Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

The cerebral venous system and the postural regulation of intracranial pressure: implications in the management of patients with cerebrospinal fluid diversion

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Loss of cerebrospinal fluid (CSF) occurs commonly in daily neurosurgical practice. Understanding the altered physiology following CSF loss is important for optimization of patient care and avoidance of complications. There is overwhelming evidence now that the cerebral venous system plays a major role in intracranial pressure (ICP) dynamics especially when one takes into account the effects of postural changes, atmospheric pressure, and gravity on the craniospinal axis as a whole. The CSF and cerebral venous compartments are tightly coupled in two important ways. CSF is resorbed into the venous system, and there is also an evolved mechanism that prevents overdrainage of venous blood with upright positioning known as the Starling resistor. With loss of CSF pressure, this protective mechanism could become nonfunctional which may result in posture-related venous overdrainage through the cranial venous outflow tracts leading to pathologic states. This review article summarizes the relevant anatomic and physiologic basis of the relationship between the craniospinal venous and CSF compartments in the setting of CSF diversion. It is hoped that this article improves our understanding of ICP dynamics after CSF loss, adds a new dimension to our therapeutic methods, stimulates further research into this field, and ultimately improves our care of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akins PT, Guppy KH, Axelrod YV, Chakrabarti I, Silverthorn J, Williams AR (2011) The genesis of low pressure hydrocephalus. Neurocrit Care 15(3):461–468

    Article  PubMed  Google Scholar 

  2. Andresen M, Juhler M (2014) Intracranial pressure following complete removal of a small demarcated brain tumor: a model for normal intracranial pressure in humans. J Neurosurg 121(4):797–801

    Article  PubMed  Google Scholar 

  3. Arnautović KI, al-Mefty O, Pait TG, Krisht AF, Husain MM (1997) The suboccipital cavernous sinus. J Neurosurg 86(2):252–262

    Article  PubMed  Google Scholar 

  4. Barami K, Sood S, Ham SD, Canady AI (2000) Postural changes in intracranial pressure in chronically shunted patients. Pediatr Neurosurg 33(2):64–69

    Article  CAS  PubMed  Google Scholar 

  5. Batson OV (1995) The function of the vertebral veins and their role in the spread of metastases. 1940. Clin Orthop Relat Res 312:4–9

    PubMed  Google Scholar 

  6. Benvenuti D, Maiuri F, Lavano A, Volpentesta G, Giamundo A, Tecame S (1987) Postoperative intracerebral haemorrhages remote from the site of the initial operation. Br J Neurosurg 1(3):377–384

    Article  CAS  PubMed  Google Scholar 

  7. Bergsneider M, Yang I, Hu X, McArthur DL, Cook SW, Boscardin WJ (2004) Relationship between valve opening pressure, body position, and intracranial pressure in normal pressure hydrocephalus: paradigm for selection of programmable valve pressure setting. Neurosurgery 55(4):851–858

    Article  PubMed  Google Scholar 

  8. Bernal-García LM, Cabezudo-Artero JM, Ortega-Martínez M, et al. (2008) Remote cerebellar hemorrhage after lumbar spinal fluid drainage. Report of two cases and literature review. Neurocirugia (Astur) 19(5):440–445

    Article  Google Scholar 

  9. Borkar SA, Lakshmiprasad G, Sharma BS, Mahapatra AK (2013) Remote site intracranial haemorrhage: a clinical series of five patients with review of literature. Br J Neurosurg 27(6):735–738

    Article  PubMed  Google Scholar 

  10. Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids and Barriers of the CNS 11:10. doi:10.1186/2045-8118-11-10. eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brisman MH, Bederson JB, Sen CN, Germano IM, Moore F, Post KD (1996) Intracerebral hemorrhage occurring remote from the craniotomy site. Neurosurgery 39(6):1114–1121

    Article  CAS  PubMed  Google Scholar 

  12. Brockmann MA, Groden C (2006) Remote cerebellar hemorrhage: a review. Cerebellum 5(1):64–68

    Article  PubMed  Google Scholar 

  13. Chapman PH, Cosman ER, Arnold MA (1990) The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study. Neurosurgery 26(2):181–189

    Article  CAS  PubMed  Google Scholar 

  14. Clarke MJ, Maher CO, Nothdurft G, Meyer F (2006) Very low pressure hydrocephalus. Report of two cases. J Neurosurg 105(3):475–478

