Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Photosynthetica
  3. Article

Photosynthetic activity of variegated leaves of Coleus × hybridus hort. cultivars characterised by chlorophyll fluorescence techniques

  • Original papers
  • Open access
  • Published: 12 April 2016
  • Volume 54, pages 331–339, (2016)
  • Cite this article

You have full access to this open access article

Download PDF
Photosynthetica
Photosynthetic activity of variegated leaves of Coleus × hybridus hort. cultivars characterised by chlorophyll fluorescence techniques
Download PDF
  • M. Borek1,
  • R. Bączek-Kwinta1 &
  • M. Rapacz1 
  • 5621 Accesses

  • 3 Altmetric

  • Explore all metrics

Abstract

Different pigments often occur together and affect photosynthetic characteristics of the respective leaf portions. In this study, photosynthetic activity in variegated leaves of five cultivars of the ornamental and medicinal plant, Coleus × hybridus hort., was estimated by image analysis and point data measurements of major chlorophyll (Chl) fluorescence parameters and related to the amount of photosynthetic pigments measured with a Chl meter or spectrophotometrically in leaf extracts. Significant differences in Chl and carotenoid (Car) contents were noticed among differentially pigmented sectors of a leaf and among the cultivars. Although the higher Chl concentration was noticed in purple parts compared to green parts of the leaves, the values of minimal and maximal fluorescence yield at the dark- and light-adapted state (F0, Fm, F0', Fm', respectively) were a little lower than those in the green sectors, indicating photoprotective effects provided by anthocyanins and Car, more abundant in the red parts. The lowest Chl and Car content was detected in creamy-yellow and pink sectors and this contributed to low F0, Fm, and Fm', maximal quantum yield of PSII photochemistry, and nonphotochemical and photochemical quenching but high PSII maximum efficiency and effective quantum yield of PSII photochemistry. Both methods of Chl fluorescence analysis revealed heterogeneity in capture, transfer, and dissipation of excitation energy but Chl fluorescence imaging was more suitable in examining very narrow pigmented leaf areas.

Article PDF

Download to read the full article text

Similar content being viewed by others

A simple indicator for non-destructive estimation of the violaxanthin cycle pigment content in leaves

Article 23 January 2016

Simulation of PSII-operating efficiency from chlorophyll fluorescence in response to light and temperature in chrysanthemum (Dendranthema grandiflora) using a multilayer leaf model

Article 09 February 2017

Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions

Article Open access 29 March 2016

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • C3 photosynthesis
  • C4 photosynthesis
  • Plant Biochemistry
  • Plant Science
  • Photobiology
  • Plant Physiology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Abbreviations

CA:

Camaroon

Car(s):

carotenoid(s)

CF:

chlorophyll fluorescence

Chl:

chlorophyll

DD:

Dappled Down

F0, Fm :

minimal and maximal fluorescence yield at the dark-adapted state

F0', Fm':

minimal and maximal fluorescence yield at the light-adapted state

Ft :

steady-state fluorescence yield

Fv :

variable fluorescence at the dark-adapted state

Fv/Fm :

maximal quantum yield of PSII photochemistry

FM :

fresh mass

SD:

standard deviation

NPQ:

Stern-Volmer nonphotochemical quenching coefficient

NR:

Neon Rose

qP:

photochemical quenching coefficient

RU:

Ruby

SR:

Sunlover Red Ruffles

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Alkema J., Seager L.: The chemical pigments of plants-chemical supplement.–J. Chem. Education 59: 183–186, 1982.

    Article  CAS  Google Scholar 

  • Anderson J.M.: Photoregulation of the composition, function and structure of thylakoid membranes.–Annu. Rev. Plant Physiol. 37: 93–136, 1986.

    Article  CAS  Google Scholar 

  • Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo.–Annu. Rev. Plant Biol. 59: 89–113, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Bartley G.E, Scolnik P.A.: Plant carotenoids: Pigments for photoprotection, visual attraction, and human health.–Plant Cell 7: 1027–1038, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baczek-Kwinta R., Koziel A., Seidler-Lozykowska K.: Are the fluorescence parameters of German chamomile leaves the first indicators of the anthodia yield in drought conditions?–Photosynthetica 49: 87–97, 2011.

