Abstract
The waste-activated sludge (WAS) is rich in organic matter and various nutrients. Alkali-thermal hydrolysis of WAS can be employed to produce a liquid fertilizer with high plant-promoting nutrient content. However, the solid fraction (abbreviated as SF) generated from this process requires further treatment. Although there have been studies on the recovery of plant nutrients from WAS via alkali-thermal hydrolysis, researches on the safe treatment of the SF are limited. This study aims to explore the potential and the microbiological mechanisms on anaerobic volatile fatty acid (VFA) production from the SF under different pH conditions (i.e., 6, 7, 8, 9, and 10). The results showed that the VFA yield was highest at pH 6, reaching 4095.84 mg COD/L (i.e., 0.16 g-COD/g-volatile solids), followed by pH 10, 8, 7, and 9, with acetate being the main component (> 56%). Microbial community analysis revealed that members in phyla Firmicutes and Bacteroidota constituted the main acid-producing microbial community during the anaerobic fermentation of SF. Furthermore, different pH conditions influenced the yield and composition of VFAs by altering the structure and functions of microbial community. This research provides a new direction for the fully resourceful utilization of sludge by producing both liquid fertilizer and VFAs from WAS.
Similar content being viewed by others
Data Availability
Data will be made available on request.
References
Lu, D., Qian, T. T., Le, C. C., Pan, C. Z., Cao, S. B., Ng, W. J., & Zhou, Y. (2021). Insights into thermal hydrolyzed sludge liquor—Identification of plant-growth-promoting compounds. Journal of Hazardous Materials, 403, 123650. https://doi.org/10.1016/j.jhazmat.2020.123650
Song, X. L., Shi, Z. H., Li, X. F., Wang, X. H., & Ren, Y. P. (2019). Fate of proteins of waste activated sludge during thermal alkali pretreatment in terms of sludge protein recovery. Frontiers of Environmental Science & Engineering, 13, 25. https://doi.org/10.1007/s11783-019-1114-7
Gu, J. Y., Zhou, H. H., Wang, J., Feng, K., Xie, G. J., Liu, B. F., & Xing, D. F. (2024). Sequential recovery of protein and ammonium from waste sludge and functional metabolism in a combined process of nutrient recovery electro-fermentation (NREF). Resources, Conservation and Recycling, 203, 107444. https://doi.org/10.1016/j.resconrec.2024.107444
Gao, J. L., Weng, W., Yan, Y. X., Wang, Y. C., & Wang, Q. K. (2020). Comparison of protein extraction methods from excess activated sludge. Chemosphere, 249, 126107. https://doi.org/10.1016/j.chemosphere.2020.126107
Wei, L. L., Wang, K., Kong, X. J., Liu, G. Y., Cui, S., Zhao, Q. L., & Cui, F. Y. (2016). Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge. Frontiers of Environmental Science & Engineering, 10, 327–335. https://doi.org/10.1007/s11783-014-0763-9
Arvaniti, O. S., Asimakopoulos, A. G., Dasenaki, M. E., Ventouri, E. I., Stasinakis, A. S., & Thomaidis, N. S. (2014). Simultaneous determination of eighteen perfluorinated compounds in dissolved and particulate phases of wastewater, and in sewage sludge by liquid chromatography-tandem mass spectrometry. Analytical Methods, 6, 1341–1349. https://doi.org/10.1039/c3ay42015a
Hui, W. L., Zhou, J. T., & Jin, R. F. (2022). Proteins recovery from waste activated sludge by thermal alkaline treatment. Journal of Environmental Chemical Engineering, 10, 107311. https://doi.org/10.1016/j.jece.2022.107311
Wang, D. B., Zeng, G. M., Chen, Y. G., & Li, X. M. (2015). Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge. Water Research, 73, 311–322. https://doi.org/10.1016/j.watres.2015.01.017
Xu, Q. X., Huang, Q. S., Wei, W., Sun, J., Dai, X. H., & Ni, B. J. (2020). Improving the treatment of waste activated sludge using calcium peroxide. Water Research, 187, 116440. https://doi.org/10.1016/j.watres.2020.116440
Wilén, B. M., Jin, B., & Lant, P. (2003). The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Research, 37, 2127–2139. https://doi.org/10.1016/S0043-1354(02)00629-2
Zhang, Q., Cheng, X. S., Wang, F., Fang, S. Y., Zhang, L., Huang, W. X., Fang, F., Cao, J. S., & Luo, J. Y. (2022). Unveiling the behaviors and mechanisms of percarbonate on the sludge anaerobic fermentation for volatile fatty acids production. Science of the Total Environment, 838, 156054. https://doi.org/10.1016/j.scitotenv.2022.156054
Alloul, A., Ganigué, R., Spiller, M., Meerburg, F., Cagnetta, C., Rabaey, K., & S.E. (2018). Vlaeminck Capture-ferment-upgrade: A three-step approach for the valorization of sewage organics as commodities. Environmental Science & Technology, 52, 6729–6742. https://doi.org/10.1021/acs.est.7b05712
Ai, X. H., Xin, X. D., Xie, J. Q., Lai, D. R., & Hong, J. M. (2024). Effects of polysorbate-20 via associated microbial interactions on facilitating the production of volatile fatty acids during anaerobic fermentation of waste activated sludge. Journal of Environmental Chemical Engineering, 12, 113476. https://doi.org/10.1016/j.jece.2024.113476
Fang, W., Zhang, X. D., Zhang, P. Y., Wan, J. J., Guo, H. X., Ghasimi, D. S. M., Morera, X. C., & Zhang, T. (2020). Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge. Journal of Environmental Sciences, 87, 93–111. https://doi.org/10.1016/j.jes.2019.05.027
Liu, H., Wang, J., Liu, X. L., Fu, B., Chen, J., & Yu, H. Q. (2012). Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Research, 46, 799–807. https://doi.org/10.1016/j.watres.2011.11.047
Latif, M. A., Mehta, C. M., & Batstone, D. J. (2017). Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res., 113, 42–49. https://doi.org/10.1016/j.watres.2017.02.002
Liang, T., Elmaadawy, K., Liu, B. C., Hu, J. P., Hou, H. J., & Yang, J. K. (2021). Anaerobic fermentation of waste activated sludge for volatile fatty acid production: Recent updates of pretreatment methods and the potential effect of humic and nutrients substances, Process Saf. Environmental protection, 145, 321–339. https://doi.org/10.1016/j.psep.2020.08.010
Carrère, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenès, J. P., Steyer, J. P., & Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials, 183, 1–15. https://doi.org/10.1016/j.jhazmat.2010.06.129
Xin, X. D., She, Y. C., & Hong, J. M. (2021). Insights into microbial interaction profiles contributing to volatile fatty acids production via acidogenic fermentation of waste activated sludge assisted by calcium oxide pretreatment. Bioresource Technology, 320, 124287. https://doi.org/10.1016/j.actatropica.2020.124287
Zhang, C. S., Su, H. J., Baeyens, J., & Tan, T. W. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable Sustainable Energy Rev., 38, 383–392. https://doi.org/10.1016/j.rser.2014.05.038
Rughoonundun, H., Mohee, R., & Holtzapple, M. T. (2012). Influence of carbon-to-nitrogen ratio on the mixed-acid fermentation of wastewater sludge and pretreated bagasse. Bioresource Technology, 112, 91–97. https://doi.org/10.1016/j.biortech.2012.02.081
Devlin, D. C., Esteves, S. R. R., Dinsdale, R. M., & Guwy, A. J. (2011). The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresource Technology, 102, 4076–4082. https://doi.org/10.1016/j.biortech.2010.12.043
Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W., & Lee, J. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. Journal of Bioscience and Bioengineering, 95, 271–275. https://doi.org/10.1016/S1389-1723(03)80028-2
Liu, Y., Zhao, J. W., Li, X. M., Wang, D. B., Yang, Q., & Zeng, G. M. (2018). Synergistic effect of free nitrite acid integrated with biosurfactant alkyl polyglucose on sludge anaerobic fermentation. Waste Management, 78, 310–317. https://doi.org/10.1016/j.wasman.2018.05.053
