Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Environmental DNA metabarcoding as an efficient tool to monitor freshwater systems in northwestern Italy

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater ecosystems are experiencing one of the highest rates of biodiversity decline among extant ecosystems. To inform effective conservation actions, it is imperative to develop reliable monitoring techniques to assess the species richness of freshwater communities. In this study, we applied for the first time an eDNA metabarcoding assay on six watercourses in Liguria, northwestern Italy. Our first aim was to validate this method as a reliable monitoring tool for Ligurian fish communities. To reach this goal, we compared the results of the eDNA-based sampling with those obtained from two electrofishing campaigns carried out during the same season. The eDNA-based approach yielded congruent results with electrofishing data and showed a slightly higher resolution since it was able to detect two threatened species that were not detected by traditional monitoring. Just one species that eluded eDNA detection was electrofished instead. Thanks to a multi-marker metabarcoding approach, we were also able to detect other vertebrate species living in, or associated with, the sampled watercourses, such as aquatic birds and amphibians. Overall, our results confirmed that aquatic eDNA assay proves to be a valuable tool to monitor freshwater-related systems and to inform efficient management and protection schemes for such habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The detailed workflow and all scripts used in this study are available at the GitHub page: https://github.com/giorgiastaffoni/STREAM. Raw reads have been deposited in the NCBI Short Read Archive (BioProject accession ID:  PRJNA1175355; SRA accession numbers: from SRX26441509 to SRX26441596).

References

  • Aglieri, G., C. Baillie, S. Mariani, C. Cattano, A. Calò, G. Turco, D. Spatafora, A. Di Franco, M. Di Lorenzo, P. Guidetti & M. Milazzo, 2021. Environmental DNA effectively captures functional diversity of coastal fish communities. Molecular Ecology 30: 3127–3139. https://doi.org/10.1111/mec.15661.

    Article  PubMed  Google Scholar 

  • Ballini, L., D. Ottonello, V. Repetto, C. Natali, G. Chini, L. Tolve, C. Ciofi, S. Fratini & A. Iannucci, 2024. Early detection of rare and elusive endangered species using environmental DNA: a case study for the Eurasian otter and the white-clawed crayfish in northwestern Italy. Conservation Genetics. https://doi.org/10.1007/s10592-024-01619-5.

    Article  Google Scholar 

  • Benson, D. A., M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell & E. W. Sayers, 2013. GenBank. Nucleic Acids Research 41: D36–D42. https://doi.org/10.1093/nar/gks1195.

    Article  CAS  PubMed  Google Scholar 

  • Bianco, P. G., 1990. Potential role of the palaeohistory of the Mediterranean and Paratethys basins on the early dispersal of Euro-Mediterranean freshwater fishes. Ichthyological Exploration of Freshwaters 1: 167–184.

    Google Scholar 

  • Bianco, P. G., 1995. Mediterranean endemic freshwater fishes of Italy. Biological Conservation 72: 159–170. https://doi.org/10.1016/0006-3207(94)00078-5.

    Article  Google Scholar 

  • Bolger, A. M., M. Lohse & B. Usadel, 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borroni, I., 2004. Carta Ittica della Provincia di Imperia. Amministrazione Provinciale di Imperia.

  • Borroni, I., 2005. Indagini di approfondimento della Carta Ittica della Provincia di Imperia. Bacini del Tanarello e dell’Arroscia. Amministrazione Provinciale di Imperia, p. 57.

  • Bourlat, S. J., Q. Haenel, J. Finnman & M. Leray, 2016. Preparation of amplicon libraries for metabarcoding of marine eukaryotes using Illumina MiSeq: the Dual-PCR Method. In Bourlat, S. J. (ed), Marine Genomics Springer, New York, NY: 197–207. https://doi.org/10.1007/978-1-4939-3774-5_13.

    Chapter  Google Scholar 

  • Bovero, S., M. Favelli, F. Peano & G. Tessa, 2021. First record of Northern spectacled salamander Salamandrina perspicillata in Ligurian Alps (NW Italy). Studi Trentini di Scienze Naturali 101: 101–103.

