Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Anaerobic Volatile Fatty Acid Production Performance and Microbial Community Characteristics from Solid Fraction of Alkali-Thermal Treated Waste-Activated Sludge: Focusing on the Effects of Different pH Conditions

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The waste-activated sludge (WAS) is rich in organic matter and various nutrients. Alkali-thermal hydrolysis of WAS can be employed to produce a liquid fertilizer with high plant-promoting nutrient content. However, the solid fraction (abbreviated as SF) generated from this process requires further treatment. Although there have been studies on the recovery of plant nutrients from WAS via alkali-thermal hydrolysis, researches on the safe treatment of the SF are limited. This study aims to explore the potential and the microbiological mechanisms on anaerobic volatile fatty acid (VFA) production from the SF under different pH conditions (i.e., 6, 7, 8, 9, and 10). The results showed that the VFA yield was highest at pH 6, reaching 4095.84 mg COD/L (i.e., 0.16 g-COD/g-volatile solids), followed by pH 10, 8, 7, and 9, with acetate being the main component (> 56%). Microbial community analysis revealed that members in phyla Firmicutes and Bacteroidota constituted the main acid-producing microbial community during the anaerobic fermentation of SF. Furthermore, different pH conditions influenced the yield and composition of VFAs by altering the structure and functions of microbial community. This research provides a new direction for the fully resourceful utilization of sludge by producing both liquid fertilizer and VFAs from WAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Lu, D., Qian, T. T., Le, C. C., Pan, C. Z., Cao, S. B., Ng, W. J., & Zhou, Y. (2021). Insights into thermal hydrolyzed sludge liquor—Identification of plant-growth-promoting compounds. Journal of Hazardous Materials, 403, 123650. https://doi.org/10.1016/j.jhazmat.2020.123650

    Article  CAS  PubMed  Google Scholar 

  2. Song, X. L., Shi, Z. H., Li, X. F., Wang, X. H., & Ren, Y. P. (2019). Fate of proteins of waste activated sludge during thermal alkali pretreatment in terms of sludge protein recovery. Frontiers of Environmental Science & Engineering, 13, 25. https://doi.org/10.1007/s11783-019-1114-7

    Article  CAS  Google Scholar 

  3. Gu, J. Y., Zhou, H. H., Wang, J., Feng, K., Xie, G. J., Liu, B. F., & Xing, D. F. (2024). Sequential recovery of protein and ammonium from waste sludge and functional metabolism in a combined process of nutrient recovery electro-fermentation (NREF). Resources, Conservation and Recycling, 203, 107444. https://doi.org/10.1016/j.resconrec.2024.107444

    Article  CAS  Google Scholar 

  4. Gao, J. L., Weng, W., Yan, Y. X., Wang, Y. C., & Wang, Q. K. (2020). Comparison of protein extraction methods from excess activated sludge. Chemosphere, 249, 126107. https://doi.org/10.1016/j.chemosphere.2020.126107

    Article  CAS  PubMed  Google Scholar 

  5. Wei, L. L., Wang, K., Kong, X. J., Liu, G. Y., Cui, S., Zhao, Q. L., & Cui, F. Y. (2016). Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge. Frontiers of Environmental Science & Engineering, 10, 327–335. https://doi.org/10.1007/s11783-014-0763-9

    Article  CAS  Google Scholar 

  6. Arvaniti, O. S., Asimakopoulos, A. G., Dasenaki, M. E., Ventouri, E. I., Stasinakis, A. S., & Thomaidis, N. S. (2014). Simultaneous determination of eighteen perfluorinated compounds in dissolved and particulate phases of wastewater, and in sewage sludge by liquid chromatography-tandem mass spectrometry. Analytical Methods, 6, 1341–1349. https://doi.org/10.1039/c3ay42015a

    Article  CAS  Google Scholar 

  7. Hui, W. L., Zhou, J. T., & Jin, R. F. (2022). Proteins recovery from waste activated sludge by thermal alkaline treatment. Journal of Environmental Chemical Engineering, 10, 107311. https://doi.org/10.1016/j.jece.2022.107311

    Article  CAS  Google Scholar 

  8. Wang, D. B., Zeng, G. M., Chen, Y. G., & Li, X. M. (2015). Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge. Water Research, 73, 311–322. https://doi.org/10.1016/j.watres.2015.01.017

    Article  CAS  PubMed  Google Scholar 

  9. Xu, Q. X., Huang, Q. S., Wei, W., Sun, J., Dai, X. H., & Ni, B. J. (2020). Improving the treatment of waste activated sludge using calcium peroxide. Water Research, 187, 116440. https://doi.org/10.1016/j.watres.2020.116440

    Article  CAS  PubMed  Google Scholar 

  10. Wilén, B. M., Jin, B., & Lant, P. (2003). The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Research, 37, 2127–2139. https://doi.org/10.1016/S0043-1354(02)00629-2

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Q., Cheng, X. S., Wang, F., Fang, S. Y., Zhang, L., Huang, W. X., Fang, F., Cao, J. S., & Luo, J. Y. (2022). Unveiling the behaviors and mechanisms of percarbonate on the sludge anaerobic fermentation for volatile fatty acids production. Science of the Total Environment, 838, 156054. https://doi.org/10.1016/j.scitotenv.2022.156054

    Article  CAS  PubMed  Google Scholar 

  12. Alloul, A., Ganigué, R., Spiller, M., Meerburg, F., Cagnetta, C., Rabaey, K., & S.E. (2018). Vlaeminck Capture-ferment-upgrade: A three-step approach for the valorization of sewage organics as commodities. Environmental Science & Technology, 52, 6729–6742. https://doi.org/10.1021/acs.est.7b05712

    Article  CAS  Google Scholar 

  13. Ai, X. H., Xin, X. D., Xie, J. Q., Lai, D. R., & Hong, J. M. (2024). Effects of polysorbate-20 via associated microbial interactions on facilitating the production of volatile fatty acids during anaerobic fermentation of waste activated sludge. Journal of Environmental Chemical Engineering, 12, 113476. https://doi.org/10.1016/j.jece.2024.113476

    Article  CAS  Google Scholar 

  14. Fang, W., Zhang, X. D., Zhang, P. Y., Wan, J. J., Guo, H. X., Ghasimi, D. S. M., Morera, X. C., & Zhang, T. (2020). Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge. Journal of Environmental Sciences, 87, 93–111. https://doi.org/10.1016/j.jes.2019.05.027

    Article  CAS  Google Scholar 

  15. Liu, H., Wang, J., Liu, X. L., Fu, B., Chen, J., & Yu, H. Q. (2012). Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Research, 46, 799–807. https://doi.org/10.1016/j.watres.2011.11.047

    Article  CAS  PubMed  Google Scholar 

  16. Latif, M. A., Mehta, C. M., & Batstone, D. J. (2017). Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res., 113, 42–49. https://doi.org/10.1016/j.watres.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  17. Liang, T., Elmaadawy, K., Liu, B. C., Hu, J. P., Hou, H. J., & Yang, J. K. (2021). Anaerobic fermentation of waste activated sludge for volatile fatty acid production: Recent updates of pretreatment methods and the potential effect of humic and nutrients substances, Process Saf. Environmental protection, 145, 321–339. https://doi.org/10.1016/j.psep.2020.08.010

    Article  CAS  Google Scholar 

  18. Carrère, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenès, J. P., Steyer, J. P., & Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials, 183, 1–15. https://doi.org/10.1016/j.jhazmat.2010.06.129

    Article  CAS  PubMed  Google Scholar 

  19. Xin, X. D., She, Y. C., & Hong, J. M. (2021). Insights into microbial interaction profiles contributing to volatile fatty acids production via acidogenic fermentation of waste activated sludge assisted by calcium oxide pretreatment. Bioresource Technology, 320, 124287. https://doi.org/10.1016/j.actatropica.2020.124287

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, C. S., Su, H. J., Baeyens, J., & Tan, T. W. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable Sustainable Energy Rev., 38, 383–392. https://doi.org/10.1016/j.rser.2014.05.038

    Article  CAS  Google Scholar 

  21. Rughoonundun, H., Mohee, R., & Holtzapple, M. T. (2012). Influence of carbon-to-nitrogen ratio on the mixed-acid fermentation of wastewater sludge and pretreated bagasse. Bioresource Technology, 112, 91–97. https://doi.org/10.1016/j.biortech.2012.02.081