Wu, Y. Q., & Song, K. (2019). Effect of thermal activated peroxydisulfate pretreatment on short-chain fatty acids production from waste activated sludge anaerobic fermentation. Bioresource Technology, 292, 121977. https://doi.org/10.1016/j.biortech.2019.121977
Yuan, Y. Y., Hu, X. Y., Chen, H. B., Zhou, Y. Y., Zhou, Y. F., & Wang, D. B. (2019). Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Science of the Total Environment, 694, 133741. https://doi.org/10.1016/j.scitotenv.2019.133741
Yang, B. Q., Pan, Q., Liu, Q. Y., & Pan, X. J. (2023). Damage mechanisms of sludge flocs and cell structures by different pretreatment methods. Environmental Technology & Innovation, 30, 103134. https://doi.org/10.1016/j.eti.2023.103134
Li, Z. P., Tian, Y., Ding, Y., Wang, H. Y., & Chen, L. (2013). Contribution of extracellular polymeric substances (EPS) and their subfractions to the sludge aggregation in membrane bioreactor coupled with worm reactor. Bioresource Technology, 144, 328–336. https://doi.org/10.1016/j.biortech.2013.06.127
Gao, J. L., Li, T. T., Yan, Y. X., Geng, G., & Li, Z. (2022). Protein extraction from different sludge types by alkaline-thermal hydrolysis Desalin. Water Treat, 262, 283–289. https://doi.org/10.5004/dwt.2022.28436
Tang, Y. F., Xie, H., Sun, J., Li, X. O., Zhang, Y., & Dai, X. H. (2022). Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants. Water Research, 211, 118036. https://doi.org/10.1016/j.watres.2021.118036
Fang, W., Zhang, R., Yang, W. J., Spanjers, H., & Zhang, P. Y. (2024). A novel strategy for waste activated sludge treatment: Recovery of structural extracellular polymeric substances and fermentative production of volatile fatty acids. Water Research, 266, 122421. https://doi.org/10.1016/j.watres.2024.122421
da Fonseca, Y. A., Barreto, E. D., Lomar, P. F., Silva, S. D., Gurgel, L. V. A., & Baêta, B. E. L. (2024). Biobased production of volatile fatty acids from brewer’s spent grain: Optimization and insights into the impact of protein extraction on process performance. Biochemical Engineering Journal, 203, 109218. https://doi.org/10.1016/j.bej.2024.109218
Chen, Y. G., Luo, J. Y., Yan, Y. Y., & Feng, L. Y. (2013). Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Applied Energy, 102, 1197–1204. https://doi.org/10.1016/j.apenergy.2012.06.056
Cui, H. W., Chen, Y. T., Chen, Y. W., Dolfing, J., Li, B. Y., Sun, Z. Y., Tang, Y. Q., Huang, Y. L., Dai, W. Y., Cui, Q. J., Cheng, X., & Jiao, S. B. (2024). Metagenomic insights into microbial mechanism of pH shifts enhancing short-chain carboxylic acid production from fruit waste anaerobic fermentation. Industrial Crops and Products., 222, 119520. https://doi.org/10.1016/j.indcrop.2024.119520
Gao, J. L., Wang, Y. C., Yan, Y. X., Li, Z., & Chen, M. L. (2020). Protein extraction from excess sludge by alkali-thermal hydrolysis. Environmental Science and Pollution Research, 27, 8628–8637. https://doi.org/10.1007/s11356-019-07188-2
Wang, L. G., Trujillo, S., & Liu, H. (2019). Selective inhibition of methanogenesis by acetylene in single chamber microbial electrolysis cells. Bioresource Technology, 274, 557–560. https://doi.org/10.1016/j.biortech.2018.12.039
Li, B. Y., Xia, Z. Y., Gou, M., Sun, Z. Y., Huang, Y. L., Jiao, S. B., Dai, W. Y., & Tang, Y. Q. (2022). Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates: Performance and microbial community characteristics. Bioresource Technology, 346, 126648. https://doi.org/10.1016/j.biortech.2021.126648
Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G., & Bailey, M. J. (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66, 5488–5491. https://doi.org/10.1128/AEM.66.12.5488-5491.2000
He, S., Deng, Q. H., Xian, P., Li, Z. T., Tan, S. F., & Liu, Q. (2019). Volatile fatty acid (VFA) and methane generation from sewage sludge and banana straw: Influence of pH and two-phase anaerobic fermentation Desalin. Water Treat, 152, 23872. https://doi.org/10.5004/dwt.2019.23872
Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044
Roghair, M., Hoogstad, T., Strik, D., Plugge, C. M., Timmers, P. H. A., Weusthuis, R. A., Bruins, M. E., & Buisman, C. J. N. (2018). Controlling ethanol use in chain elongation by CO2 loading rate. Environmental Science & Technology, 52, 1496–1505. https://doi.org/10.1021/acs.est.7b04904
Yang, G. J., Xu, Q. X., Wang, D. B., Tang, L., Xia, J. F., Wang, Q. L., Zeng, G. M., Yang, Q., & Li, X. M. (2018). Free ammonia-based sludge treatment reduces sludge production in the wastewater treatment process. Chemosphere, 205, 484–492. https://doi.org/10.1016/j.chemosphere.2018.04.140
Zhao, J. W., Yang, Q., Li, X. M., Wang, D. B., An, H. X., Xie, T., Xu, Q. X., Deng, Y. C., & Zeng, G. M. (2015). Effect of initial pH on short chain fatty acid production during the anaerobic fermentation of membrane bioreactor sludge enhanced by alkyl polyglcoside. International Biodeterioration & Biodegradation, 104, 283–289. https://doi.org/10.1016/j.ibiod.2015.06.012
Wang, K., Yin, J., Shen, D. S., & Li, N. (2014). Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresource Technology, 161, 395–401. https://doi.org/10.1016/j.biortech.2014.03.088
Ma, H. J., Liu, H., Zhang, L. H., Yang, M., Fu, B., & Liu, H. B. (2017). Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation. Biotechnology for Biofuels and Bioproducts, 10, 137. https://doi.org/10.1186/s13068-017-0821-1
Li, X. K., Liu, G. G., Liu, S. L., Ma, K. L., & Meng, L. W. (2018). The relationship between volatile fatty acids accumulation and microbial community succession triggered by excess sludge alkaline fermentation. Journal of Environmental Management, 223, 85–91. https://doi.org/10.1016/j.jenvman.2018.06.002
Tian, L. X., Guo, H. X., Wang, Y. F., Su, Z. X., Zhu, T. T., & Liu, Y. W. (2022). Insights into Fe(II)-sulfite-based pretreatment strategy for enhancing short-chain fatty acids (SCFAs) production from waste activated sludge: Performance and mechanism. Bioresource Technology, 353, 127143. https://doi.org/10.1016/j.biortech.2022.127143
Chen, H. J., Liu, F., Wang, Q. F., Zhen, X., Wang, B., Wang, S. J., Zhang, J., Su, L. B., Wang, Z. M., & Zhu, S. N. (2022). Production of volatile fatty acids concomitant with phosphorus removal and lignin recovery by co-fermentation of waste activated sludge and black liquor. Journal of Cleaner Production, 355, 131806. https://doi.org/10.1016/j.jclepro.2022.131806
Huang, L., Chen, B., Pistolozzi, M., Wu, Z. Q., & Wang, J. F. (2014). Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge. Bioresource Technology, 153, 87–94. https://doi.org/10.1016/j.biortech.2013.11.049
Muñoz, A. C., Olsson, J., Malovanyy, A., Baresel, C., Machamada-Devaiah, N., & Schnürer, A. (2024). Impact of thermal hydrolysis on VFA-based carbon source production from fermentation of sludge and digestate for denitrification: Experimentation and upscaling implications. Water Research, 266, 122426. https://doi.org/10.1016/j.watres.2024.122426
Vidal-Antich, C., Perez-Esteban, N., Astals, S., Peces, M., Mata-Alvarez, J., & Dosta, J. (2021). Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production. Science of the Total Environment, 757, 143763. https://doi.org/10.1016/j.scitotenv.2020.143763
Wang, Q. H., Xin, W. Z., Shao, Z. G., Usman, M., Li, J., Shang, P. Y., Kou, Y., Din, M. G. E., & Chen, C. M. (2023). Role of pretreatment type and microbial mechanisms on enhancing volatile fatty acids production during anaerobic fermentation of refinery waste activated sludge. Bioresource Technology, 381, 129122. https://doi.org/10.1016/j.biortech.2023.129122
Zhou, G. R., Huang, X., Zhang, S., Xiang, Z. Z., Wei, J., Ma, S. L., Teng, X. D., & Zheng, Z. H. (2024). Volatile fatty acids (VFAs) production from sludge and chicken manure anaerobic co-fermentation: Effects of mixing ratio and microbial mechanisms. Journal of Environmental Chemical Engineering., 12, 114014. https://doi.org/10.1016/j.jece.2024.114014