    Google Scholar 

  • Carraro, L., H. Hartikainen, J. Jokela, E. Bertuzzo & A. Rinaldo, 2018. Estimating species distribution and abundance in river networks using environmental DNA. Proceedings of the National Academy of Sciences 115: 11724–11729. https://doi.org/10.1073/pnas.1813843115.

    Article  CAS  Google Scholar 

  • Ceballos, G., P. R. Ehrlich, A. D. Barnosky, A. García, R. M. Pringle & T. M. Palmer, 2015. Accelerated modern human–induced species losses: entering the sixth mass extinction. Science Advances 1: e1400253. https://doi.org/10.1126/sciadv.1400253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciuffardi, L., 2006. Pesci. In Arillo, A. & M. G. Mariotti (eds), Guida alla conoscenza delle specie liguri della Rete Natura 2000 Regione Liguria, Genova: 111–174.

    Google Scholar 

  • Ciuffardi, L., F. Oneto & V. Raineri, 2015. L’ittiofauna delle acque interne della Liguria: aspetti filogeografici e distributivi rilevanti ai fini dell’applicazione delle direttiva 2000/60/CE. Annali del Museo Civico di Storia Naturale “G. Doria”.

  • Civade, R., T. Dejean, A. Valentini, N. Roset, J. C. Raymond, A. Bonin, P. Taberlet & D. Pont, 2016. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE 11: e0157366. https://doi.org/10.1371/journal.pone.0157366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claver, C., O. Canals, L. G. de Amézaga, I. Mendibil & N. Rodriguez-Ezpeleta, 2023. An automated workflow to assess completeness and curate GenBank for environmental DNA metabarcoding: the marine fish assemblage as case study. Environmental DNA 5: 634–647. https://doi.org/10.1002/edn3.433.

    Article  CAS  Google Scholar 

  • Czeglédi, I., P. Sály, A. Specziár, B. Preiszner, Z. Szalóky, Á. Maroda, D. Pont, P. Meulenbroek, A. Valentini & T. Erős, 2021. Congruency between two traditional and eDNA-based sampling methods in characterising taxonomic and trait-based structure of fish communities and community-environment relationships in lentic environment. Ecological Indicators 129: 107952. https://doi.org/10.1016/j.ecolind.2021.107952.

    Article  Google Scholar 

  • De Jong, Y., M. Verbeek, V. Michelsen, P. Bjørn, W. Los, F. Steeman, N. Bailly, C. Basire, P. Chylarecki, E. Stloukal, G. Hagedorn, F. Wetzel, F. Glöckler, A. Kroupa, G. Korb, A. Hoffmann, C. Häuser, A. Kohlbecker, A. Müller, A. Güntsch, P. Stoev & L. Penev, 2014. Fauna Europaea – all European animal species on the web. Biodiversity Data Journal 2: e4034. https://doi.org/10.3897/BDJ.2.e4034.

    Article  Google Scholar 

  • De Santis, V., G. B. Delmastro, I. Vanetti, R. Britton & S. Zaccara, 2021. Species composition of introduced and natural minnow populations of the Phoxinus cryptic complex in the westernmost part of the Po River Basin (north Italy). Biological Invasions 23: 657–668. https://doi.org/10.1007/s10530-020-02406-2.

    Article  Google Scholar 

  • Deiner, K. & F. Altermatt, 2014. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9: e88786. https://doi.org/10.1371/journal.pone.0088786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deiner, K., H. M. Bik, E. Mächler, M. Seymour, A. Lacoursière-Roussel, F. Altermatt, S. Creer, I. Bista, D. M. Lodge, N. De Vere, M. E. Pfrender & L. Bernatchez, 2017. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Molecular Ecology 26: 5872–5895. https://doi.org/10.1111/mec.14350.

    Article  PubMed  Google Scholar 

  • Denys, G. P. J., A. Dettai, H. Persat, P. Daszkiewicz, M. Hautecoeur & P. Keith, 2020. Revision of Phoxinus in France with the description of two new species (Teleostei, Leuciscidae). Cybium : Revue Internationale d’Ichtyologie 44: 205–237. https://doi.org/10.26028/cybium/2020-443-003.