    Article  PubMed  Google Scholar 

  15. Cushing H (1926) The third circulation in studies in intracranial studies in physiology and surgery. Oxford University Press, London, pp. 1–51

    Google Scholar 

  16. Daniel RT, Lee GY, Halcrow SJ (2002) Low-pressure hydrocephalic state complicating hemispherectomy: a case report. Epilepsia 43(5):563–565

    Article  PubMed  Google Scholar 

  17. Davson H (1984) Formation and drainage of the cerebrospinal fluid. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven, New York, pp. 3–40

    Google Scholar 

  18. Davson H (1967) Physiology of the cerebrospinal fluid. Churchill, London, p. 445

    Google Scholar 

  19. De Simone R, Raniere A, Montella S, Bilo L, Cautierio F (2014) The role of dural sinus stenosis in indiopathic intracranial hypertension pathogenesis: the self-limiting venous collapse feedback-loop model. Panminerva Med 56(3):201–209

    PubMed  Google Scholar 

  20. Dias MS, Li V, Pollina J (1999) Low-pressure shunt ‘malfunction’ following lumbar puncture in children with shunted obstructive hydrocephalus. Pediatr Neurosurg 30(3):146–150

    Article  CAS  PubMed  Google Scholar 

  21. Doepp F, Schreiber SJ, von Münster T, Rademacher J, Klingebiel R, Valdueza JM (2004) How does the blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns. Neuroradiology 46(7):565–570

    Article  PubMed  Google Scholar 

  22. Drake JM, Tenti G, Sivalsganathan S (1994) Computer modeling of siphoning for CSF shunt design evaluation. Pediatr Neurosurg 21(1):6–15

    Article  CAS  PubMed  Google Scholar 

  23. Evins AI, Boeris D, Burrell JC, Ducati A (2013) Postoperative intracranial hypotension-associated venous congestion: case report and literature review. Clin Neurol Neurosurg 115(10):2243–2246

    Article  PubMed  Google Scholar 

  24. Friedman JA, Ecker RD, Piepgras DG, Duke DA (2002) Cerebellar hemorrhage after spinal surgery: report of two cases and literature review. Neurosurgery 50(6):1361–1363

    PubMed  Google Scholar 

  25. Friedman JA, Piepgras DG, Duke DA, et al. (2001) Remote cerebellar hemorrhage after supratentorial surgery. Neurosurgery 49(6):1327–1340

    Article  CAS  PubMed  Google Scholar 

  26. Fry D, Thomas L, Greenfield J (1980) Flow in collapsible tubes. In: Patel D, Vaishnav R (eds) Basic hemodynamics and its role in disease processes. University Park, Baltimore, pp. 419–423

    Google Scholar 

  27. Garg K, Tandon V, Sinha S, Suri A, Mahapatra AK, Sharma BS (2014) Remote site intracranial hemorrhage: our experience and review of literature. Neurol India 62(3):296–302

    Article  PubMed  Google Scholar 

  28. Gisolf J, van Lieshout JJ, van Heusden K, Pott F, Stok WJ, Karemaker JM (2004) Human cerebral venous outflow pathway depends on posture and central venous pressure. J Physiol 560(Pt 1):317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grady MS, Bedford RF, Park TS (1986) Changes in superior sagittal sinus pressure in children with head elevation, jugular venous compression, and PEEP. J Neurosurg 65(2):199–202

    Article  CAS  PubMed  Google Scholar 

  30. Grant R, Condon B, Hart I, Teasdale GM (1991) Changes in intracranial CSF volume after lumbar puncture and their relationship to post-LP headache. J Neurol Neurosurg Psychiatry 54(5):440–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Greenfield Jr JC, Tindall GT (1965) Effect of acute increase in intracranial pressure on blood flow in the internal carotid artery of man. J Clin Invest 44:1343–1351

    Article  PubMed  PubMed Central  Google Scholar 

  32. Higashi S, Futami K, Matsuda H, et al. (1994) Effects of head elevation on intracranial hemodynamics in patients with ventriculoperitoneal shunts. J Neurosurg 81(6):829–836

    Article  CAS  PubMed  Google Scholar 

  33. Iwabuchi T, Sobata E, Ebina K, Tsubakisaka H, Takiguchi M (1986) Dural sinus pressure: various aspects in human brain surgery in children and adults. Am J Physiol. 250(3 Pt 2):H389–H396

    CAS  PubMed  Google Scholar 

  34. Iwabuchi T, Sobata E, Suzuki M, Suzuki S, Yamashita M (1983) Dural sinus pressure as related to neurosurgical positions. Neurosurgery 12(2):203–207

