Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Lithospheric structure of Southeast Anatolia from joint inversion of local and teleseismic data

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A joint tomographic inversion of local and teleseismic arrival times recorded at 41 seismic stations in southeast Anatolia is conducted to study the 3-D lithospheric velocity structure and its relation to the prevailing tectonic processes. A total of 21300 arrivals from local and teleseismic events are used in the final inversion. The tomographic model reveals prominent lower crustal/uppermost mantle low-velocity anomalies. High-velocity zones are imaged in the western part of the study area. The background seismic activity occurs mainly at the low-velocity areas and to a lesser extent in some high-velocity zones. Large crustal earthquakes occur in average velocity zones, but not in high-velocity areas that can resist stress. Results of the checkerboard resolution test indicate the reliability of the obtained images; while the large hit counts at most depth slices denote reasonable ray-path coverage for most parts of the study area. The obtained velocity anomalies are generally consistent with many previous geophysical measurements and give much deeper understanding of the current seismotectonic processes occurring in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelwahed M.F. and Zhao D., 2007. Deep structure of the Japan subduction zone. Phys. Earth Planet. Inter., 612, 32–52, DOI: 10.1016/j.pepi.2007.03.001.

    Article  Google Scholar 

  • Aksu A.E., Calon T., Hall J., Kurtboğan B., Gürçay S. and Çifçi G., 2014. Complex interactions fault fans developed in a strike-slip system: Kozan fault zone, East Mediterranean Sea. Mar. Geol., 351, 91–107, DOI: 10.1016/j.margeo.2014.03.009.

    Article  Google Scholar 

  • Akyol N., Zhu L., Mitchell B.J., Sözbilir H. and Kekovalý K., 2006. Crustal structure and local seismicity in western Anatolia. Geophys. J. Int., 166, 1259–1269, DOI: 10.1111/j.1365246X.2006.03053.

    Article  Google Scholar 

  • Al-Damegh K., Sandvol E., Al-Lazki A. and Barazangi M., 2004. Regional seismic wave propagation (Lg and S n) and P n attenuation in the Arabian plate and surrounding regions. Geophys. J. Int., 157, 775–795.

    Article  Google Scholar 

  • Al-Damegh K., Sandvol E. and Barazangi M., 2005. Crustal structure of the Arabian plate: New constraints from the analysis of teleseismic receiver functions. Earth Planet. Sci. Lett., 231, 177–196, DOI: 10.1016/j.epsl.2004.12.020.

    Article  Google Scholar 

  • Al-Lazki A.I., Sandvol E., Seber D., Barazangi M., Turkelli N. and Mohamad R., 2004. Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates. Geophys. J. Int., 158, 1024–1040, DOI: 10.1111 /j.1365-246X.2004.02355x.

    Article  Google Scholar 

  • Al-Lazki A.I., Seber D., Sandvol E., Turkelli N., Mohamad R. and Barazangi M., 2003. Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (eastern Turkey) and surrounding regions. Geophys. Res. Lett., 30, 8043, DOI: 10.1029/2003GL017391.

    Article  Google Scholar 

  • Angus D.A., Wilson D..C, Sandvol E. and Ni J.F., 2006. Lithospheric structure of the Arabian and Eurasian collision zone in Eastern Turkey from S-wave receiver functions. Geophys. J. Int., 166, 1335–1346.

    Article  Google Scholar 

  • Babuska V. and Carra M., 1991. Seismic Anisotropy in the Earth. Kluwer Academic Publisher, Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Bariş Ş., Nakajima J., Hasegawa A., Honkura Y., Ito A. and Üçer S.B., 2005. Three-dimensional structure of Vp, Vs, and Vp/Vs in the upper crust of the Marmara region, NW Turkey. Earth Planets Space, 57, 1019–1038.

    Article  Google Scholar 

  • Barka A.A. and Reilinger R., 1997. Active tectonics of the eastern Mediterranean region deduced from GPS, neotectonic, and seismicity data. Ann. Geofis., 40, 587–610.

    Google Scholar 

  • Bektaş Ö., 2013. Thermal structure of the crust in Inner East Anatolia from aeromagnetic and gravity data. Phys. Earth Planet. Inter., 221, 27–37, DOI: 10.1016/j.pepi.2013.06.003.

