Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

DNA methylation: a saga of genome maintenance in hematological perspective

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

In recent years, an explosion of interest for genome methylation in hematopoietic stem cells (HSCs) differentiation and transplantation has been observed. The differentiation and timely proliferation of HSCs require a stringent regulation of gene expression; this can’t be maintained without the regulation of genome methylation. Evidences of changes in genome methylation patterns in healthy and cancer cells have opened a new paradigm for diagnostic and therapeutic strategies. Genome methylation or DNA methylation is achieved by DNA methyltransferases (DNMTs) through the transfer of methyl group leading to the regulation of gene’s expression. Till now five DNMTs have been found in mammals, known as DNMT1, DNMT2, DNMT3A, DNMT3B and DNMT3L. In this review, we have carefully evaluated the spacio-temporal landscape expression and role of DNMTs during hematopoiesis, hematopoietic malignancy and HSCs transplantation. Focusing on the connection of DNA methylation with gene expression in association with cellular signalling, histone modifications, it is proposed for further improvement of strategies to use DNA methylation as a marker in clinical diagnosis as well as in therapeutic interventions by applying DNMTs inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948;175(1):315–32.

    Article  CAS  Google Scholar 

  2. Migicovsky Z, Kovalchuk I. Epigenetic memory in mammals. Front Genet. 2011;2:28. https://doi.org/10.3389/fgene.2011.00028.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37(8):853–62. https://doi.org/10.1038/ng1598.

    Article  CAS  PubMed  Google Scholar 

  4. Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer. 2011;2(6):607–17. https://doi.org/10.1177/1947601910393957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jang HS, Shin WJ, Lee JE, Do JT. CpG and Non-CpG methylation in epigenetic gene regulation and brain function. Genes (Basel). 2017;8(6):148. https://doi.org/10.3390/genes8060148.

    Article  CAS  PubMed Central  Google Scholar 

  6. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA. 2000;97(10):5237–42. https://doi.org/10.1073/pnas.97.10.5237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patil V, Ward RL, Hesson LB. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics. 2014;9(6):823–8. https://doi.org/10.4161/epi.28741.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharma S, Gurudutta G. Epigenetic regulation of hematopoietic stem cells. Int J Stem Cells. 2016;9(1):36–43. https://doi.org/10.15283/ijsc.2016.9.1.36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azuara V, Perry P, Sauer S, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol. 2006;8(5):532–8. https://doi.org/10.1038/ncb1403.

    Article  CAS  PubMed  Google Scholar 

  10. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. https://doi.org/10.1101/gad.947102.

    Article  CAS  PubMed  Google Scholar 

  11. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene. 2001;20(24):3139–55. https://doi.org/10.1038/sj.onc.1204341.

    Article  CAS  PubMed  Google Scholar 

  12. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22. https://doi.org/10.1101/gad.2037511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3(9):662–73. https://doi.org/10.1038/nrg887.

    Article  CAS  PubMed  Google Scholar 

  14. Mayani H. The regulation of hematopoietic stem cell populations. F1000Res. 2016. https://doi.org/10.12688/f1000research.8532.1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Till JE, McCulloch EA. Hemopoietic stem cell differentiation. Biochim Biophys Acta. 1980;605(4):431–59. https://doi.org/10.1016/0304-419x(80)90009-8.

    Article  CAS  PubMed  Google Scholar 

  16. Zon LI. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature. 2008;453(7193):306–13. https://doi.org/10.1038/nature07038.

    Article  CAS  PubMed  Google Scholar 

  17. Wilting RH, Yanover E, Heideman MR, et al. Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J. 2010;29(15):2586–97. https://doi.org/10.1038/emboj.2010.136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91(5):661–72. https://doi.org/10.1016/s0092-8674(00)80453-5.

    Article  CAS  PubMed  Google Scholar 

  19. Laiosa CV, Stadtfeld M, Graf T. Determinants of lymphoid-myeloid lineage diversification. Annu Rev Immunol. 2006;24:705–38. https://doi.org/10.1146/annurev.immunol.24.021605.090742.

    Article  CAS  PubMed  Google Scholar 

  20. Mossadegh-Keller N, Sarrazin S, Kandalla PK, et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature. 2013;497(7448):239–43. https://doi.org/10.1038/nature12026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bröske AM, Vockentanz L, Kharazi S, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet. 2009;41(11):1207–15. https://doi.org/10.1038/ng.463.

    Article  CAS  PubMed  Google Scholar 

  22. Ji H, Ehrlich LI, Seita J, et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010;467(7313):338–42. https://doi.org/10.1038/nature09367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood. 2011;117(19):e182–9. https://doi.org/10.1182/blood-2011-01-331926.

    Article  CAS  PubMed  Google Scholar 

  24. Accomando WP, Wiencke JK, Houseman EA, Nelson HH, Kelsey KT. Quantitative reconstruction of leukocyte subsets using DNA methylation. Genome Biol. 2014;15(3):50. https://doi.org/10.1186/gb-2014-15-3-r50.

    Article  CAS  Google Scholar 

  25. Chattapadhyaya S, Haldar S, Banerjee S. Microvesicles promote megakaryopoiesis by regulating DNA methyltransferase and methylation of Notch1 promoter. J Cell Physiol. 2020;235(3):2619–30. https://doi.org/10.1002/jcp.29166.

    Article  CAS  PubMed  Google Scholar 

  26. Trowbridge JJ, Snow JW, Kim J, Orkin SH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell. 2009;5(4):442–9. https://doi.org/10.1016/j.stem.2009.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Challen GA, Sun D, Mayle A, et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell. 2014;15(3):350–64. https://doi.org/10.1016/j.stem.2014.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun D, Luo M, Jeong M, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 2014;14(5):673–88. https://doi.org/10.1016/j.stem.2014.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trowbridge JJ, Orkin SH. Dnmt3a silences hematopoietic stem cell self-renewal. Nat Genet. 2011;44(1):13–4. https://doi.org/10.1038/ng.1043.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng Y, Xie N, Jin P, Wang T. DNA methylation and hydroxymethylation in stem cells. Cell Biochem Funct. 2015;33(4):161–73. https://doi.org/10.1002/cbf.3101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H. De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med. 2007;204(4):715–22. https://doi.org/10.1084/jem.20060750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cimmino L. Methylation maintains HSC division fate. Proc Natl Acad Sci USA. 2017;114(2):192–4. https://doi.org/10.1073/pnas.1619390114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Antoniani C, Romano O, Miccio A. Concise review: epigenetic regulation of hematopoiesis: biological insights and therapeutic applications. Stem Cells Transl Med. 2017;6(12):2106–14. https://doi.org/10.1002/sctm.17-0192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rönnerblad M, Andersson R, Olofsson T, et al. Analysis of the DNA methylome and transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation. Blood. 2014;123(17):e79–89. https://doi.org/10.1182/blood-2013-02-482893.

    Article  CAS  PubMed  Google Scholar 

  35. Klug M, Schmidhofer S, Gebhard C, Andreesen R, Rehli M. 5-Hydroxymethylcytosine is an essential intermediate of active DNA demethylation processes in primary human monocytes. Genome Biol. 2013;14(5):R46. https://doi.org/10.1186/gb-2013-14-5-r46.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang X, Ulm A, Somineni HK, et al. DNA methylation dynamics during ex vivo differentiation and maturation of human dendritic cells. Epigenetics Chromatin. 2014;7:21. https://doi.org/10.1186/1756-8935-7-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8. https://doi.org/10.1038/nrm2858.

    Article  CAS  PubMed  Google Scholar 

  38. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042–54. https://doi.org/10.1056/NEJMra023075.

    Article  CAS  PubMed  Google Scholar 

  39. Gore AV, Weinstein BM. DNA methylation in hematopoietic development and disease. Exp Hematol. 2016;44(9):783–90. https://doi.org/10.1016/j.exphem.2016.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guillamot M, Cimmino L, Aifantis I. The impact of DNA methylation in hematopoietic malignancies. Trends Cancer. 2016;2(2):70–83. https://doi.org/10.1016/j.trecan.2015.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res. 1999;59(15):3730–40.

    CAS  PubMed  Google Scholar 

  42. Yan F, Shen N, Pang JX, et al. A vicious loop of fatty acid-binding protein 4 and DNA methyltransferase 1 promotes acute myeloid leukemia and acts as a therapeutic target. Leukemia. 2018;32(4):865–73. https://doi.org/10.1038/leu.2017.307.

    Article  CAS  PubMed  Google Scholar 

  43. Shen N, Yan F, Pang J, et al. Inactivation of receptor tyrosine kinases reverts aberrant DNA methylation in acute myeloid leukemia. Clin Cancer Res. 2017;23(20):6254–66. https://doi.org/10.1158/1078-0432.CCR-17-0235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li S, Jin X, Wu H, et al. HA117 endows HL60 cells with a stem-like signature by inhibiting the degradation of DNMT1 via its ability to down-regulate expression of the GGL domain of RGS6. PLoS ONE. 2017;12(6):e0180142. https://doi.org/10.1371/journal.pone.0180142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tagde A, Rajabi H, Stroopinsky D, et al. MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia. Oncotarget. 2016;7(26):38974–87. https://doi.org/10.18632/oncotarget.9777.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Celik H, Kramer A, Challen GA. DNA methylation in normal and malignant hematopoiesis. Int J Hematol. 2016;103(6):617–26. https://doi.org/10.1007/s12185-016-1957-7.

    Article  CAS  PubMed  Google Scholar 

  47. Xu J, Wang YY, Dai YJ, et al. DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells. Proc Natl Acad Sci USA. 2014;111(7):2620–5. https://doi.org/10.1073/pnas.1400150111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8. https://doi.org/10.1038/leu.2011.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neumann M, Heesch S, Schlee C, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013;121(23):4749–52. https://doi.org/10.1182/blood-2012-11-465138.