    Article  Google Scholar 

  • Belyaeva O.B, Litvin F.F.: Advances in understanding of the primary reactions of protochlorophyll(ide) photoreduction in cells and model systems.–J. Biophys. Chem. 2: 1–9, 2011.

    Article  CAS  Google Scholar 

  • Bilger W., Björkman O.: Temperature-dependence of violaxanthin deepoxidation and nonphotochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L.–Planta 184: 226–234, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Björkman O.: Responses to different quantum flux densities.–In: Lange O.L., Nobel P.S, Osmond C.B., Ziegler H. (ed.): Physiological Plant Ecology. Vol. 1. Responses to the Physical Environment. Pp. 57–108. Springer Verlag, Berlin 1981.

    Google Scholar 

  • Borek M., Baczek-Kwinta R., Rapacz M. Chlorophyll fluorescence imaging of cadmium-treated white cabbage plants.–Web of Conferences 1: 39004, 2012.

    Google Scholar 

  • Burger J., Edwards G.E. Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf coleus varieties.–Plant Cell Physiol. 37: 395–399, 1996.

    Article  CAS  Google Scholar 

  • Cassol D., De Silva F.S.P, Falqueto A.R. et al.: An evaluation of nondestructive methods to estimate total chlorophyll content.–Photosynthetica 46: 634–636, 2008.

    Article  CAS  Google Scholar 

  • Chung B.N., Choi G.S.: Incidence of Coleus blumei viroid 1 in seeds of commercial Coleus in Korea.–Plant Pathol. J. 24: 305–308, 2008.

    Article  CAS  Google Scholar 

  • Demmig B., Björkman O.: Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants.–Planta 171: 171–184, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Dodd I.C., Critchley C., Woodall G.S., Stewart G.R.: Photoinhibition in differently coloured juvenile leaves of Syzygium species.–J. Exp. Bot. 49: 1437–1445, 1998.

    Article  CAS  Google Scholar 

  • Dos Anjos L., Oliva M.A, Kuki K.N.: Fluorescence imaging of light acclimation of brazilian atlantic forest tree species.–Photosynthetica 50: 95–108, 2012.

    Article  CAS  Google Scholar 

  • Foudree A., Putarjunan A., Kambakam S. et al.: The mechanism of variegation in immutans provides insight into chloroplast biogenesis.–Front. Plant Sci. 260: 1–10, 2012.

    Google Scholar 

  • Gabruk M., Stecka A., Strzalka A. et al.: Photoactive protochlorophyllide enzyme complexes reconstituted with PORA, PORB and PORC proteins of A. thaliana: fluorescence and catalytic properties.–PLOS ONE 10: e0116990, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garland K.F.: Production of Heuchera and Coleus.–Master Thesis. Pp. 125. The University of Maine, Maine 2009.

    Google Scholar 

  • Goodwin T.W.: The Biochemistry of the Carotenoids. Vol. I: Plants. Pp. 203. Chapman and Hall, New York 1980.

    Book  Google Scholar 

  • Gould K.S., Kuhn D.N., Lee D.W. et al: Why leaves are sometimes red.–Nature 378: 241–242, 1995.

    Article  CAS  Google Scholar 

  • Gould K.S, Neill S.O., Vogelmann T.C.: A unified explanation for anthocyanins in leaves?–Adv. Bot. Res. 37: 167–192, 2002.

    Article  CAS  Google Scholar 

  • Hatier J-H., Gould K.S.: Black coloration in leaves of Ophiopogon planiscapus ‘Nigrescens’. Leaf optics, chromaticity, and internal light gradients.–Funct. Plant Biol. 34: 130–138, 2007.

    Article  Google Scholar 

  • Henry A., Chopra S., Clark D.G. et al.: Responses to low phosphorus in high and low foliar anthocyanin coleus (Solenostemon scutellarioides) and maize (Zea mays).–Funct. Plant Biol. 39: 255–265, 2012.

    Article  CAS  Google Scholar 

  • Hlavinka J., Nauš J., Špundová M.: Anthocyanin contribution to chlorophyll meter readings and its correction.–Photosynth. Res. 118: 277–295, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Hughes N.M, Smith W.K.: Seasonal photosynthesis and anthocyanin production in 10 broadleaf evergreen species.–Funct. Plant Biol. 34: 1072–1079, 2007.

