholar 

  • Perry SF, Gilmour KM (2002) Sensing and transfer of respiratory gases at the fish gill. J Exp Zool A 293:249–263

    Article  Google Scholar 

  • Poupa O, Johansen K (1975) Adaptive tolerance of fish myocardium to hypercapnic acidosis. Am J Physiol 228:684–688

    Article  CAS  PubMed  Google Scholar 

  • Reid SG, Sundin L, Kalinin AL, Rantin FT, Milsom WK (2000) Cardiovascular and respiratory reflexes in the tropical fish, traira (Hoplias malabaricus): CO2/pH chemoresponses. Respir Physiol 120:47–59

    Article  CAS  PubMed  Google Scholar 

  • Roa JN, Tresguerres M (2017) Bicarbonate-sensing soluble adenylyl cyclase is present in the cell cytoplasm and nucleus of multiple shark tissues. Physiol Rep 5:e13090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson C (2019) Microbial respiration, the engine of ocean deoxygenation. Front Mar Sci 5:533

    Article  Google Scholar 

  • Salas MA, Vila-Petroff MG, Venosa RA, Mattiazzi A (2006) Contractile recovery from acidosis in toad ventricle is independent of intracellular pH and relies upon Ca2+ influx. J Exp Biol 209:916–926

    Article  CAS  PubMed  Google Scholar 

  • Salmerón C, Harter TS, Kwan GT, Roa JN, Blair SD, Rummer JL, Shiels HA, Goss GG, Wilson RW, Tresguerres M (2020) Molecular and biochemical characterization of the bicarbonate-sensing soluble adenylyl cyclase from a bony fish, the rainbow trout Oncorhynchus mykiss. Interface Focus (In Press)

  • Schirmer I, Bualeong T, Budde H, Cimiotti D, Appukuttan A, Klein N, Steinwascher P, Reusch P, Mügge A, Meyer R, Ladilov Y, Jaquet K (2018) Soluble adenylyl cyclase: a novel player in cardiac hypertrophy induced by isoprenaline or pressure overload. PLoS ONE 13:e0192322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiels H, Farrell A (1997) The effect of temperature and adrenaline on the relative importance of the sarcoplasmic reticulum in contributing Ca2+ to force development in isolated ventricular trabeculae from rainbow trout. J Exp Biol 200:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Steegborn C, Litvin TN, Levin LR, Buck J, Wu H (2005) Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat Struct Mol Biol 12:32–37

    Article  CAS  PubMed  Google Scholar 

  • Sundin L, Reid SG, Rantin FT, Milsom WK (2000) Branchial receptors and cardiorespiratory reflexes in a neotropical fish, the tambaqui (Colossoma macropomum). J Exp Biol 203:1225–1239

    Article  CAS  PubMed  Google Scholar 

  • Tresguerres M, Salmerón C (2018) Molecular, enzymatic, and cellular characterization of soluble adenylyl cyclase from aquatic animals. In: Moore BS (ed) Methods in enzymology, vol 605. Academic Press, New York, pp 525–549

    Google Scholar 

  • Tresguerres M, Parks SK, Salazar E, Levin LR, Goss GG, Buck J (2010) Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis. Proc Natl Acad Sci 107:442–447

    Article  CAS  PubMed  Google Scholar 

  • Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79:1277–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tresguerres M, Milsom WK, Perry SF (2019) CO2 and acid-base sensing. In: Grosell M, Munday PL, Farrell AP, Brauner CJ (eds) Fish physiology, vol 37. Academic Press, New York, pp 33–68

    Google Scholar 

  • Tufts BL, Boutilier RG (1989) The absence of rapid chloride/bicarbonate exchange in lamprey erythrocytes: implications for CO2 transport and ion distributions between plasma and erythrocytes in the blood of Petromyzon marinus. J Exp Biol 144:565–576

    Article  Google Scholar 

  • von Euler US, Fange R (1961) Catecholamines in nerves and organs of Myxine glutinosa, Squalus acanthias, and Gadus callarias. Gen Comp Endocrinol 1:191–194

    Article  CAS  Google Scholar 

  • Wilson CM, Roa JN, Cox GK, Tresguerres M, Farrell AP (2016) Introducing a novel mechanism to control heart rate in the ancestral pacific hagfish. J Exp Biol 219:3227–3236

    PubMed  PubMed Central  Google Scholar 

  • Wood CM (2019) Internal spatial and temporal CO2 dynamics: fasting, feeding, drinking, and the alkaline tide. In: Grosell M, Munday PL, Farrell AP, Brauner CJ (eds) Fish physiology, vol 37. Academic Press, New York, pp 245–286

    Google Scholar 

  • Yee HF, Jackson DC (1984) The effects of different types of acidosis and extracellular calcium on the mechanical activity of turtle atria. J Comp Physiol B 154:385–391

    Article  CAS  Google Scholar 

  • Zaccolo M (2009) cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol 158:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zippin JH, Chen Y, Straub SG, Hess KC, Diaz A, Lee D, Tso P, Holz GG, Sharp GW, Levin LR, Buck J (2013) CO2/HCO3-and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J Biol Chem 288:33283–332891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Gratitude is given to the staff at the Department of Fisheries and Oceans’ Centre for Aquaculture and Environmental Research for assistance with animal care. We also thank Mike Sackville for providing the lampreys used in this study.

Funding

M.L. was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarships-Master’s (CGS M) scholarship. J.N.R. was supported by the William Townsend Porter Predoctoral Fellowship from the American Physiological Society. M.T. was supported by the National Science Foundation (IOS #1754994). A.P.F. was supported by a Discovery Grant from NSERC, and he holds a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Contributions

ML was involved in study conception and design, carried out all isolated heart experiments, data analysis, and produced the first draft. AS assisted with the lamprey isolated heart experiments. JNR performed the microscopy work. MT designed and contributed to the microscopy work, data analysis, and manuscript editing. APF was involved in the study conception and design. All the authors reviewed and revised the manuscript, and gave final approval for publication.

Corresponding author

Correspondence to Mandy Lo.

Ethics declarations

Conflict of interest

The authors declare no competing of financial interests.

Additional information

Communicated by Bernd Pelster.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, M., Shahriari, A., Roa, J.N. et al. Differential effects of bicarbonate on severe hypoxia- and hypercapnia-induced cardiac malfunctions in diverse fish species. J Comp Physiol B 191, 113–125 (2021). https://doi.org/10.1007/s00360-020-01324-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00360-020-01324-y

Keywords