Cui, L. Y., Hu, Y., Zeng, R. C., Yang, Y. X., Sun, D. D., Li, S. Q., Zhang, F., & Han, E. H. (2017). New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. Journal of Materials Science & Technology, 33, 971–986. https://doi.org/10.1016/j.jmst.2017.01.005
Liu, X., Yang, H. T., Xiong, P., Li, W. T., Huang, E. H., & Zheng, Y. F. (2019). Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions. Corrosion Science, 157, 205–219. https://doi.org/10.1016/j.corsci.2019.05.018
Li, X. M., Zhao, J. W., Wang, D. B., Yang, Q., Xu, Q. X., Deng, Y. C., Yang, W. Q., & Zeng, G. M. (2016). An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid. Chemosphere, 144, 160–167. https://doi.org/10.1016/j.chemosphere.2015.08.076
Deng, F., Li, P., Guan, X. J., & Zhu, H. B. (2016). Investigation of factors influencing the hydrolysis of brewery waste activated sludge Desalin. Water Treat, 57, 25484–25493. https://doi.org/10.1080/19443994.2016.1157522
Dahiya, S., Sarkar, O., Swamy, Y. V., & Mohan, S. V. (2015). Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresource Technology, 182, 103–113. https://doi.org/10.1016/j.biortech.2015.01.007
Xing, Y. X., Huang, X., Wang, H. J., & Yu, J. H. (2022). Insight in the mechanism of alkali treatment methods effecting dewatered sludge fermentation from microbial characteristics. Journal of Environmental Chemical Engineering., 10, 108861. https://doi.org/10.1016/j.jece.2022.108861
Zhu, X. Y., Li, P. & Ju, F. (2024). Microbiome dynamics and products profiles of biowaste fermentation under different organic loads and additives. Engineering in Life Sciences, 24. https://doi.org/10.1002/elsc.202300216.
Yin, J., Yu, X. Q., Zhang, Y. E., Shen, D. S., Wang, M. Z., Long, Y. Y., & Chen, T. (2016). Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum. Bioresource Technology, 216, 996–1003. https://doi.org/10.1016/j.biortech.2016.06.053
Liu, C., Ren, L. H., Yan, B. H., Luo, L., Zhang, J. C., & Awasthi, M. K. (2021). Electron transfer and mechanism of energy production among syntrophic bacteria during acidogenic fermentation: A review. Bioresource Technology, 323, 124637. https://doi.org/10.1016/j.biortech.2020.124637
Ni, B. J., Liu, H., Nie, Y. Q., Zeng, R. J., Du, G. C., Chen, J. A., & Yu, H. Q. (2011). Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches. Biotechnology and Bioengineering, 108, 345–353. https://doi.org/10.1002/bit.22908
Zhou, Y. Q., Huang, X., Ma, S. L., & He, J. H. (2023). Thermo-alkaline pretreatment of excess sludge: Effects of temperature on volatile fatty acids accumulation and microbial community. Journal of Environmental Management, 342, 118244. https://doi.org/10.1016/j.jenvman.2023.118244
Lv, J. H., Yao, L. R., Wu, N., Kou, S. Z., Liu, M., Fan, B. J., Zhao, W., Bai, Y., & Xing, Z. (2023). An efficient strategy for improving short-chain fatty acid production from sludge anaerobic fermentation with calcium carbide residue addition. Journal of Environmental Chemical Engineering, 11, 110376. https://doi.org/10.1016/j.jece.2023.110376
Liu, X. R., Du, M. T., Yang, J. N., Wu, Y. X., Xu, Q. X., Wang, D. B., Yang, Q., Yang, G. J., & Li, X. M. (2020). Sulfite serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Chemical Engineering Journal, 385, 123991. https://doi.org/10.1016/j.cej.2019.123991
Liu, H. L., Zhen, F., Wu, D., Wang, Z., Kong, X. Y., Li, Y., Xing, T., & Sun, Y. M. (2023). Co-production of lactate and volatile fatty acids through repeated-batch fermentation of fruit and vegetable waste: Effect of cycle time and replacement ratio. Bioresource Technology., 387, 129678. https://doi.org/10.1016/j.biortech.2023.129678
Zhang, Y. K., Xue, J. J., Chen, Y., Huang, X. F., Liu, Z. L., Zhong, H., Xie, Q., Luo, Y., Wang, Q. G., & Wang, C. (2024). Modulation of performance, plasma constituents, small intestinal morphology, and cecum microbiota in growing geese by dietary citric acid supplementation. Animals, 14, 660. https://doi.org/10.3390/ani14050660
He, D. D., Xiao, J., Wang, D. B., Liu, X. R., Li, Y. F., Fu, Q. Z., Li, C. X., Yang, Q., Liu, Y. W., & Ni, B. J. (2021). Understanding and regulating the impact of tetracycline to the anaerobic fermentation of waste activated sludge. Journal of Cleaner Production, 313, 127929. https://doi.org/10.1016/j.jclepro.2021.127929
Tiong, Y. W., Sharma, P., Tian, H. L., Tsui, T. H., Lam, H. T., & Tong, Y. W. (2023). Startup performance and microbial communities of a decentralized anaerobic digestion of food waste. Chemosphere, 318, 137937. https://doi.org/10.1016/j.chemosphere.2023.137937
Liu, M. X., Li, Y. Y., Zheng, Z. H., Li, L., Hao, J. J., Liu, S., Wang, Y. Y., & Qi, C. R. (2024). Ordered changes in methane production performance and metabolic pathway transition of methanogenic archaea under gradually increasing sodium propionate stress intensity. Fermentation-Basel, 10, 201. https://doi.org/10.3390/fermentation10040201
Smit, S. M., Mameren, T. D., Zwet, K., Veelen, H. P. J., Gagliano, M. C., Strik, D., & Bitter, J. H. (2024). Integration of biocompatible hydrogen evolution catalyst developed from metal-mix solutions with microbial electrosynthesis. Bioelectrochemistry, 158, 108724. https://doi.org/10.1016/j.bioelechem.2024.108724
A. Poehlein, N. Yutin, R. Daniel and M.Y. Galperin (2017) Proposal for the reclassification of obligately purine-fermenting bacteria Clostridium acidurici (Barker 1938) and Clostridium purinilyticum (Durre et al. 1981) as Gottschalkia acidurici gen. nov. comb. nov. and Gottschalkia purinilytica comb. nov. and of Eubacterium angustum (Beuscher and Andreesen 1985) as Andreesenia angusta gen. nov. comb. nov. in the family Gottschalkiaceae fam. nov. (vol 67, pg 2711, 2017). International Journal of Systematic and Evolutionary Microbiology, 67, 4287–4288, https://doi.org/10.1099/ijsem.0.002362.
Cao, F., Guo, X. J., Yin, X. Y., Cui, Z. X., Liu, S. L., & Zhou, A. J. (2023). Ferrous-iron-activated sulfite-accelerated short-chain fatty acid production from waste-activated sludge fermentation: Process assessment and underlying mechanism. Fermentation-Basel, 9, 20. https://doi.org/10.3390/fermentation9010020
Li, S. W., Kim, M., Song, Y. E., Son, S. H., Kim, H. I., Jae, J., Yan, Q., Fei, Q., & Kim, J. R. (2024). Housing of electrosynthetic biofilms using a roll-up carbon veil electrode increases CO2 conversion and faradaic efficiency in microbial electrosynthesis cells. Bioresource Technology, 393, 130157. https://doi.org/10.1016/j.biortech.2023.130157
Wang, J., Liu, G. H., Shao, Y. T., Zhang, Q., Wei, Q., Luo, F. Z., Sun, W. Z., Liu, S., Liu, Y. C., Zhang, J. B., Qi, L., & Wang, H. C. (2021). Regulation of anaerobic fermentation for producing short-chain fatty acids from primary sludge in WWTPs by different alkalis. Journal of Environmental Management., 299, 113623. https://doi.org/10.1016/j.jenvman.2021.113623
Zhou, Q., Sun, H. M., Jia, L. X., & Wu, W. Z. (2022). Simultaneously advanced removal of nitrogen and phosphorus in a biofilter packed with ZVI/PHBV/sawdust composite: Deciphering the succession of dominant bacteria and keystone species. Bioresource Technology, 347, 126724. https://doi.org/10.1016/j.biortech.2022.126724
Liu, J. B., Wang, L., Lu, D., Wu, D., Zhang, P. Y., & Zhou, Y. (2023). Quorum quenching enhanced methane production in anaerobic systems-performance and mechanisms. Water Research, 235, 119841. https://doi.org/10.1016/j.watres.2023.119841
Ai, X. H., Xin, X. D., Wei, W. X., Xie, J. Q., & Hong, J. M. (2022). Polysorbate-80 pretreatment contributing to volatile fatty acids production associated microbial interactions via acidogenic fermentation of waste activated sludge. Bioresource Technology, 345, 126488. https://doi.org/10.1016/j.biortech.2021.126488