    Article  CAS  PubMed  Google Scholar 

  35. Johnston IH, Rowan JO (1974) Raised intracranial pressure and cerebral blood flow. 3. Venous outflow tract pressures and vascular resistances in experimental intracranial hypertension. J Neurol Neurosurg Psychiatry 37(4):392–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kajimoto Y, Ohta T, Miyake H, et al. (2000) Posture-related changes in the pressure environment of the ventriculoperitoneal shunt system. J Neurosurg 93(4):614–617

    Article  CAS  PubMed  Google Scholar 

  37. Kerr EE, Prevedello DM, Jamshidi A, Ditzel Filho LF, Otto BA, Carrau RL (2014) Immediate complications associated with high-flow cerebrospinal fluid egress during endoscopic endonasal skull base surgery. Neurosurg Focus 37(4):E3

    Article  PubMed  Google Scholar 

  38. Kety SS, Shenkin HA, Schmidt CF (1948) The effects of increased intracranial pressure on cerebral circulatory functions in man. J Clin Invest 27(4):493–499

    Article  PubMed Central  Google Scholar 

  39. Knowlton FP, Starling EH (1912) The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart. J Physiol 44(3):206–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lesniak MS, Clatterbuck RE, Rigamonti D, Williams MA (2002) Low pressure hydrocephalus and ventriculomegaly: hysteresis, non-linear dynamics, and the benefits of CSF diversion. Br J Neurosurg 16(6):555–561

    Article  CAS  PubMed  Google Scholar 

  41. Luce JM, Huseby JS, Kirk W, Butler J (1982) A Starling resistor regulates cerebral venous outflow in dogs. J Appl Physiol Respir Environ Exerc Physiol 53(6):1496–1503

    CAS  PubMed  Google Scholar 

  42. Magnaes B (1976) Body position and cerebrospinal fluid pressure. Part 2: clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg 44(6):698–705

    Article  CAS  PubMed  Google Scholar 

  43. Magnaes B (1989) Clinical studies of cranial and spinal compliance and the craniospinal flow of cerebrospinal fluid. Br J Neurosurg 3(6):659–668

    Article  CAS  PubMed  Google Scholar 

  44. Magnaes B (1978) Movement of cerebrospinal fluid within the craniospinal space when sitting up and lying down. Surg Neurol 10(1):45–49

    CAS  PubMed  Google Scholar 

  45. Marmarou A, Shulman K, LaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43(5):523–534

    Article  CAS  PubMed  Google Scholar 

  46. Marquardt G, Setzer M, Schick U, Seifert V (2002) Cerebellar hemorrhage after supratentorial craniotomy. Surg Neurol 57(4):241–251

    Article  PubMed  Google Scholar 

  47. Martínez-Lage JF, Alarcón F, Alfaro R, Ruíz-Espejo A, López-Guerrero AL, Hernández-Abenza J (2009) Cervical extramedullary mass lesion due to chronic CSF overshunting: case report and literature review. Childs Nerv Syst 25(7):895–898

    Article  PubMed  Google Scholar 

  48. McCullough DC (1986) Symptomatic progressive ventriculomegaly in hydrocephalics with patent shunts and antisiphon devices. Neurosurgery 19(4):617–621

    Article  CAS  PubMed  Google Scholar 

  49. Moayeri NN, Henson JW, Schaefer PW, Zervas NT (1998) Spinal Dural enhancement on magnetic resonance imaging associated with spontaneous intracranial hypotension. Report of three cases and review of the literature. J Neurosurg 88(5):912–918

    Article  CAS  PubMed  Google Scholar 

  50. Mokri B (2001) The monro-kellie hypothesis: applications in CSF volume depletion. Neurology 56(12):1746–1748

    Article  CAS  PubMed  Google Scholar 

  51. Müller LO, Toro EF (2014) Enhanced global mathematical model for studying cerebral venous blood flow. J Biomech 47(13):3361–3372

    Article  PubMed  Google Scholar 

  52. Nakagawa Y, Tsuru M, Yada K (1974) Site and mechanism for compression of the venous system during experimental intracranial hypertension. J Neurosurg 41(4):427–434

    Article  CAS  PubMed  Google Scholar 

  53. Owler BK, Jacobson EE, Johnston IH (2001) Low pressure hydrocephalus: issues of diagnosis and treatment in five cases. Br J Neurosurg 15(4):353–359