    Article  Google Scholar 

  • Djurhuus, A., C. J. Closek, R. P. Kelly, K. J. Pitz, R. P. Michisaki, H. A. Starks, K. R. Walz, E. A. Andruszkiewicz, E. Olesin, K. Hubbard, E. Montes, D. Otis, F. E. Muller-Karger, F. P. Chavez, A. B. Boehm & M. Breitbart, 2020. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nature Communications 11: 254. https://doi.org/10.1038/s41467-019-14105-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudgeon, D., 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology 29: R960–R967. https://doi.org/10.1016/j.cub.2019.08.002.

    Article  CAS  PubMed  Google Scholar 

  • Evans, N. T., B. P. Olds, M. A. Renshaw, C. R. Turner, Y. Li, C. L. Jerde, A. R. Mahon, M. E. Pfrender, G. A. Lamberti & D. M. Lodge, 2016. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular Ecology Resources 16: 29–41. https://doi.org/10.1111/1755-0998.12433.

    Article  CAS  PubMed  Google Scholar 

  • Evans, N. T., P. D. Shirey, J. G. Wieringa, A. R. Mahon & G. A. Lamberti, 2017. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 42: 90–99. https://doi.org/10.1080/03632415.2017.1276329.

    Article  Google Scholar 

  • Frøslev, T. G., R. Kjøller, H. H. Bruun, R. Ejrnæs, A. K. Brunbjerg, C. Pietroni & A. J. Hansen, 2017. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nature Communications 8: 1188. https://doi.org/10.1038/s41467-017-01312-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golpour, A., M. Šmejkal, M. Čech, R. A. Dos Santos, A. T. Souza, T. Jůza, C. Martínez, D. Bartoň, M. Vašek, V. Draštík, T. Kolařík, L. Kočvara, M. Říha, J. Peterka & P. Blabolil, 2022. Similarities and differences in fish community composition accessed by electrofishing, gill netting, seining, trawling, and water eDNA metabarcoding in temperate reservoirs. Frontiers in Ecology and Evolution 10: 913279. https://doi.org/10.3389/fevo.2022.913279.

    Article  Google Scholar 

  • Gu, Z., L. Gu, R. Eils, M. Schlesner & B. Brors, 2014. circlize Implements and enhances circular visualization in R. Bioinformatics 30: 2811–2812. https://doi.org/10.1093/bioinformatics/btu393.

    Article  CAS  PubMed  Google Scholar 

  • Hänfling, B., L. Lawson Handley, D. S. Read, C. Hahn, J. Li, P. Nichols, R. C. Blackman, A. Oliver & I. J. Winfield, 2016. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Molecular Ecology 25: 3101–3119. https://doi.org/10.1111/mec.13660.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, K., 2021. The World’s Forgotten Fishes. World Wide Fund for Nature (WWF).

  • ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale, 2023. Ambiente in Italia: uno sguardo d’insieme. Annuari dei dati ambientali 2022. Roma.

  • Jackman, J. M., C. Benvenuto, I. Coscia, C. Oliveira Carvalho, J. S. Ready, J. P. Boubli, W. E. Magnusson, A. D. McDevitt & N. Guimarães Sales, 2021. eDNA in a bottleneck: obstacles to fish metabarcoding studies in megadiverse freshwater systems. Environmental DNA 3: 837–849. https://doi.org/10.1002/edn3.191.

    Article  CAS  Google Scholar 

  • Jeunen, G., T. Lipinskaya, H. Gajduchenko, V. Golovenchik, M. Moroz, V. Rizevsky, V. Semenchenko & N. J. Gemmell, 2022. Environmental DNA (eDNA) metabarcoding surveys show evidence of non-indigenous freshwater species invasion to new parts of Eastern Europe. Metabarcoding and Metagenomics 6: e68575. https://doi.org/10.3897/mbmg.6.e68575.

    Article  Google Scholar 

  • Jeunen, G., E. Dowle, J. Edgecombe, U. Von Ammon, N. J. Gemmell & H. Cross, 2023. Crabs – a software program to generate curated reference databases for metabarcoding sequencing data. Molecular Ecology Resources 23: 725–738. https://doi.org/10.1111/1755-0998.13741.