    Article  CAS  Google Scholar 

  • Hung C.Y., Xie J.H.: A comparison of plants regenerated from a variegated Epipremnum aureum.–Biol. Plantarum 53: 610–616, 2009.

    Article  CAS  Google Scholar 

  • Khoo H.-E., Prasad K.N, Kong K.-W. et al.: Carotenoids and their isomers: color pigments in fruits and vegetables.–Molecules 16: 1710–1738, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Kim E.-H., Li X.-P., Razeghifard R. et al.: The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: A study using two chlorophyll b-less mutants.–Biochim. Biophys. Acta 1787: 973–984, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis. The Basics.–Annu. Rev. Plant Physiol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Landi M., Tattini M., Gould K.: Multiple functional roles of anthocyanins in plant-environment interactions.–Environ. Exp. Bot. 119: 4–17, 2015.

    Article  CAS  Google Scholar 

  • Lebowitz R.J.: The genetics and breeding of coleus.–Plant Breed. Rev. 3: 343–360, 1985.

    Google Scholar 

  • Logan B.A., Stafstrom W.C., Walsh M.J.L. et al.: Examining the photoprotection hypothesis for adaxial foliar anthocyanin accumulation by revisiting comparisons of green-and redleafed varieties of coleus (Solenostemon scutellarioides).–Photosynth. Res. 124: 267–274, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Liakopoulos G., Nikolopoulos D., Klouvatou A. et al.: The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera).–Ann. Bot.-London 98: 257–265, 2006.

    Article  CAS  Google Scholar 

  • Liakopoulos G., Spanorigas I.: Foliar anthocyanins in Pelargonium × hortorum are unable to alleviate light stress under photoinhibitory conditions.–Photosynthetica 50: 254–262, 2012.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K, Babani F., Langsdorf G. et al.: Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging.–Photosynthetica 38: 521–529, 2000.

    Article  CAS  Google Scholar 

  • Matsubara A., Krause G.H., Aranda J. et al.: Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants.–Funct. Plant Biol. 36: 20–36, 2009.

    Article  CAS  Google Scholar 

  • Maxwell K., Johnson N.G.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Merzlyak M.N., Chivkunova O.B., Solovchenko A.E., Naqvi K.R.: Light absorption by anthocyanins in juvenile, stressed, and senescing leaves.–J. Exp. Bot. 59: 3903–3911, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata K., Noguchi K., Terashima I. Cost and benefit of the repair of photodamaged photosystem II in spinach leaves: roles of acclimation to growth light.–Photosynth. Res. 113: 165–180, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Mlodzinska E.: Survey of plant pigments: molecular and environmental determinants of plant colors.–Acta Biol. Cracov. Bot. 51: 7–16, 2009.

    Google Scholar 

  • Montanaro G., Dichio B., Xiloyannis C.: Response of photosynthetic machinery of field-grown kiwifruit under Mediterranean condition during drought and re-watering.–Photosynthetica 45: 533–540, 2007.

    Article  CAS  Google Scholar 

  • Muniz C.R, Freire F.C.O, Viana F.M.P et al.: Monitoring cashew seedlings during interactions with the fungus Lasiodiplodia theobromae using chlorophyll fluorescence imaging.–Photosynthetica 52: 529–537, 2014.

    Article  CAS  Google Scholar 

  • Nedbal L., Soukupová J., Whitmarsh J., Trtílek M.: Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality.–Photosynthetica 38: 571–579, 2000.

    Article  CAS  Google Scholar 

  • Neill S.O., Gould K.S. Anthocyanins in leaves: light attenuators or antioxidants.–Funct. Plant. Biol. 30: 865–873, 2003.

    Article  CAS  Google Scholar 

  • Nielsen S.L, Simonsen A.-M.: Photosynthesis and photoinhibition in two differently coloured varieties of Oxalis triangularis–the effect of anthocyanin content.–Photosynthetica 49: 346–352, 2011.

    Article  CAS  Google Scholar 

  • Osman A.R.: Genetic variability and total phenolic compounds among six Coleus blumei varieties using RAPD Analysis.–J. Appl. Sci. Res. 9: 1395–1400, 2013.