    Article  CAS  PubMed  Google Scholar 

  22. Devlin, D. C., Esteves, S. R. R., Dinsdale, R. M., & Guwy, A. J. (2011). The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresource Technology, 102, 4076–4082. https://doi.org/10.1016/j.biortech.2010.12.043

    Article  CAS  PubMed  Google Scholar 

  23. Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W., & Lee, J. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. Journal of Bioscience and Bioengineering, 95, 271–275. https://doi.org/10.1016/S1389-1723(03)80028-2

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Y., Zhao, J. W., Li, X. M., Wang, D. B., Yang, Q., & Zeng, G. M. (2018). Synergistic effect of free nitrite acid integrated with biosurfactant alkyl polyglucose on sludge anaerobic fermentation. Waste Management, 78, 310–317. https://doi.org/10.1016/j.wasman.2018.05.053

    Article  CAS  PubMed  Google Scholar 

  25. Wu, Y. Q., & Song, K. (2019). Effect of thermal activated peroxydisulfate pretreatment on short-chain fatty acids production from waste activated sludge anaerobic fermentation. Bioresource Technology, 292, 121977. https://doi.org/10.1016/j.biortech.2019.121977

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, Y. Y., Hu, X. Y., Chen, H. B., Zhou, Y. Y., Zhou, Y. F., & Wang, D. B. (2019). Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Science of the Total Environment, 694, 133741. https://doi.org/10.1016/j.scitotenv.2019.133741

    Article  CAS  PubMed  Google Scholar 

  27. Yang, B. Q., Pan, Q., Liu, Q. Y., & Pan, X. J. (2023). Damage mechanisms of sludge flocs and cell structures by different pretreatment methods. Environmental Technology & Innovation, 30, 103134. https://doi.org/10.1016/j.eti.2023.103134

    Article  Google Scholar 

  28. Li, Z. P., Tian, Y., Ding, Y., Wang, H. Y., & Chen, L. (2013). Contribution of extracellular polymeric substances (EPS) and their subfractions to the sludge aggregation in membrane bioreactor coupled with worm reactor. Bioresource Technology, 144, 328–336. https://doi.org/10.1016/j.biortech.2013.06.127

    Article  CAS  PubMed  Google Scholar 

  29. Gao, J. L., Li, T. T., Yan, Y. X., Geng, G., & Li, Z. (2022). Protein extraction from different sludge types by alkaline-thermal hydrolysis Desalin. Water Treat, 262, 283–289. https://doi.org/10.5004/dwt.2022.28436

    Article  CAS  Google Scholar 

  30. Tang, Y. F., Xie, H., Sun, J., Li, X. O., Zhang, Y., & Dai, X. H. (2022). Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants. Water Research, 211, 118036. https://doi.org/10.1016/j.watres.2021.118036

    Article  CAS  PubMed  Google Scholar 

  31. Fang, W., Zhang, R., Yang, W. J., Spanjers, H., & Zhang, P. Y. (2024). A novel strategy for waste activated sludge treatment: Recovery of structural extracellular polymeric substances and fermentative production of volatile fatty acids. Water Research, 266, 122421. https://doi.org/10.1016/j.watres.2024.122421

    Article  CAS  PubMed  Google Scholar 

  32. da Fonseca, Y. A., Barreto, E. D., Lomar, P. F., Silva, S. D., Gurgel, L. V. A., & Baêta, B. E. L. (2024). Biobased production of volatile fatty acids from brewer’s spent grain: Optimization and insights into the impact of protein extraction on process performance. Biochemical Engineering Journal, 203, 109218. https://doi.org/10.1016/j.bej.2024.109218

    Article  CAS  Google Scholar 

  33. Chen, Y. G., Luo, J. Y., Yan, Y. Y., & Feng, L. Y. (2013). Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Applied Energy, 102, 1197–1204. https://doi.org/10.1016/j.apenergy.2012.06.056

    Article  CAS  Google Scholar 

  34. Cui, H. W., Chen, Y. T., Chen, Y. W., Dolfing, J., Li, B. Y., Sun, Z. Y., Tang, Y. Q., Huang, Y. L., Dai, W. Y., Cui, Q. J., Cheng, X., & Jiao, S. B. (2024). Metagenomic insights into microbial mechanism of pH shifts enhancing short-chain carboxylic acid production from fruit waste anaerobic fermentation. Industrial Crops and Products., 222, 119520. https://doi.org/10.1016/j.indcrop.2024.119520

    Article  CAS  Google Scholar 

  35. Gao, J. L., Wang, Y. C., Yan, Y. X., Li, Z., & Chen, M. L. (2020). Protein extraction from excess sludge by alkali-thermal hydrolysis. Environmental Science and Pollution Research, 27, 8628–8637. https://doi.org/10.1007/s11356-019-07188-2

    Article  CAS  PubMed  Google Scholar 

  36. Wang, L. G., Trujillo, S., & Liu, H. (2019). Selective inhibition of methanogenesis by acetylene in single chamber microbial electrolysis cells. Bioresource Technology, 274, 557–560. https://doi.org/10.1016/j.biortech.2018.12.039

    Article  CAS  PubMed  Google Scholar 

  37. Li, B. Y., Xia, Z. Y., Gou, M., Sun, Z. Y., Huang, Y. L., Jiao, S. B., Dai, W. Y., & Tang, Y. Q. (2022). Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates: Performance and microbial community characteristics. Bioresource Technology, 346, 126648. https://doi.org/10.1016/j.biortech.2021.126648

    Article  CAS  PubMed  Google Scholar 

  38. Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G., & Bailey, M. J. (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66, 5488–5491. https://doi.org/10.1128/AEM.66.12.5488-5491.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He, S., Deng, Q. H., Xian, P., Li, Z. T., Tan, S. F., & Liu, Q. (2019). Volatile fatty acid (VFA) and methane generation from sewage sludge and banana straw: Influence of pH and two-phase anaerobic fermentation Desalin. Water Treat, 152, 23872. https://doi.org/10.5004/dwt.2019.23872

    Article  CAS  Google Scholar 

  40. Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044

    Article  CAS  PubMed  Google Scholar 

  41. Roghair, M., Hoogstad, T., Strik, D., Plugge, C. M., Timmers, P. H. A., Weusthuis, R. A., Bruins, M. E., & Buisman, C. J. N. (2018). Controlling ethanol use in chain elongation by CO2 loading rate. Environmental Science & Technology, 52, 1496–1505. https://doi.org/10.1021/acs.est.7b04904

    Article  CAS  Google Scholar 

  42. Yang, G. J., Xu, Q. X., Wang, D. B., Tang, L., Xia, J. F., Wang, Q. L., Zeng, G. M., Yang, Q., & Li, X. M. (2018). Free ammonia-based sludge treatment reduces sludge production in the wastewater treatment process. Chemosphere, 205, 484–492. https://doi.org/10.1016/j.chemosphere.2018.04.140

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, J. W., Yang, Q., Li, X. M., Wang, D. B., An, H. X., Xie, T., Xu, Q. X., Deng, Y. C., & Zeng, G. M. (2015). Effect of initial pH on short chain fatty acid production during the anaerobic fermentation of membrane bioreactor sludge enhanced by alkyl polyglcoside. International Biodeterioration & Biodegradation, 104, 283–289. https://doi.org/10.1016/j.ibiod.2015.06.012

    Article  CAS  Google Scholar 

  44. Wang, K., Yin, J., Shen, D. S., & Li, N. (2014). Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresource Technology, 161, 395–401. https://doi.org/10.1016/j.biortech.2014.03.088

    Article  CAS  PubMed  Google Scholar 

  45. Ma, H. J., Liu, H., Zhang, L. H., Yang, M., Fu, B., & Liu, H. B. (2017). Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation. Biotechnology for Biofuels and Bioproducts, 10, 137. https://doi.org/10.1186/s13068-017-0821-1

    Article  CAS  Google Scholar 

  46. Li, X. K., Liu, G. G., Liu, S. L., Ma, K. L., & Meng, L. W. (2018). The relationship between volatile fatty acids accumulation and microbial community succession triggered by excess sludge alkaline fermentation. Journal of Environmental Management, 223, 85–91. https://doi.org/10.1016/j.jenvman.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  47. Tian, L. X., Guo, H. X., Wang, Y. F., Su, Z. X., Zhu, T. T., & Liu, Y. W. (2022). Insights into Fe(II)-sulfite-based pretreatment strategy for enhancing short-chain fatty acids (SCFAs) production from waste activated sludge: Performance and mechanism. Bioresource Technology, 353, 127143. https://doi.org/10.1016/j.biortech.2022.127143

    Article  CAS  PubMed  Google Scholar 

  48. Chen, H. J., Liu, F., Wang, Q. F., Zhen, X., Wang, B., Wang, S. J., Zhang, J., Su, L. B., Wang, Z. M., & Zhu, S. N. (2022). Production of volatile fatty acids concomitant with phosphorus removal and lignin recovery by co-fermentation of waste activated sludge and black liquor. Journal of Cleaner Production, 355, 131806. https://doi.org/10.1016/j.jclepro.2022.131806

    Article  CAS  Google Scholar 

  49. Huang, L., Chen, B., Pistolozzi, M., Wu, Z. Q., & Wang, J. F. (2014). Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge. Bioresource Technology, 153, 87–94. https://doi.org/10.1016/j.biortech.2013.11.049

    Article  CAS  PubMed  Google Scholar 

  50. Muñoz, A. C., Olsson, J., Malovanyy, A., Baresel, C., Machamada-Devaiah, N., & Schnürer, A. (2024). Impact of thermal hydrolysis on VFA-based carbon source production from fermentation of sludge and digestate for denitrification: Experimentation and upscaling implications. Water Research, 266, 122426. https://doi.org/10.1016/j.watres.2024.122426

    Article  CAS  Google Scholar 

  51. Vidal-Antich, C., Perez-Esteban, N., Astals, S., Peces, M., Mata-Alvarez, J., & Dosta, J. (2021). Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production. Science of the Total Environment, 757, 143763. https://doi.org/10.1016/j.scitotenv.2020.143763

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Q. H., Xin, W. Z., Shao, Z. G., Usman, M., Li, J., Shang, P. Y., Kou, Y., Din, M. G. E., & Chen, C. M. (2023). Role of pretreatment type and microbial mechanisms on enhancing volatile fatty acids production during anaerobic fermentation of refinery waste activated sludge. Bioresource Technology, 381, 129122. https://doi.org/10.1016/j.biortech.2023.129122

    Article  CAS  PubMed  Google Scholar 

  53. Zhou, G. R., Huang, X., Zhang, S., Xiang, Z. Z., Wei, J., Ma, S. L., Teng, X. D., & Zheng, Z. H. (2024). Volatile fatty acids (VFAs) production from sludge and chicken manure anaerobic co-fermentation: Effects of mixing ratio and microbial mechanisms. Journal of Environmental Chemical Engineering., 12, 114014. https://doi.org/10.1016/j.jece.2024.114014

    Article  CAS  Google Scholar 

  54. Cui, L. Y., Hu, Y., Zeng, R. C., Yang, Y. X., Sun, D. D., Li, S. Q., Zhang, F., & Han, E. H. (2017). New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. Journal of Materials Science & Technology, 33, 971–986. https://doi.org/10.1016/j.jmst.2017.01.005

    Article  CAS  Google Scholar 

  55. Liu, X., Yang, H. T., Xiong, P., Li, W. T., Huang, E. H., & Zheng, Y. F. (2019). Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions. Corrosion Science, 157, 205–219. https://doi.org/10.1016/j.corsci.2019.05.018

    Article  CAS  Google Scholar 

  56. Li, X. M., Zhao, J. W., Wang, D. B., Yang, Q., Xu, Q. X., Deng, Y. C., Yang, W. Q., & Zeng, G. M. (2016). An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid. Chemosphere, 144, 160–167. https://doi.org/10.1016/j.chemosphere.2015.08.076

    Article  CAS  PubMed  Google Scholar 

  57. Deng, F., Li, P., Guan, X. J., & Zhu, H. B. (2016). Investigation of factors influencing the hydrolysis of brewery waste activated sludge Desalin. Water Treat, 57, 25484–25493. https://doi.org/10.1080/19443994.2016.1157522

    Article  CAS  Google Scholar 

  58. Dahiya, S., Sarkar, O., Swamy, Y. V., & Mohan, S. V. (2015). Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresource Technology, 182, 103–113. https://doi.org/10.1016/j.biortech.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  59. Xing, Y. X., Huang, X., Wang, H. J., & Yu, J. H. (2022). Insight in the mechanism of alkali treatment methods effecting dewatered sludge fermentation from microbial characteristics. Journal of Environmental Chemical Engineering., 10, 108861. https://doi.org/10.1016/j.jece.2022.108861

    Article  CAS  Google Scholar 

  60. Zhu, X. Y., Li, P. & Ju, F. (2024). Microbiome dynamics and products profiles of biowaste fermentation under different organic loads and additives. Engineering in Life Sciences, 24. https://doi.org/10.1002/elsc.202300216.