    Article  PubMed  Google Scholar 

  • Lacoursière-Roussel, A., G. Côté, V. Leclerc & L. Bernatchez, 2016. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. Journal of Applied Ecology 53: 1148–1157. https://doi.org/10.1111/1365-2664.12598.

    Article  CAS  Google Scholar 

  • Langhammer, P. F., J. W. Bull, J. E. Bicknell, J. L. Oakley, M. H. Brown, M. W. Bruford, S. H. M. Butchart, J. A. Carr, D. Church, R. Cooney, S. Cutajar, W. Foden, M. N. Foster, C. Gascon, J. Geldmann, P. Genovesi, M. Hoffmann, J. Howard-McCombe, T. Lewis, N. B. W. Macfarlane, Z. E. Melvin, R. S. Merizalde, M. G. Morehouse, S. Pagad, B. Polidoro, W. Sechrest, G. Segelbacher, K. G. Smith, J. Steadman, K. Strongin, J. Williams, S. Woodley & T. M. Brooks, 2024. The positive impact of conservation action. Science 384(6694): 453–458. https://doi.org/10.1126/science.adj6598.

    Article  CAS  PubMed  Google Scholar 

  • Macher, T.-H., R. Schütz, J. Arle, A. J. Beermann, J. Koschorreck & F. Leese, 2021. Beyond fish eDNA metabarcoding: field replicates disproportionately improve the detection of stream associated vertebrate species. Metabarcoding and Metagenomics 5: e66557. https://doi.org/10.3897/mbmg.5.66557.

    Article  Google Scholar 

  • Magoč, T. & S. L. Salzberg, 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957–2963. https://doi.org/10.1093/bioinformatics/btr507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani, S., L. R. Harper, R. A. Collins, C. Baillie, O. S. Wangensteen, A. D. McDevitt, M. Heddell-Cowie & M. J. Genner, 2021. Estuarine molecular bycatch as a landscape-wide biomonitoring tool. Biological Conservation 261: 109287. https://doi.org/10.1016/j.biocon.2021.109287.

    Article  Google Scholar 

  • McColl-Gausden, E. F., A. R. Weeks, R. A. Coleman, K. L. Robinson, S. Song, T. A. Raadik & Reid Tingley, 2021. Multispecies models reveal that eDNA metabarcoding is more sensitive than backpack electrofishing for conducting fish surveys in freshwater streams. Molecular Ecology 30: 3111–3126. https://doi.org/10.1111/mec.15644.

    Article  CAS  PubMed  Google Scholar 

  • McKnight, D. T., R. Huerlimann, D. S. Bower, L. Schwarzkopf, R. A. Alford & K. R. Zenger, 2019. microDecon: a highly accurate read-subtraction tool for the post-sequencing removal of contamination in metabarcoding studies. Environmental DNA 1: 14–25. https://doi.org/10.1002/edn3.11.

    Article  Google Scholar 

  • Miya, M., Y. Sato, T. Fukunaga, T. Sado, J. Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh & W. Iwasaki, 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 2: 150088. https://doi.org/10.1098/rsos.150088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parasiewicz, P., J. N. Rogers, P. Vezza, J. Gortázar, T. Seager, M. Pegg, W. Wiśniewolski & C. Comoglio, 2013. Applications of the MesoHABSIM simulation model. In Maddock, I., A. Harby, P. Kemp & P. Wood (eds), Ecohydraulics. Wiley, Hoboken. https://doi.org/10.1002/9781118526576.ch6.

    Chapter  Google Scholar 

  • Pawlowski, J., L. Apothéloz‐Perret-Gentil, E. Mächler & F. Altermatt, 2020. Environmental DNA Applications for Biomonitoring and Bioassessment in Aquatic Ecosystems. Guidelines. Federal Office for the Environment, Bern. Environmental Studies. No. 2010: 71 pp. https://doi.org/10.5167/uzh-187800.

  • Penaluna, B. E., J. M. Allen, I. Arismendi, T. Levi, T. S. Garcia & J. K. Walter, 2021. Better boundaries: identifying the upper extent of fish distributions in forested streams using eDNA and electrofishing. Ecosphere 12: e03332. https://doi.org/10.1002/ecs2.3332.