    CAS  Google Scholar 

  • Park S.U, Uddin M.R, Xu H. et al.: Biotechnological applications for rosmarinic acid production in plant.–Afr. J. Biotechnol. 7: 4959–4965, 2008.

    CAS  Google Scholar 

  • Pineda M., Soukupová J., Matouš K. et al.: Conventional and combinatorial chlorophyll fluorescence imaging of tobamovirus-infected plants.–Photosynthetica 46: 441–451, 2008.

    Article  CAS  Google Scholar 

  • Porra R.J.: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b.–Photosynth. Res. 73: 149–156, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U., Schliwa W., Bilger U.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorimeter.–Photosynth. Res. 10: 51–62, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Sofo A., Dichio B., Montanaro G., et al.: Photosynthetic performance and light response of two olive cultivars under different water and light regimes.–Photosynthetica 47: 602–608, 2009.

    Article  CAS  Google Scholar 

  • Soni H., Singhai A.K.: Recent updates on the genus coleus: a review.–Asian J. Pharmac. Clin. Res. 5: 12–17, 2012.

    Google Scholar 

  • Steyn W.J, Wand S.J.E, Holcroft D.M et al.: Anthocyanins in vegetative tissues: a proposed unified function in photoprotection.–New Phytol. 155: 349–361, 2002.

    Article  CAS  Google Scholar 

  • Takahashi S., Badger M.R.: Photoprotection in plants: a new light on photosystem II damage.–Trends Plant Sci. 16: 53–60, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Takayama K., Nishina H., Iyoki S. et al.: Early detection of drought stress in tomato plants with chlorophyll fluorescence imaging–practical application of the speaking plant approach in a greenhouse.–Preprints of the 18th IFAC World Congress Milano (Italy). Pp. 1785–1790, Int. Feder. Automatic Control, Milano 2011.

    Google Scholar 

  • Tanaka Y., Sasaki N., Ohmiya A.: Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids.–Plant J. 54: 733–749, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Uddling J., Gelang-Alfredsson J., Piiki K. et al.: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings.–Photosynth. Res. 91: 37–46, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Wentworth M., Murchle E.H., Gray J.E. et al.: Differential adaptation of two varieties of common bean to abiotic stress. II. Acclimation of photosynthesis.–J. Exp. Bot. 57: 699–709, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel C.M., Jiang C.Z., Meehan L.J. et al.: Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis.–Plant J. 6: 161–175, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Wu D., Wright D.A, Wetzel C. et al.: The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis.–Plant Cell 11: 43–55, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H.Y, Bassi R.: Carotenoids: localization and function.–In: Ort D.R., Yocum C.F. (ed.): Oxygenic Photosynthesis: the Light Reactions. Pp. 539–563. Kluwer Academic Publishers: Dordrecht 1996.

    Google Scholar 

  • Zhu X.Y., Wang S.M., Zhang C.L.: Composition and characteristic differences in photosynthetic membranes of two ecotypes of reed (Phragmites communis L.) from different habitats.–Photosynthetica 41: 97–104, 2003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture in Krakow 30-239, Podłużna 3, Poland

    M. Borek, R. Bączek-Kwinta & M. Rapacz

Authors
  1. M. Borek
    View author publications

    Search author on:PubMed Google Scholar

  2. R. Bączek-Kwinta
    View author publications

    Search author on:PubMed Google Scholar

  3. M. Rapacz
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to R. Bączek-Kwinta.

Additional information

Acknowledgments: The study was supported by the University of Agriculture in Krakow, DS 3113.

This article is published with open access at link.springer.com

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borek, M., Bączek-Kwinta, R. & Rapacz, M. Photosynthetic activity of variegated leaves of Coleus × hybridus hort. cultivars characterised by chlorophyll fluorescence techniques. Photosynthetica 54, 331–339 (2016). https://doi.org/10.1007/s11099-016-0225-7

Download citation

  • Received: 10 April 2015

  • Accepted: 23 March 2016

  • Published: 12 April 2016

  • Issue date: September 2016

  • DOI: https://doi.org/10.1007/s11099-016-0225-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Additional key words

  • carotenoids
  • chlorophyll imaging
  • pigments
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature