Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Quantum chemical investigation of thermochemistry in Calvin cycle

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

This work aims to verify the experimental thermochemistry of the reactions involved in Calvin cycle that produces glucose equivalent by using products from the light-activated reactions in chloroplast. The molecular geometry of each involved species in water has been optimized by density functional theory using SCRF-PCM methodology at M06-2X/6-311 ++G(3df,3pd) level. The thermal correction to Gibbs free energy of each solute has been calculated at the same level of theory. An explicit accounting of the intramolecular and intermolecular hydrogen bonding has been made for each solute molecule by using theoretically determined values from different sources. These data have been added together to obtain the standard Gibbs free energy G Ø for each molecule in solution. Finally, the free energy change ΔG of each involved reaction has been determined using the experimental concentrations under physiological conditions. The calculated ΔG values are generally in good agreement with the experimentally found free energy changes, with only a few relatively large deviations. Five regulating steps with moderately large and negative ΔG have been identified, whereas only three of them were clearly identified from experiment. We particularly show that the steps involving the formation of G3P from 3-PG and the regeneration of RuBP from Ru5P are thermodynamically strongly favored, and therefore, they take part in driving the metabolic process. We have illustrated Calvin cycle by vividly distinguishing the controlling steps from the potentially reversible reactions.

The controlling steps in Calvin cycle are theoretically found. Not only carbon dioxide assimilation but also the formation of G3P is thermodynamically favored. This helps in a steady plant growth. G3P partly converts into Ru5P. The conversion of Ru5P into RuBP is also favorable, which completes the full cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bassham J A and Krause G H 1969 Biochim. Biophys. Acta 189 207

    Article  CAS  Google Scholar 

  2. El-Hendawy M M, Garate J A, English N J, O’Reilly S and Mooney D A 2012 J. Chem. Phys. 137 145103 (1-10)

    Article  Google Scholar 

  3. Fridlyand L E 1992 Biochim. Biophys. Acta 1102 115

    Article  CAS  Google Scholar 

  4. Fridlyand L E, Backhausen J E, Holtgrefe S, Kitzmann C and Scheibe R 1997 Plant Cell Physiol. 38 1177

    Article  CAS  Google Scholar 

  5. Runquist J A, Ríos S E, Vinarov D A and Miziorko H M 2001 Biochemistry 40 14530

    Article  CAS  Google Scholar 

  6. Runquist J A and Miziorko H M 2006 Prot. Sci. 15 837

    Article  CAS  Google Scholar 

  7. Goldberg R N, Tewari Y B, Bell D, Fazio K and Anderson E 1993 J. Phys. Chem. Ref. Data. 22 530

    Article  Google Scholar 

  8. Goldberg R N and Tewari Y B 1994 J. Phys. Chem. Ref. Data. 23 547

    Article  CAS  Google Scholar 

  9. Goldberg R N and Tewari Y B 1994 J. Phys. Chem. Ref. Data. 23 1035

    Article  CAS  Google Scholar 

  10. Goldberg R N and Tewari Y B 1995 J. Phys. Chem. Ref. Data. 24 1669

    Article  CAS  Google Scholar 

  11. Goldberg R N and Tewari Y B 1995 J. Phys. Chem. Ref. Data. 24 1765

    Article  CAS  Google Scholar 

  12. Goldberg R N 1999 J. Phys. Chem. Ref. Data. 28 931

    Article  CAS  Google Scholar 

  13. Goldberg R N, Tewari Y B and Bhat T N 2007 J. Phys. Chem. Ref. Data. 36 1347

    Article  CAS  Google Scholar 

  14. Alberty R A 1998 Arch. Biochem. Biophys. 353 116

    Article  CAS  Google Scholar 

  15. Leskovac V, Trivić S, Periči D, Popović M and Kandrač J 2008 Indian J. Biochem. Biophys. 45 157

    CAS  Google Scholar 

  16. Mehta N, Panda A, Sinha Roy A and Datta S N 2007 J. Phys. Chem. B 111 919

    Article  CAS  Google Scholar 

  17. Panda A and Datta S N 2007 J. Chem. Sci. 119 449

    Article  CAS  Google Scholar 

  18. Panda A, Bhattacharyya S and Datta S N 2009 J. Chem. Sci. 121 535

    Article  CAS  Google Scholar 

  19. (a) Mehta N, Panda A, Sengupta S and Datta S N 2006 J. Phys. Chem. B 110 10951; (b) Erratum: 2006 J. Phys. Chem. B 110 14524