    Article  Google Scholar 

  • R Core Team, 2021. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Ratnasingham, S. & P. D. Hebert, 2007. BOLD: the barcode of life data system. Molecular Ecology Notes 7: 355–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riaz, T., W. Shehzad, A. Viari, F. Pompanon, P. Taberlet & E. Coissac, 2011. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research 39: e145. https://doi.org/10.1093/nar/gkr732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritter, C. D., G. Dal Pont, P. V. Stica, A. Horodesky, N. Cozer, O. S. M. Netto, C. Henn, A. Ostrensky & M. R. Pie, 2022. Wanted not, wasted not: searching for non-target taxa in environmental DNA metabarcoding by-catch. Environmental Advances 7: 100169. https://doi.org/10.1101/2021.12.08.471726.

    Article  CAS  Google Scholar 

  • Robinson, C., T. Porter, V. Maitland, M. Wright & M. Hajibabaei, 2022. Multi-marker metabarcoding resolves subtle variations in freshwater condition: bioindicators, ecological traits, and trophic interactions. Ecological Indicators 145: 109603. https://doi.org/10.1016/j.ecolind.2022.109603.

    Article  CAS  Google Scholar 

  • Rognes, T., T. Flouri, B. Nichols, C. Quince & F. Mahé, 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584. https://doi.org/10.7287/peerj.preprints.2409v1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rondinini, C., A. Battistoni, V. Peronace & C. Teofili, 2022. Lista Rossa IUCN dei Vertebrati Italiani, Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Roma.

    Google Scholar 

  • Ruppert, K. M., R. J. Kline & M. S. Rahman, 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation 17: e00547. https://doi.org/10.1016/j.gecco.2019.e00547.

    Article  Google Scholar 

  • Schenekar, T., 2023. The current state of eDNA research in freshwater ecosystems: are we shifting from the developmental phase to standard application in biomonitoring? Hydrobiologia 850: 1263–1282. https://doi.org/10.1007/s10750-022-04891-z.

    Article  Google Scholar 

  • Schönhuth, S., J. Vukić, R. Šanda, L. Yang & R. L. Mayden, 2018. Phylogenetic relationships and classification of the Holarctic family Leuciscidae (Cypriniformes: Cyprinoidei). Molecular Phylogenetics and Evolution 127: 781–799. https://doi.org/10.1016/j.ympev.2018.06.026.

    Article  PubMed  Google Scholar 

  • Seymour, M., F. K. Edwards, B. J. Cosby, I. Bista, P. M. Scarlett, F. L. Brailsford, H. C. Glanville, M. De Bruyn, G. R. Carvalho & S. Creer, 2021. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Communications Biology 4: 512. https://doi.org/10.1038/s42003-021-02031-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw, J. L. A., L. J. Clarke, S. D. Wedderburn, T. C. Barnes, L. S. Weyrich & A. Cooper, 2016. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biological Conservation 197: 131–138. https://doi.org/10.1016/j.biocon.2016.03.010.

    Article  Google Scholar 

  • Su, G., M. Logez, J. Xu, S. Tao, S. Villéger & S. Brosse, 2021. Human impacts on global freshwater fish biodiversity. Science 371: 835–838. https://doi.org/10.1126/science.abd3369.

    Article  CAS  PubMed  Google Scholar 

  • Taberlet, P., A. Bonin, L. Zinger & E. Coissac, 2018. Environmental DNA: For Biodiversity Research and Monitoring, Oxford University Press, Oxford, U.K.

    Book  Google Scholar 

  • Thomsen, P. F. & E. Willerslev, 2015. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4–18. https://doi.org/10.1016/j.biocon.2014.11.019.

    Article  Google Scholar 

  • Thomsen, P. F., J. Kielgast, L. L. Iversen, C. Wiuf, M. Rasmussen, M. T. P. Gilbert, L. Orlando & E. Willerslev, 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21: 2565–2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x.

    Article  CAS  PubMed  Google Scholar 

  • Tzafesta, E., B. Saccomanno, F. Zangaro, M. R. Vadrucci, V. Specchia & M. Pinna, 2022. DNA barcode gap analysis for multiple marker genes for phytoplankton species biodiversity in mediterranean aquatic ecosystems. Biology 11: 1277. https://doi.org/10.3390/biology11091277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdez-Moreno, M., N. V. Ivanova, M. Elías-Gutiérrez, S. L. Pedersen, K. Bessonov & P. D. N. Hebert, 2019. Using eDNA to biomonitor the fish community in a tropical oligotrophic lake. PLoS ONE 14: e0215505. https://doi.org/10.1371/journal.pone.0215505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezza, P., A. Zanin & P. Parasiewicz, 2017. Manuale tecnicooperativo per la modellazione e la valutazione dell’integrità dell’habitat fluviale. ISPRA – Manuali e Linee Guida 154/2017. Roma, Maggio.

  • Wang, Y., N. Song, S. Liu, Z. Chen, A. Xu & T. Gao, 2023. DNA barcoding of fishes from Zhoushan coastal waters using mitochondrial COI and 12S rRNA genes. Journal of Oceanology and Limnology 41: 1997–2009. https://doi.org/10.1007/s00343-022-2214-y.

    Article  CAS  Google Scholar 

  • Weigand, H., A. J. Beermann, F. Čiampor, F. O. Costa, Z. Csabai, S. Duarte, M. F. Geiger, M. Grabowski, F. Rimet, B. Rulik, M. Strand, N. Szucsich, A. M. Weigand, E. Willassen, S. A. Wyler, A. Bouchez, A. Borja, Z. Čiamporová-Zaťovičová, S. Ferreira, K.-D.B. Dijkstra, U. Eisendle, J. Freyhof, P. Gadawski, W. Graf, A. Haegerbaeumer, B. B. Van Der Hoorn, B. Japoshvili, L. Keresztes, E. Keskin, F. Leese, J. N. Macher, T. Mamos, G. Paz, V. Pešić, D. M. Pfannkuchen, M. A. Pfannkuchen, B. W. Price, B. Rinkevich, M. A. L. Teixeira, G. Várbíró & T. Ekrem, 2019. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-analysis and recommendations for future work. Science of the Total Environment 678: 499–524. https://doi.org/10.1016/j.scitotenv.2019.04.247.

    Article  CAS  PubMed  Google Scholar 

  • Williams-Subiza, E. A. & L. B. Epele, 2021. Drivers of biodiversity loss in freshwater environments: a bibliometric analysis of the recent literature. Aquatic Conservation: Marine and Freshwater Ecosystems 31: 2469–2480. https://doi.org/10.1002/aqc.3627.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Livia Tolve and Giacomo Chini for their help in sampling work. We also thank Chiara Natali and Chiara Vergata for their support in lab work. We are grateful to Stefano Cannicci for his useful comments on the manuscript.

Funding

This work was supported by the LIGURIA REGIONAL AUTHORITY (Italy) through Grant Number G55J19000450007 of the Biodiv’Connect program of the European Interreg Biodiv’ALP France-Italy ALCOTRA 2014-2020 project. The authors acknowledge the support by the Italian Ministry of University and Research through the NATIONAL BIODIVERSITY FUTURE CENTER (NBFC), part of the National Recovery and Resilience Plan, Mission 4, Component 2, Investment 1.4, Project CN00000033.

Author information

Authors and Affiliations

Authors

Contributions

Lorenzo Ballini, Giorgia Staffoni, Alessio Iannucci, and Sara Fratini wrote the manuscript. Sara Fratini and Alessio Iannucci conceptualized and designed the study. Lorenzo Ballini collected the eDNA samples. Dario Ottonello, Alessandro Candiotto, Simone Forte, and Paolo Vezza conducted the electrofishing survey. Lorenzo Ballini, Alessio Iannucci, and Sara Fratini performed lab work and provided lab support. Giorgia Staffoni ran the bioinformatics analysis, with the support of Davide Nespoli. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Alessio Iannucci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling editor: Christian Sturmbauer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 460 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballini, L., Staffoni, G., Nespoli, D. et al. Environmental DNA metabarcoding as an efficient tool to monitor freshwater systems in northwestern Italy. Hydrobiologia 852, 791–803 (2025). https://doi.org/10.1007/s10750-024-05723-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10750-024-05723-y

Keywords