  61. Yin, J., Yu, X. Q., Zhang, Y. E., Shen, D. S., Wang, M. Z., Long, Y. Y., & Chen, T. (2016). Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum. Bioresource Technology, 216, 996–1003. https://doi.org/10.1016/j.biortech.2016.06.053

    Article  CAS  PubMed  Google Scholar 

  62. Liu, C., Ren, L. H., Yan, B. H., Luo, L., Zhang, J. C., & Awasthi, M. K. (2021). Electron transfer and mechanism of energy production among syntrophic bacteria during acidogenic fermentation: A review. Bioresource Technology, 323, 124637. https://doi.org/10.1016/j.biortech.2020.124637

    Article  CAS  PubMed  Google Scholar 

  63. Ni, B. J., Liu, H., Nie, Y. Q., Zeng, R. J., Du, G. C., Chen, J. A., & Yu, H. Q. (2011). Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches. Biotechnology and Bioengineering, 108, 345–353. https://doi.org/10.1002/bit.22908

    Article  CAS  PubMed  Google Scholar 

  64. Zhou, Y. Q., Huang, X., Ma, S. L., & He, J. H. (2023). Thermo-alkaline pretreatment of excess sludge: Effects of temperature on volatile fatty acids accumulation and microbial community. Journal of Environmental Management, 342, 118244. https://doi.org/10.1016/j.jenvman.2023.118244

    Article  CAS  PubMed  Google Scholar 

  65. Lv, J. H., Yao, L. R., Wu, N., Kou, S. Z., Liu, M., Fan, B. J., Zhao, W., Bai, Y., & Xing, Z. (2023). An efficient strategy for improving short-chain fatty acid production from sludge anaerobic fermentation with calcium carbide residue addition. Journal of Environmental Chemical Engineering, 11, 110376. https://doi.org/10.1016/j.jece.2023.110376

    Article  CAS  Google Scholar 

  66. Liu, X. R., Du, M. T., Yang, J. N., Wu, Y. X., Xu, Q. X., Wang, D. B., Yang, Q., Yang, G. J., & Li, X. M. (2020). Sulfite serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Chemical Engineering Journal, 385, 123991. https://doi.org/10.1016/j.cej.2019.123991

    Article  CAS  Google Scholar 

  67. Liu, H. L., Zhen, F., Wu, D., Wang, Z., Kong, X. Y., Li, Y., Xing, T., & Sun, Y. M. (2023). Co-production of lactate and volatile fatty acids through repeated-batch fermentation of fruit and vegetable waste: Effect of cycle time and replacement ratio. Bioresource Technology., 387, 129678. https://doi.org/10.1016/j.biortech.2023.129678

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, Y. K., Xue, J. J., Chen, Y., Huang, X. F., Liu, Z. L., Zhong, H., Xie, Q., Luo, Y., Wang, Q. G., & Wang, C. (2024). Modulation of performance, plasma constituents, small intestinal morphology, and cecum microbiota in growing geese by dietary citric acid supplementation. Animals, 14, 660. https://doi.org/10.3390/ani14050660

    Article  PubMed  PubMed Central  Google Scholar 

  69. He, D. D., Xiao, J., Wang, D. B., Liu, X. R., Li, Y. F., Fu, Q. Z., Li, C. X., Yang, Q., Liu, Y. W., & Ni, B. J. (2021). Understanding and regulating the impact of tetracycline to the anaerobic fermentation of waste activated sludge. Journal of Cleaner Production, 313, 127929. https://doi.org/10.1016/j.jclepro.2021.127929

    Article  CAS  Google Scholar 

  70. Tiong, Y. W., Sharma, P., Tian, H. L., Tsui, T. H., Lam, H. T., & Tong, Y. W. (2023). Startup performance and microbial communities of a decentralized anaerobic digestion of food waste. Chemosphere, 318, 137937. https://doi.org/10.1016/j.chemosphere.2023.137937

    Article  CAS  PubMed  Google Scholar 

  71. Liu, M. X., Li, Y. Y., Zheng, Z. H., Li, L., Hao, J. J., Liu, S., Wang, Y. Y., & Qi, C. R. (2024). Ordered changes in methane production performance and metabolic pathway transition of methanogenic archaea under gradually increasing sodium propionate stress intensity. Fermentation-Basel, 10, 201. https://doi.org/10.3390/fermentation10040201

    Article  CAS  Google Scholar 

  72. Smit, S. M., Mameren, T. D., Zwet, K., Veelen, H. P. J., Gagliano, M. C., Strik, D., & Bitter, J. H. (2024). Integration of biocompatible hydrogen evolution catalyst developed from metal-mix solutions with microbial electrosynthesis. Bioelectrochemistry, 158, 108724. https://doi.org/10.1016/j.bioelechem.2024.108724

    Article  CAS  PubMed  Google Scholar 

  73. A. Poehlein, N. Yutin, R. Daniel and M.Y. Galperin (2017) Proposal for the reclassification of obligately purine-fermenting bacteria Clostridium acidurici (Barker 1938) and Clostridium purinilyticum (Durre et al. 1981) as Gottschalkia acidurici gen. nov. comb. nov. and Gottschalkia purinilytica comb. nov. and of Eubacterium angustum (Beuscher and Andreesen 1985) as Andreesenia angusta gen. nov. comb. nov. in the family Gottschalkiaceae fam. nov. (vol 67, pg 2711, 2017). International Journal of Systematic and Evolutionary Microbiology, 67, 4287–4288, https://doi.org/10.1099/ijsem.0.002362.

  74. Cao, F., Guo, X. J., Yin, X. Y., Cui, Z. X., Liu, S. L., & Zhou, A. J. (2023). Ferrous-iron-activated sulfite-accelerated short-chain fatty acid production from waste-activated sludge fermentation: Process assessment and underlying mechanism. Fermentation-Basel, 9, 20. https://doi.org/10.3390/fermentation9010020

    Article  CAS  Google Scholar 

  75. Li, S. W., Kim, M., Song, Y. E., Son, S. H., Kim, H. I., Jae, J., Yan, Q., Fei, Q., & Kim, J. R. (2024). Housing of electrosynthetic biofilms using a roll-up carbon veil electrode increases CO2 conversion and faradaic efficiency in microbial electrosynthesis cells. Bioresource Technology, 393, 130157. https://doi.org/10.1016/j.biortech.2023.130157

    Article  CAS  PubMed  Google Scholar 

  76. Wang, J., Liu, G. H., Shao, Y. T., Zhang, Q., Wei, Q., Luo, F. Z., Sun, W. Z., Liu, S., Liu, Y. C., Zhang, J. B., Qi, L., & Wang, H. C. (2021). Regulation of anaerobic fermentation for producing short-chain fatty acids from primary sludge in WWTPs by different alkalis. Journal of Environmental Management., 299, 113623. https://doi.org/10.1016/j.jenvman.2021.113623

    Article  CAS  PubMed  Google Scholar 

  77. Zhou, Q., Sun, H. M., Jia, L. X., & Wu, W. Z. (2022). Simultaneously advanced removal of nitrogen and phosphorus in a biofilter packed with ZVI/PHBV/sawdust composite: Deciphering the succession of dominant bacteria and keystone species. Bioresource Technology, 347, 126724. https://doi.org/10.1016/j.biortech.2022.126724

    Article  CAS  PubMed  Google Scholar 

  78. Liu, J. B., Wang, L., Lu, D., Wu, D., Zhang, P. Y., & Zhou, Y. (2023). Quorum quenching enhanced methane production in anaerobic systems-performance and mechanisms. Water Research, 235, 119841. https://doi.org/10.1016/j.watres.2023.119841

    Article  CAS  PubMed  Google Scholar 

  79. Ai, X. H., Xin, X. D., Wei, W. X., Xie, J. Q., & Hong, J. M. (2022). Polysorbate-80 pretreatment contributing to volatile fatty acids production associated microbial interactions via acidogenic fermentation of waste activated sludge. Bioresource Technology, 345, 126488. https://doi.org/10.1016/j.biortech.2021.126488