Lv, L. Y., Feng, C. D., Li, W. G., Ren, Z. J., Wang, P. F., Liu, X. Y., Gao, W. F., Sun, L., & Zhang, G. M. (2023). Accelerated performance recovery of anaerobic granular sludge after temperature shock: Rapid construction of protective barriers (EPS) to optimize microbial community composition base on quorum sensing. Journal of Cleaner Production, 392, 136243. https://doi.org/10.1016/j.jclepro.2023.136243
Xu, Y. H., Meng, X. H., Song, Y. N., Lv, X. Y., & Sun, Y. (2023). Effects of different concentrations of butyrate on microbial community construction and metabolic pathways in anaerobic digestion. Bioresource Technology, 377, 128845. https://doi.org/10.1016/j.biortech.2023.128845
Zheng, T. L., Bian, C. L., Xiao, B. Y., Chen, X. Y., Wang, J., & Li, L. (2023). Performance enhancement of integrating microbial electrolysis cell on two-stage anaerobic digestion of food waste: Electro-methanogenic stage versus electro-two stages. Bioresource Technology., 386, 129562. https://doi.org/10.1016/j.biortech.2023.129562
Liu, J. B., Zhang, L., Zhang, P. Y., & Zhou, Y. (2020). Quorum quenching altered microbial diversity and activity of anaerobic membrane bioreactor (AnMBR) and enhanced methane generation. Bioresource Technology., 315, 123862. https://doi.org/10.1016/j.biortech.2020.123862
Gao, R. T., Peng, Y. Z., Li, J. W., Liu, Y., Deng, L. Y., Li, W. Y., & Kao, C. K. (2022). Mainstream partial denitrification-anammox (PD/A) for municipal sewage treatment from moderate to low temperature: Reactor performance and bacterial structure. Science of the Total Environment, 806, 150267. https://doi.org/10.1016/j.scitotenv.2021.150267
Wen, B., Liu, J. H., Zhang, Y., Zhang, H. R., Gao, J. Z., & Chen, Z. Z. (2020). Community structure and functional diversity of the plastisphere in aquaculture waters: Does plastic color matter? Science of the Total Environment, 740, 140082.
Lyu, W. L., Song, Q., Shi, J., Wang, H. Y., Wang, B., & Hu, X. L. (2021). Weak magnetic field affected microbial communities and function in the A/O/A sequencing batch reactors for enhanced aerobic granulation. Separation and Purification Technology, 266, 118537. https://doi.org/10.1016/j.seppur.2021.118537
Oswald, K., Graf, J. S., Littmann, S., Tienken, D., Brand, A., Wehrli, B., Albertsen, M., Daims, H., Wagner, M., Kuypers, M. M. M., Schubert, C. J., & Milucka, J. (2017). Crenothrix are major methane consumers in stratified lakes. The ISME Journal, 11, 2124–2140. https://doi.org/10.1038/ismej.2017.77
Funding
This work was supported by the Sichuan Provincial Natural Science Foundation (2023 NSFSC0343) and the Chengdu Science and Technology Program (2022-YF05-01172-SN).
Author information
Authors and Affiliations
Contributions
XFL: investigation, formal analysis, data curation, writing—original draft. WSZ: investigation. SQ: methodology, conceptualization. JFZ: formal analysis, data curation. ZYS: methodology, conceptualization, writing—review and editing. YQT: project administration, writing—review and editing.
Corresponding author
Ethics declarations
Ethics Approval
Not applicable.
Consent to Participate
Informed consent was obtained from all individual participants included in the study.
Consent to Publication
All the authors mutually agreed that the work should be published in Applied Biochemistry and Biotechnology.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, XF., Zhang, WS., Qi, S. et al. Anaerobic Volatile Fatty Acid Production Performance and Microbial Community Characteristics from Solid Fraction of Alkali-Thermal Treated Waste-Activated Sludge: Focusing on the Effects of Different pH Conditions. Appl Biochem Biotechnol 197, 4565–4585 (2025). https://doi.org/10.1007/s12010-025-05244-x
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s12010-025-05244-x