    Article  CAS  PubMed  Google Scholar 

  54. Pang D, Altschuler E (1994) Low-pressure hydrocephalic state and viscoelastic alterations in the brain. Neurosurgery 35(4):643–655

    Article  CAS  PubMed  Google Scholar 

  55. Pang Q, Wang C, Hu Y, et al. (2001) Experimental study of the morphology of cerebral bridging vein. Chin Med Sci J 16(1):19–22

    CAS  PubMed  Google Scholar 

  56. Park JS, Hwang JH, Park J, Hamm IS, Park YM (2009) Remote cerebellar hemorrhage complicated after supratentorial surgery: retrospective study with review of articles. J Korean Neurosurg Soc 46(2):136–143

    Article  PubMed  PubMed Central  Google Scholar 

  57. Piechnik SK, Czosnyka M, Richards HK, Whitfield PC, Pickard JD (2001) Cerebral venous blood outflow: a theoretical model based on laboratory simulation. Neurosurgery 49(5):1214–1222

    CAS  PubMed  Google Scholar 

  58. Portnoy HD, Branch C, Castro ME (1994) The relationship of intracranial venous pressure to hydrocephalus. Childs Nerv Syst 10(1):29–35

    Article  CAS  PubMed  Google Scholar 

  59. Qvarlander S, Sundström N, Malm J, Eklund A (2013) Postural effects on intracranial pressure: modeling and clinical evaluation. J Appl Physiol (1985) 115(10):1474–1480

    Article  Google Scholar 

  60. Schievink WI, Meyer FB, Atkinson JL, Mokri B (1996) Spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension. J Neurosurg 84(4):598–605

    Article  CAS  PubMed  Google Scholar 

  61. Seoane E, Rhoton AL Jr. (1999) Compression of the internal jugular vein by the transverse process of the atlas as the cause of cerebellar hemorrhage after supratentorial craniotomy Surg Neurol 51(5):500–5

  62. Si Z, Luan L, Kong D, et al. (2008) MRI-based investigation on outflow segment of cerebral venous system under increased ICP condition. Eur J Med Res 13(3):121–6

  63. Sood S, Kumar CR, Jamous M, Schuhmann MU, Ham SD, Canady AI (2004) Pathophysiological changes in cerebrovascular distensibility in patients undergoing chronic shunt therapy. J Neurosurg 100(5 Suppl Pediatrics):447–453

    PubMed  Google Scholar 

  64. Tobinick E, Vega CP (2006) The cerebrospinal venous system: anatomy, physiology, and clinical implications. MedGenMed 8(1):53

    PubMed  Google Scholar 

  65. Ulrich NH, Maier M, Bernays RL, Krayenbuhl N, Kollias S (2013) Cervical myelopathy due to chronic overshunting in a pediatric patient: case report and review of the literature. Turk Neurosurg 23(3):410–414

    PubMed  Google Scholar 

  66. Valdueza JM, von Münster T, Hoffman O, Schreiber S, Einhäupl KM (2000) Postural dependency of the cerebral venous outflow. Lancet 355(9199):200–201

    Article  CAS  PubMed  Google Scholar 

  67. Vassilyadi M, Farmer JP, Montes JL (1995) Negative-pressure hydrocephalus. J Neurosurg 83(3):486–490

    Article  CAS  PubMed  Google Scholar 

  68. Vignes JR, Dagain A, Guérin J, Liguoro D (2007) A hypothesis of cerebral venous system regulation based on a study of the junction between the cortical bridging veins and the superior sagittal sinus. Laboratory investigation. J Neurosurg 107(6):1205–1210

    Article  PubMed  Google Scholar 

  69. Vogels RL, Verstegen MJ, van Furth WR (2006) Cerebellar haemorrhage after non-traumatic evacuation of supratentorial chronic subdural haematoma: report of two cases. Acta Neurochir 148(9):993–996

    Article  CAS  PubMed  Google Scholar 

  70. Zamboni P, Sisini F, Menegatti E, et al. (2013) An ultrasound model to calculate the brain blood outflow through collateral vessels: a pilot study. BMC Neurol 13:81

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Bahar Hanjani and Elton McWashington are acknowledged for illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Barami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barami, K., Sood, S. The cerebral venous system and the postural regulation of intracranial pressure: implications in the management of patients with cerebrospinal fluid diversion. Childs Nerv Syst 32, 599–607 (2016). https://doi.org/10.1007/s00381-015-3010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00381-015-3010-1

Keywords