    Article  CAS  PubMed  Google Scholar 

  80. Lv, L. Y., Feng, C. D., Li, W. G., Ren, Z. J., Wang, P. F., Liu, X. Y., Gao, W. F., Sun, L., & Zhang, G. M. (2023). Accelerated performance recovery of anaerobic granular sludge after temperature shock: Rapid construction of protective barriers (EPS) to optimize microbial community composition base on quorum sensing. Journal of Cleaner Production, 392, 136243. https://doi.org/10.1016/j.jclepro.2023.136243

    Article  CAS  Google Scholar 

  81. Xu, Y. H., Meng, X. H., Song, Y. N., Lv, X. Y., & Sun, Y. (2023). Effects of different concentrations of butyrate on microbial community construction and metabolic pathways in anaerobic digestion. Bioresource Technology, 377, 128845. https://doi.org/10.1016/j.biortech.2023.128845

    Article  CAS  PubMed  Google Scholar 

  82. Zheng, T. L., Bian, C. L., Xiao, B. Y., Chen, X. Y., Wang, J., & Li, L. (2023). Performance enhancement of integrating microbial electrolysis cell on two-stage anaerobic digestion of food waste: Electro-methanogenic stage versus electro-two stages. Bioresource Technology., 386, 129562. https://doi.org/10.1016/j.biortech.2023.129562

    Article  CAS  PubMed  Google Scholar 

  83. Liu, J. B., Zhang, L., Zhang, P. Y., & Zhou, Y. (2020). Quorum quenching altered microbial diversity and activity of anaerobic membrane bioreactor (AnMBR) and enhanced methane generation. Bioresource Technology., 315, 123862. https://doi.org/10.1016/j.biortech.2020.123862

    Article  CAS  PubMed  Google Scholar 

  84. Gao, R. T., Peng, Y. Z., Li, J. W., Liu, Y., Deng, L. Y., Li, W. Y., & Kao, C. K. (2022). Mainstream partial denitrification-anammox (PD/A) for municipal sewage treatment from moderate to low temperature: Reactor performance and bacterial structure. Science of the Total Environment, 806, 150267. https://doi.org/10.1016/j.scitotenv.2021.150267

    Article  CAS  PubMed  Google Scholar 

  85. Wen, B., Liu, J. H., Zhang, Y., Zhang, H. R., Gao, J. Z., & Chen, Z. Z. (2020). Community structure and functional diversity of the plastisphere in aquaculture waters: Does plastic color matter? Science of the Total Environment, 740, 140082.

    Article  CAS  PubMed  Google Scholar 

  86. Lyu, W. L., Song, Q., Shi, J., Wang, H. Y., Wang, B., & Hu, X. L. (2021). Weak magnetic field affected microbial communities and function in the A/O/A sequencing batch reactors for enhanced aerobic granulation. Separation and Purification Technology, 266, 118537. https://doi.org/10.1016/j.seppur.2021.118537

    Article  CAS  Google Scholar 

  87. Oswald, K., Graf, J. S., Littmann, S., Tienken, D., Brand, A., Wehrli, B., Albertsen, M., Daims, H., Wagner, M., Kuypers, M. M. M., Schubert, C. J., & Milucka, J. (2017). Crenothrix are major methane consumers in stratified lakes. The ISME Journal, 11, 2124–2140. https://doi.org/10.1038/ismej.2017.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Sichuan Provincial Natural Science Foundation (2023 NSFSC0343) and the Chengdu Science and Technology Program (2022-YF05-01172-SN).

Author information

Authors and Affiliations

Authors

Contributions

XFL: investigation, formal analysis, data curation, writing—original draft. WSZ: investigation. SQ: methodology, conceptualization. JFZ: formal analysis, data curation. ZYS: methodology, conceptualization, writing—review and editing. YQT: project administration, writing—review and editing.

Corresponding author

Correspondence to Zhao-Yong Sun.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publication

All the authors mutually agreed that the work should be published in Applied Biochemistry and Biotechnology.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 828 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XF., Zhang, WS., Qi, S. et al. Anaerobic Volatile Fatty Acid Production Performance and Microbial Community Characteristics from Solid Fraction of Alkali-Thermal Treated Waste-Activated Sludge: Focusing on the Effects of Different pH Conditions. Appl Biochem Biotechnol 197, 4565–4585 (2025). https://doi.org/10.1007/s12010-025-05244-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12010-025-05244-x

Keywords