    Article  Google Scholar 

  • Bektaş Ö., Ravat D., Büyüksaraç A., Bìlìm F. and Ateş A., 2007. Regional geothermal characterization of East Anatolia from aeromagnetic, heat flow and gravity data. Pure Appl. Geophys., 164, 975–998, DOI: 10.1007/s00024-007-0196-5.

    Article  Google Scholar 

  • Bilim F., 2011. Investigation of the Galatian volcanic complex in the northern central Turkey using potential field data. Phys. Earth Planet. Inter., 185, 36–43, DOI: 10.1016/j.pepi.2011.01.001.

    Article  Google Scholar 

  • Biryol C.B., Beck S.L., Zandt G. and Özacar A.A., 2011. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys. J. Int., 184, 1037–1057, DOI: 10.1111/j.1365-246X.2010.04910.x.

    Article  Google Scholar 

  • Bozkurt E., 2001. Neotectonics of Turkey-a synthesis. Geodin. Acta, 14, 3–30.

    Article  Google Scholar 

  • Bozkurt E. and Koçyiğit A., 1996. The Carova basin: an active negative flower structure on the Almus fault zone, a splay fault system of the North Anatolian Fault Zone. Tectonophysics, 265, 239–254.

    Article  Google Scholar 

  • Christensen N.I., 1978. Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics, 47, 131–157.

    Article  Google Scholar 

  • Dewey J.F., Hempton M.R., Kidd W.S.F., Saroğlu F. and Şengör A.M.C., 1986. Shortening of continental lithosphere: the neotectonics of eastern Anatolia- a young collision zone. In: Coward M.O. and Ries A.C. (Eds), Collisional Tectonics. Geol. Soc. Spec. Publ., 19, 3–36.

    Google Scholar 

  • Dziewonski A.M. and Gilbert F., 1976. The effect of small aspherical perturbations on travel times and a re-examination of the corrections for ellipticity. Geophys. J. R. Astron. Soc., 44, 7–17.

    Article  Google Scholar 

  • Erduran M., Çakir Ö., Tezel T., Şahin Ş. and Alptekin Ö., 2007. Anatolian surface wave evaluated at GEOFON station ISP Isparta, Turkey. Tectonophysics, 434, 39–54.

    Article  Google Scholar 

  • Gök R., Pasyanos M.E. and Zor E., 2007. Lithospheric structure of the continent-continent collision zone: eastern Turkey. Geophys. J. Int., 169, 1079–1088, DOI: 10.1111/j.1365-246X.2006.03288.x.

    Article  Google Scholar 

  • Gök R., Sandvol E., Turkelli N., Seber D. and Barazangi M., 2003. Sn attenuation in the Anatolian and Iranian plateau and surrounding regions. Geophys. Res. Lett., 30. 8042, DOI: 10.1029/2003GL018020.

    Google Scholar 

  • Hauksson E. and Haase J.S., 1997. Three-dimensional Vp and Vp/Vs velocity models of the Los Angeles basin and central Transverse Ranges, California. J. Geophys. Res., 102, 5423–5433.

    Article  Google Scholar 

  • Hearn T.M. and Ni J., 1994. Pn velocities beneath continental collision zones: the Turkish-Iranian Plateau. Geophys. J. Int., 117, 273–283.

    Article  Google Scholar 

  • Herrin E., 1968. Seismological tables for P-phases. Bull. Seismol. Soc. Amer., 60, 461–489.

    Google Scholar 

  • Horasan G., Gulen L., Pinar A., Kalafat D., Ozel N., Kuleli H.S. and Isikara A.M., 2002. Lithospheric structure of the Marmara and Aegean regions, western Turkey. Bull. Seismol. Soc. Amer., 92, 322–329.

    Article  Google Scholar 

  • Horen H., Zamora M. and Dubuisson G., 1996. Seismic wave velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: abundance of serpentine in slow spreading ridge. Geophys. Res. Lett., 23, 9–12.

    Article  Google Scholar 

  • Inoue H., Fukao Y., Tanabe K. and Ogata Y., 1990. Whole mantle P-wave travel time tomography. Phys. Earth Planet. Inter., 59, 294–328.

    Article  Google Scholar 

  • Jaffey N., Robertson A. and Pringle M., 2004. Latest Miocene and Pleistocene ages of faulting, determined by 40Ar/39Ar single-crystal dating of air-fall tuff and silicic extrusives of the Erciyes Basin, central Turkey: evidence for intraplate deformation related to the tectonic escape of Anatolia. Terra Nova, 16, 45–53, DOI: 10.1111/j.13653121.2003. 00526.x.

    Article  Google Scholar 

  • Karagianni E.E., Papazachos C.B., Panagiotopoulos D.G., Suhadolc P., Vuan A. and Panza G.F., 2005. Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves. Geophys. J. Int., 160, 127–143.

    Article  Google Scholar 

  • Karaoğlan F., Parlak O., Klötzli U., Koller F. and Rızaoğlu T., 2013. Age and duration of intraoceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia. Geosci. Front., 4, 399–408, DOI: 10.1016/j.gsf.2012.11.011.

    Article  Google Scholar 

  • Karasözen E., Özacar A.A., Biryol C.B. and Beck S.L., 2014. Seismicity, focal mechanisms, and active stress field around the central segment of the North Anatolian Fault in Turkey. Geophys. J. Int., 196, 405–421, DOI: 10.1093/gji/ggt367.

    Article  Google Scholar 

  • Karato S.I., 1995. Effects of water on seismic wave velocities in the upper mantle. Proc. Jpn. Acad. Ser. B-Phys. Biol. Sci., 71, 61–66.

    Article  Google Scholar 

  • Karato S.I. and Jung H., 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett., 157, 193–207.

    Article  Google Scholar 

  • Kaviani A., Sandvol E., Bao X., Rümpker G. and Gök R., 2015. The structure of the crust in the Turkish-Iranian Plateau and Zagros using Lg Q and velocity. Geophys. J. Int., 200, 1252–1266, DOI: 10.1093/gji/ggu468.

    Article  Google Scholar 

  • Kayal J.R., Zhao D., Mishra O.P., De R. and Singh O.P., 2002. The 2001 Bhuj earthquake: tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation. Geophys. Res. Lett., 29, 2152, DOI: 10.1029/2002GL015177.

    Article  Google Scholar 

  • Keskin M., 2003. Magma generation by slab steepening and breakoff beneath a subductionaccretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophys. Res. Lett., 30, 8046, DOI: 10.1029/2003GL018019.

    Article  Google Scholar 

  • Koulakov I., Bindi D., Parolai S., Grosser H. and Milkereit C., 2010. Distribution of seismic velocities and attenuation in the crust beneath the North Anatolian Fault (Turkey) from local earthquake tomography. Bull. Seismol. Soc. Amer., 100, 207–224, DOI: 10.1785/0120090105.

    Article  Google Scholar 

  • Lee W.H.K. and Lahr J.C., 1975. HYPO71 (Revised): A Computer Program for Determining Hypocenter, Magnitude and First Motion Pattern of Local Earthquakes. U.S. Geol. Surv. Open File Rep. 75-311, 113 pp.

    Google Scholar 

  • Lee W.H.K. and Valdes C.M., 1985. HYP071PC: a Personal Computer Version of the HYPO71 Earthquake Location Program. U.S. Geol. Surv. Open File Report 85-749, 43 pp.

    Google Scholar 

  • Lei J. and Zhao D., 2007. Teleseismic evidence for a break-off subducting slab under eastern Turkey. Earth Planet. Sci. Lett., 257, 14–28, DOI: 10.1016/j.epsl.2007.02.011.

    Article  Google Scholar 

  • Maggi A. and Priestly K., 2005. Surface waveform tomography of the Turkish–Iranian plateau. Geophys. J. Int., 160, 1068–1080.

    Article  Google Scholar 

  • Meier T., Dietrich K., Stöckhert B. and Harjes H.P., 2004. One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophys. J. Int., 156, 45–58.

    Article  Google Scholar 

  • Mokhtar T.A., Ammon C.J., Herrman R.B. and Ghalib H.A.A., 2001. Lithospheric structure beneath Arabia. Pure Appl. Geophys., 158, 1445–1474.

    Article  Google Scholar 

  • Mooney W.D., Laske G. and Masters T.G., 1998. CRUST 5.1: A global crustal model at 5°×5°. J. Geophys. Res., 103, 727–747.

    Article  Google Scholar 

  • Mutlu A.K. and Karabulut H., 2011. Anisotropic Pn tomography of Turkey and adjacent regions. Geophys. J. Int., 187, 1743–1758, DOI: 10.1111/j.1365-246X.2011.05235.x.

    Article  Google Scholar 

  • Nakamura A., Hasegawa A., Ito A., Üçer B., Barış Ş., Honkura Y., Kono T., Hori S., Pektaş R., Komut T., Çelik C. and Işıkara A.M., 2002. P-wave velocity structure of the crust and its relationship to the occurrence of the İzmit, Turkey, earthquake and aftershocks. Bull. Seismol. Soc. Amer., 92, 330–338.

    Article  Google Scholar 

  • Nocquet J.M., 2012. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics, 579, 220–242, DOI: 10.1016/j.tecto.2012. 03.037.

    Article  Google Scholar 

  • Nolet G., Montelli R. and Virieux J., 1999. Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems. Geophys. J. Int., 138, 36–44.

    Article  Google Scholar 

  • Öztürk S., 2011. Characteristics of seismic activity in the western, central and eastern parts of the North Anatolian Fault Zone, Turkey: temporal and spatial analysis. Acta Geophys., 59, 209–238, DOI: 10.2478/s11600-010-0050-5.

    Article  Google Scholar 

  • Paige C.C. and Saunders M.A., 1982. LSQR: sparse linear equations and least squares problems. ACM Trans. Math. Softw., 8, 43–71.

    Article  Google Scholar 

  • Parlak O., Rızaoğlu T., Bağcı U., Karaoğlan F. and Höck V., 2009. Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics, 473, 173–187, DOI: 10.1016/j.tecto.2008.08.002.

    Article  Google Scholar 

  • Pasyanos M.E., 2005. A variable resolution surface wave dispersion study of Eurasia, North Africa, and surrounding regions. J. Geophys. Res., 110, B12301, DOI: 10.1029/2005JB003749.

    Article  Google Scholar 

  • Pasyanos M.E., Matzel E.M., Walter W.R. and Rodgers A.J., 2009. Broad-band Lg attenuation in the Middle East. Geophys. J. Int., 177, 1166–1176, DOI: 10.1111/j.1365246X.2009. 04128.x.

    Article  Google Scholar 

  • Pearce J., Bender J., De Long S., Kidd W., Low P., Guner Y., Saroglu F., Yilmaz Y., Moorbath S. and Mitchell J., 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey. J. Volcanol. Geotherm. Res., 44, 189–229.

    Article  Google Scholar 

  • Powers R.W., Ramirez L.F., Redmond C.P. and Elberg E.L., 1966. Geology of the Arabian Peninsula: sedimentary geology of Saudi Arabia. U.S. Geol. Surv. Prof. Pap., 560-D, 91–96.

    Google Scholar 

  • Reilinger R.E., McClusky S.C., Oral M.B., King W. and Toksöz M.N., 1997. Global Positioning System measurements of present-day crustal movements in the Arabian-Africa-Eurasia plate collision zone. J. Geophys. Res., 102, 9983–9999.

    Article  Google Scholar 

  • Robertson A.H.F. and Grasso M., 1995. Overview of the late Triassic recent tectonic and palaeoenvironmental development of the Mediterranean region. Terra Nova, 7, 114–127.

    Article  Google Scholar 

  • Rodgers A.J., Ni J.F. and Hearn T.M., 1997. Propagation characteristics of short-period Sn and Lg in the Middle East. Bull. Seismol. Soc. Amer., 87, 396–413.

    Google Scholar 

  • Rotstein Y., 1984. Counterclockwise rotation of Anatolian block. Tectonophysics, 108, 71–91.

    Article  Google Scholar 

  • Salah M.K., 2014. Upper crustal structure beneath southwest Iberia north of the convergent boundary between the Eurasian and African plates. Geosci. Front., 5, 845–854, DOI: 10.1016/j.gsf.2013.10.002.

    Article  Google Scholar 

  • Salah M.K., Şahin Ş. and Aydin U., 2011. Seismic velocity and Poisson’s ratio tomography of the crust beneath east Anatolia. J. Asian Earth Sci., 40, 746–761.

    Article  Google Scholar 

  • Salah M.K., Şahin Ş. and Destici C., 2007. Seismic velocity and Poisson’s ratio tomography of the crust beneath southwest Anatolia: an insight into the occurrence of large earthquakes. J. Seismol., 11, 415–432, DOI: 10.1007/s10950-007-9062-2.

    Article  Google Scholar 

  • Salah M.K., Şahin Ş. and Soyuer D., 2014a. Crustal velocity and Poisson’s ratio structures beneath northwest Anatolia imaged by seismic tomography. Eur. Int. J. Sci. Technol., 3, 133–157.

    Google Scholar 

  • Salah M.K., Şahin Ş. and Topatan U., 2014b. Crustal velocity and Vp/Vs structures beneath central Anatolia from local seismic tomography. Arab. J. Geosci., 7, 4101–4118, DOI: 10.1007 /s12517-013-1038-7.

    Article  Google Scholar 

  • Salah M.K. and Zhao D., 2003. 3-D seismic structure of Kii Peninsula in southwest Japan: evidence for slab dehydration in the forearc. Tectonophysics, 364, 191–213.

    Article  Google Scholar 

  • Sandvol E., Al-Damegh K., Calvert A., Seber D., Barazangi M., Mohamad R., Gök R., Turkelli N. and Gürbüz C., 2001. Tomographic imaging of observed regional wave propagation in the Middle East. Pure Appl. Geophys., 158, 1121–1163.

    Article  Google Scholar 

  • Sato H., Sacks I.S. and Murase T., 1989. The use of laboratory velocity data for estimating temperature and partial melt fraction in the low-velocity zone: comparison with heat flow and electrical conductivity studies. J. Geophys. Res., 94(B5), 5689–5704, DOI: 10.1029 /JB094iB05p05689.

    Article  Google Scholar 

  • Schmid C., van der Lee S., Van Decar J.C., Engdahl E.R. and Giardini D., 2008. Three-dimensional S velocity of the mantle in the Africa-Eurasia plate boundary region from phase arrival times and regional waveforms. J. Geophys. Res., 113, B03306, DOI: 10.1029/2005JB004193.

    Article  Google Scholar 

  • Şengör A.M.C., 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279, 590–593.

    Article  Google Scholar 

  • Şengör A.M.C., Görür N. and Saroğlu F., 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle K.T. and Christie-Blick N. (Eds), Strike-slip Faulting and Basin Formation. Soc. Econ. Paleontol. Mineral. Spec. Publ., 37, 227–264.

    Google Scholar 

  • Şengör A.M.C. and Kidd W., 1979. Post-collisional tectonics of Turkish-Iranian Plateau and a comparison with Tibet. Tectonophysics, 55, 361–376.

    Article  Google Scholar 

  • Şengör A.M.C. and Yılmaz Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.

    Article  Google Scholar 

  • Serrano I., Morales J., Zhao D., Torcal F. and Vidal F., 1998. P-wave tomographic images in the central BeticS-Alborán sea (South Spain) using local earthquakes: contribution for a continental collision. Geophys. Res. Lett., 25, 4031–4034, DOI: 10.1029/1998GL 900021.

    Article  Google Scholar 

  • Serrano I., Bohoyo F., Galindo-Zaldívar J., Morales J. and Zhao D., 2002a. Geophysical signatures of a basic-body rock placed in the upper crust of the External Zones of the Betic Cordillera (Southern Spain). Geophys. Res. Lett., 29, 1523, DOI: 10.1029/ 2001GL013487.

    Article  Google Scholar 

  • Serrano I., Zhao D. and Morale J., 2002b. 3-D crustal structure of the extensional Granada basin in the convergent boundary between the Eurasian and African plates. Tectonophysics, 344, 61–79.

    Article  Google Scholar 

  • Tatar O., Piper J.D.A., Park R.G. and Gürsoy H., 1995. Palaeomagnetic study of block rotations in the Niksar overlap region of the North Anatolian Fault Zone, central Turkey. Tectonophysics, 244, 251–266.

    Article  Google Scholar 

  • Tatar O., Piper J.D.A., Gürsoy H., Heimann A. and Koçbulut F., 2004. Neotectonic deformation in the transition zone between the Dead Sea transform and the East Anatolian Fault Zone, southern Turkey: a paleomagnetic study of the Karasu rift volcanism. Tectonophysics, 385, 17–43, DOI: 10.1016/j.tecto.2004.04.005.

    Article  Google Scholar 

  • Um J. and Thurber C., 1987. A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Amer., 77, 972–986.

    Google Scholar 

  • Watanabe T., 1993. Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors. Geophys. Res. Lett., 20, 2933–2936, DOI: 10.1029/93GL03170.

    Article  Google Scholar 

  • Wessel P. and Smith W.H.F., 1998. New improved version of Generic Mapping Tools released. EOS Trans AGU, 79, 579.

    Article  Google Scholar 

  • Xie J., Gök R., Ni J. and Aoki Y., 2004. Lateral variations of crustal seismic attenuation along the INDEPTH profiles in Tibet from Lg Q inversion. J. Geophys. Res., 109, B10308, DOI: 10.1029/2004JB002988.

    Google Scholar 

  • Yao Z., Roberts R. and Tryggvason A., 1999. Calculating resolution and covariance matrices for seismic tomography with the LSQR method. Geophys. J. Int., 138, 886–894.

    Article  Google Scholar 

  • Yolsal-Çevikbilen S. and Taymaz T., 2012. Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, 536–537, 61–100, DOI: 10.1016/j.tecto.2012.02.019.

    Article  Google Scholar 

  • Zhang J. and McMechan G., 1995. Estimation of resolution and covariance for large matrix inversions. Geophys. J. Int., 121, 409–426.

    Article  Google Scholar 

  • Zhao D., 2001. New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: a review. The Island Arc, 10, 68–84.

    Article  Google Scholar 

  • Zhao D., Hasegawa A. and Horiuchi S., 1992. Tomographic imaging of P-and S-wave velocity structure beneath northeastern Japan. J. Geophys. Res., 97, 19909–19928.

    Article  Google Scholar 

  • Zhao D., Hasegawa A. and Kanamori H., 1994. Deep structure of Japan subduction zone as derived from local, regional and teleseismic events. J. Geophys. Res., 99, 22313–22329.

    Article  Google Scholar 

  • Zhao D. and Kanamori H., 1995. The 1994 Northridge earthquake: 3-D crustal structure in the rupture zone and its relation to the aftershock locations and mechanisms. Geophys. Res. Lett., 22, 763–766.

    Article  Google Scholar 

  • Zhao D., Kanamori H. and Humphreys E., 1996. Simultaneous inversion of local and teleseismic data for the crust and mantle structure of southern California. Phys. Earth Planet. Inter., 93, 191–214.

    Article  Google Scholar 

  • Zhao D., Ochi F., Hasegawa A. and Yamamoto A., 2000. Evidence for the location and cause of large crustal earthquakes in Japan. J. Geophys. Res., 105, 13579–13594.

    Article  Google Scholar 

  • Zhao D., Tian Y., Lei J., Liu L. and Zheng S., 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter., 173, 197–206.

    Article  Google Scholar 

  • Zhao D., Wang K., Rogers G. and Peacock S., 2001. Tomographic image of low P-velocity anomalies above slab in northern Cascadia subduction zone. Earth Planets Space, 53, 285–293.

    Article  Google Scholar 

  • Zhao D., Xu Y., Wiens D., Dorman L., Hildebrand J. and Webb S., 1997. Depth extent of the Lau back-arc spreading center and its relation to subduction processes. Science, 278, 254–257.

    Article  Google Scholar 

  • Zhao D., Yanada T., Hasegawa A., Umino N. and Wei W., 2012. Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophys. J. Int., 190, 816–828.

    Article  Google Scholar 

  • Zor E., Sandvol E., Xie J., Türkelli N., Mitchell B., Gasanov A.H. and Yetirmishli G., 2007. Crustal attenuation within the Turkish plateau and surrounding regions. Bull. Seismol. Soc. Amer., 97, 151–161, DOI: 10.1785/0120050227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed K. Salah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, M.K. Lithospheric structure of Southeast Anatolia from joint inversion of local and teleseismic data. Stud Geophys Geod 61, 703–727 (2017). https://doi.org/10.1007/s11200-016-1240-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11200-016-1240-7

Keywords