  20. Bolton E, Wang Y, Theissen P A and Bryant S H 2008 Annu. Rep. Comput. Chem. 4 217

    Article  CAS  Google Scholar 

  21. Zhao Y and Truhlar D G 2008 Theor. Chem. Acc. 120 215

    Article  CAS  Google Scholar 

  22. Zhao Y and Truhlar D G 2008 Acc. Chem. Res. 41 157

    Article  CAS  Google Scholar 

  23. Liu Y, Zhao J, Li F and Chen Z 2013 J. Comput. Chem. 34 121

    Article  Google Scholar 

  24. Walker M, Harvey A J A and Sen A 2013 J. Phys. Chem. A 117 12590

    Article  CAS  Google Scholar 

  25. Mardirossian N, Lambrecht D S, McCaslin L, Xantheas S S and Head-Gordon M 2013 J. Chem. Theor. Comput. 9 1368

    Article  CAS  Google Scholar 

  26. Jones G J, Robertazzi A and Platts J A 2013 J. Phys. Chem. B 117 3315

    Article  CAS  Google Scholar 

  27. Sadhukhan T, Latif I A and Datta S N 2014 J. Phys. Chem. B 118 8782

    Article  CAS  Google Scholar 

  28. Frisch M J, et al. 2009 Gaussian 09, Revision A.02 (Wallingford CT: Gaussian, Inc.)

  29. Fileti E E, Chaudhuri P and Canuto S 2004 Chem. Phys. Lett. 400 494

    Article  CAS  Google Scholar 

  30. Vila A and Mosquera R A 2003 Chem. Phys. 291 73

    Article  CAS  Google Scholar 

  31. Sadlej J and Mazurek P 1995 J. Mol. Struc. Theochem. 337 129

    Article  CAS  Google Scholar 

  32. Jorgensen W L and Gao J 1986 J. Phys. Chem. 90 2174

    Article  CAS  Google Scholar 

  33. Markovitch O and Agmon N 2007 J. Phys. Chem. A 111 2253

    Article  CAS  Google Scholar 

  34. Paul W A 2007 In Molecular Modeling Study of Sulfate and Phosphate Adsorption at the Mineral-Water Interface PhD dissertation (Newark, Delaware, USA: University of Delaware)

  35. Bockris J O’M and Reddy A K N 1970 In Modern Electrochemistry: An Introduction to an Interdisciplinary Area Vol. 1 (New York: Plenum Press)

  36. Dodds W S, Stutzman L F and Sollami B J 1956 Ind. Eng. Chem. 1 92

    CAS  Google Scholar 

  37. Stephenson S K, Offeman R D, Robertson G H and Orts W J 2007 Chem. Eng. Sci. 62 3019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SND is grateful to Council of Scientific and Industrial Research for financial support (Grant No. 01/2481/11/EMR-II). We acknowledge I.I.T. Bombay computer center for their generous support and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SAMBHU N DATTA.

Additional information

Supplementary Information

Content includes the Gaussian 09 logfiles for SCRF-PCM geometry optimization and frequency calculation on all solvated systems, and ref.[28] in full. Supplementary Information is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 50.3 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MONDAL, D., SADHUKHAN, T., LATIF, I.A. et al. Quantum chemical investigation of thermochemistry in Calvin cycle. J Chem Sci 127, 2231–2240 (2015). https://doi.org/10.1007/s12039-015-0980-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12039-015-0980-1

Keywords