Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Alternative Seamless Cloning Strategies in Fusing Gene Fragments Based on Overlap-PCR

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gene fragment swapping and site-directed mutagenesis are commonly required in dissecting functions of gene domains. While there are many approaches for seamless fusion of different gene fragments, new methods are yet to be developed to offer higher efficiency, better simplicity, and more affordability. In this study, we showed that in most cases overlap-PCR was highly effective in creating site-directed mutagenesis, gene fragment deletion, and substitutions using RUS1 and RUS2 as example. While for cases where the overlap-PCR approach is not feasible due to complex secondary structure of gene fragments, a unique restriction site can be generated at the overlapped region of the primers through synonymous mutations. Then different gene fragments can be seamlessly fused through traditional restriction digestion and subsequent ligation. In conclusion, while the classical overlap-PCR is not feasible, the modified overlap-PCR approaches can provide effective and alternative ways to seamlessly fuse different gene fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cab:

Chlorophyll a/b binding protein

CTP:

Chloroplast transit peptide

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/ CRISPR-associated 9

DUF647:

Domain of unknown function 647

IDP:

Intrinsically disordered protein

IFPC:

Inverse Fusion PCR Cloning

iVEC:

In vivo Escherichia coli cloning

OEPRC:

Overlap extension PCR and recombination cloning

ORF:

Open reading frame

RUS :

ROOT UVB SENSITIVE

SLiCE:

Seamless ligation cloning extract

TOCC:

Tocopherol cyclase

References

  1. Leasure, C. D., Tong, H. Y., Yuen, G. G., Hou, X. W., Sun, X. F., & He, Z. H. (2009). ROOT UV-B SENSITIVE2 acts with ROOT UV-B SENSITIVE1 in a root ultraviolet B-sensing pathway. Plant Physiology, 150(4), 1902–1915.

    Article  CAS  Google Scholar 

  2. Yin, X. P., Ma, L. F., Pei, X. L., Du, P. F., Li, C. L., Xie, T., et al. (2015). Creation of functionally diverse chimerical α-glucosidase enzymes by swapping homologous gene fragments retrieved from soil DNA. Indian Journal of Microbiology, 55(1), 114–117.

    Article  CAS  Google Scholar 

  3. Akama, K., Akter, N., Endo, H., Kanesaki, M., Endo, M., & Toki, S. (2020). An in vivo targeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3 (OsGAD3) increases γ-aminobutyric acid content in grains. Rice, 13(1), 20.

    Article  Google Scholar 

  4. Sun, J. J., Wang, W., Ying, Y., & Hao, J. H. (2020). A novel glucose-tolerant GH1 β-glucosidase and improvement of its glucose tolerance using site-directed mutation. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-020-03373-z.

    Article  PubMed  Google Scholar 

  5. Wang, J. Y., Yu, S. Y., Li, X. Y., Feng, F. J., & Lu, L. (2020). High-level expression of Bacillus amyloliquefaciens laccase and construction of its chimeric variant with improved stability by domain substitution. Bioprocess and Biosystems Engineering, 43(3), 403–411.

    Article  CAS  Google Scholar 

  6. Lu, Q. (2005). Seamless cloning and gene fusion. TRENDS in Biotechnology, 23(4), 199–207.

    Article  CAS  Google Scholar 

  7. Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A., III., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6, 343–345.

    Article  CAS  Google Scholar 

  8. Walhout, A. J., Temple, G. F., Brasch, M. A., Hartley, J. L., Lorson, M. A., van den Heuvel, S., & Vidal, M. (2000). GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. Methods in Enzymology, 328, 575–592.

    Article  CAS  Google Scholar 

  9. Fernandes, S., & Tijssen, P. (2009). Seamless cloning and domain swapping of synthetic and complex DNA. Analytical Biochemistry, 385(1), 171–173.

    Article  CAS  Google Scholar 

  10. Padgett, K. A., & Sorge, J. A. (1996). Creating seamless junctions independent of restriction sites in PCR cloning. Gene, 168(1), 31–35.

    Article  CAS  Google Scholar 

  11. Li, M. Z., & Elledge, S. J. (2007). Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nature Methods, 4, 251–256.

    Article  CAS  Google Scholar 

  12. Motohashi, K. (2015). A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis. BMC Biotechnology, 15, 47.

    Article  Google Scholar 

  13. Raman, M., & Martin, K. (2014). One solution for cloning and mutagenesis In-Fusion (R) HD cloning plus. Nature Methods, 11(9), III–V.

    Article  CAS  Google Scholar 

  14. Lovett, S. T., Hurley, R. L., Sutera, V. A., Aubuchon, R. H., & Lebedeva, M. A. (2002). Crossing over between regions of limited homology in Escherichia coli: RecA-dependent and RecA-independent pathways. Genetics, 160(3), 851–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shimanuki, M., Sonoki, T., Hosoi, H., Watanuki, J., Murata, S., Kawakami, K., et al. (2013). Molecular cloning of IG lambda rearrangements using long-distance inverse PCR (LDI-PCR). European Journal of Haematology, 90(1), 59–67.

    Article  CAS  Google Scholar 

  16. Higuchi, R., Krummel, B., & Saiki, R. K. (2008). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Research, 16(15), 7351–7367.

    Article  Google Scholar 

  17. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., & Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77(1), 51–59.

    Article  CAS  Google Scholar 

  18. Spiliotis, M. (2012). Inverse fusion PCR cloning. PLoS ONE, 7(4), e35407.

    Article  CAS  Google Scholar 

  19. Liu, C. J., Jiang, H., Wu, L., Zhu, L. Y., Meng, E., & Zhang, D. Y. (2017). OEPR cloning: an efficient and seamless cloning strategy for large- and multi-fragments. Scientific Reports, 7, 44648.

    Article  Google Scholar 

  20. Luo, Z. X., Wang, S. H., Jiao, B. L., Yuan, D., Dai, D. M., Wang, L. X., et al. (2018). Gene cloning and seamless site-directed mutagenesis using single-strand annealing (SSA). Applied Microbiology and Biotechnology, 102(23), 10119–10126.

    Article  CAS  Google Scholar 

  21. Shankarappa, R. (2001). Introduction of restriction enzyme recognition sequences by silent mutation. Current protocols in molecular biology. https://doi.org/10.1002/0471142727.mba03es35.

    Article  PubMed  Google Scholar 

  22. Tong, H. Y., Leasure, C. D., Hou, X. W., Yuen, G. G., Briggs, W., & He, Z. H. (2008). Role of root UV-B sensing in Arabidopsis early seedling development. Proceedings of the National Academy of Sciences of the United States of America, 105(52), 21039–21044.

    Article  CAS  Google Scholar 

  23. Ge, L., Peer, W., Robert, S., Swarup, R., Ye, S., Prigge, M., et al. (2010). Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1 is required for polar auxin transport. The Plant Cell, 22(6), 1749–1761.

    Article  CAS  Google Scholar 

  24. Yu, H., Karampelias, M., Robert, S., Peer, W. A., Swarup, R., Ye, S. Q., et al. (2013). ROOT ULTRAVIOLET B-SENSITIVE1/WEAK AUXIN RESPONSE3 is essential for polar auxin transport in Arabidopsis. Plant Physiology, 162(2), 965–976.

    Article  CAS  Google Scholar 

  25. Hou, X. W., Tong, H. Y., Selby, J., DeWitt, J., Peng, X. X., & He, Z. H. (2005). Involvement of a cell wall-associated kinase, WAKL4 Arabidopsis mineral responses. Plant Physiology, 139(4), 1704–1716.

    Article  CAS  Google Scholar 

  26. Zhang, A. L., Zhang, L., Zhang, L. Z., Chen, H., Lan, X. Y., Zhang, C. L., & Zhang, C. F. (2010). An efficient and rapid method for gene cloning from eukaryotic genomic DNA using overlap-PCR: With an example of cattle Ghrelin gene. Biochemical and Biophysical Research Communications, 391(3), 1490–1493.

    Article  CAS  Google Scholar 

  27. Liang, Y. P., Zeng, X. Y., Peng, X. X., & Hou, X. W. (2018). Arabidopsis glutamate:glyoxylate aminotransferase 1 (Ler) mutants generated by CRISPR/Cas9 and their characteristics. Transgenic Research, 27(1), 61–74.

    Article  CAS  Google Scholar 

  28. Lee, D. W., Kim, J. K., Lee, S., Choi, S., Kim, S., & Hwang, I. (2008). Arabidopsis nuclear-encoded plastid transit peptides contain multiple sequence subgroups with distinctive chloroplast-targeting sequence motifs. The Plant Cell, 20(6), 1603–1622.

    Article  CAS  Google Scholar 

  29. Altaib, H., Ozaki, Y., Kozakai, T., Badr, Y., Nomura, I., & Suzuki, T. (2019). A new Escherichia coli entry vector series (pIIS18) for seamless gene cloning using type IIS restriction enzymes. Microbiology Resource Announcements, 8(41), e00323-e419.

    Article  Google Scholar 

  30. Motohashi, K. (2017). Evaluation of the efficiency and utility of recombinant enzyme-free seamless DNA cloning methods. Biochemistry and Biophysics Reports, 9, 310–315.

    Article  Google Scholar 

  31. Wang, J. W., Wang, A., Li, K. Y., Wang, B. M., Jin, S. Q., Reiser, M., & Lockey, R. (2015). CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning. BioTechniques, 58(4), 161–170.

    Article  CAS  Google Scholar 

  32. Motohashi, K. (2017). Seamless ligation cloning extract (SLiCE) method using cell lysates from laboratory Escherichia coli strains and its application to SLiP site-directed mutagenesis. Methods in Molecular Biology, 1498, 349–357.

    Article  Google Scholar 

  33. Ma, X. L., Zhang, Q. Y., Zhu, Q. L., Liu, W., Chen, Y., Qiu, R., et al. (2015). A robust CRISPR/Cas9 system for convenient high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8(8), 1274–1284.

    Article  CAS  Google Scholar 

  34. Papworth, C., Bauer, J. C., Braman, J., & Wright, D. A. (1996). Site-directed mutagenesis in one day with >80% efficiency. Strategies, 9, 3–4.

    Article  Google Scholar 

  35. Liu, H., Ye, R., & Wang, Y. Y. (2015). Highly efficient one-step PCR-based mutagenesis technique for large plasmids using high-fidelity DNA polymerase. Genetics and Molecular Research, 14(2), 3466–3473.

    Article  CAS  Google Scholar 

Download references

Funding

XWH acknowledges the financial support from the Natural Science Foundation of China (Grant No. 30971709). Funding body was not involved in the design of the study; collection, analysis, interpretation of data, and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

XWH, HYT, and ZHH planned and designed this research. XWH and HYT performed experiments. XWH analyzed the data and wrote the manuscript. ZHH edited the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Xue-Wen Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research Invloved in Human and Animal Rights

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, XW., Tong, HY. & He, ZH. Alternative Seamless Cloning Strategies in Fusing Gene Fragments Based on Overlap-PCR. Mol Biotechnol 63, 221–231 (2021). https://doi.org/10.1007/s12033-020-00298-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12033-020-00298-0

Keywords