    Article  CAS  PubMed  Google Scholar 

  50. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. https://doi.org/10.1056/NEJMoa1005143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yan XJ, Xu J, Gu ZH, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43(4):309–15. https://doi.org/10.1038/ng.788.

    Article  CAS  PubMed  Google Scholar 

  52. Heller G, Topakian T, Altenberger C, et al. Next-generation sequencing identifies major DNA methylation changes during progression of Ph+ chronic myeloid leukemia. Leukemia. 2016;30(9):1861–8. https://doi.org/10.1038/leu.2016.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ko TK, Javed A, Lee KL, et al. An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood. 2020;135(26):2337–53. https://doi.org/10.1182/blood.2020004834.

    Article  PubMed  Google Scholar 

  54. Zion M, Ben-Yehuda D, Avraham A, et al. Progressive de novo DNA methylation at the bcr-abl locus in the course of chronic myelogenous leukemia. Proc Natl Acad Sci USA. 1994;91(22):10722–6. https://doi.org/10.1073/pnas.91.22.10722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Poole CJ, Zheng W, Lodh A, et al. DNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt’s lymphoma. Oncotarget. 2017;8(44):76898–920.

    Article  Google Scholar 

  56. Itonaga H, Imanishi D, Wong YF, et al. Expression of myeloperoxidase in acute myeloid leukemia blasts mirrors the distinct DNA methylation pattern involving the downregulation of DNA methyltransferase DNMT3B. Leukemia. 2014;28(7):1459–66. https://doi.org/10.1038/leu.2014.15.

    Article  CAS  PubMed  Google Scholar 

  57. Timms JA, Relton CL, Sharp GC, Rankin J, Strathdee G, McKay JA. Exploring a potential mechanistic role of DNA methylation in the relationship between in utero and post-natal environmental exposures and risk of childhood acute lymphoblastic leukaemia. Int J Cancer. 2019;145(11):2933–43. https://doi.org/10.1002/ijc.32203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Celik H, Mallaney C, Kothari A, et al. Enforced differentiation of Dnmt3a-null bone marrow leads to failure with c-Kit mutations driving leukemic transformation. Blood. 2015;125(4):619–28. https://doi.org/10.1182/blood-2014-08-594564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chang YI, You X, Kong G, et al. Loss of Dnmt3a and endogenous Kras(G12D/+) cooperate to regulate hematopoietic stem and progenitor cell functions in leukemogenesis. Leukemia. 2015;29(9):1847–56. https://doi.org/10.1038/leu.2015.85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hlady RA, Novakova S, Opavska J, et al. Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. J Clin Invest. 2012;122(1):163–77. https://doi.org/10.1172/JCI57292.

    Article  CAS  PubMed  Google Scholar 

  61. Küppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27. https://doi.org/10.1038/nrc2542.

    Article  CAS  PubMed  Google Scholar 

  62. Ammerpohl O, Haake A, Pellissery S, et al. Array-based DNA methylation analysis in classical Hodgkin lymphoma reveals new insights into the mechanisms underlying silencing of B cell-specific genes. Leukemia. 2012;26(1):185–8. https://doi.org/10.1038/leu.2011.194.

    Article  CAS  PubMed  Google Scholar 

  63. Leonard S, Wei W, Anderton J, et al. Epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin’s lymphoma. J Virol. 2011;85(18):9568–77. https://doi.org/10.1128/JVI.00468-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Amara K, Ziadi S, Hachana M, Soltani N, Korbi S, Trimeche M. DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 2010;101(7):1722–30. https://doi.org/10.1111/j.1349-7006.2010.01569.x.

    Article  CAS  PubMed  Google Scholar 

  65. Clozel T, Yang S, Elstrom RL, et al. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov. 2013;3(9):1002–19. https://doi.org/10.1158/2159-8290.CD-13-0117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48. https://doi.org/10.1016/S1470-2045(14)70442-5.

    Article  Google Scholar 

  67. Aoki Y, Nojima M, Suzuki H, et al. Genomic vulnerability to LINE-1 hypomethylation is a potential determinant of the clinicogenetic features of multiple myeloma. Genome Med. 2012;4(12):101. https://doi.org/10.1186/gm402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wong KY, Chim CS. DNA methylation of tumor suppressor protein-coding and non-coding genes in multiple myeloma. Epigenomics. 2015;7(6):985–1001. https://doi.org/10.2217/epi.15.57.

    Article  CAS  PubMed  Google Scholar 

  69. Kaiser MF, Johnson DC, Wu P, et al. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood. 2013;122(2):219–26. https://doi.org/10.1182/blood-2013-03-487884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Smedt E, Maes K, Verhulst S, et al. Loss of RASSF4 expression in multiple myeloma promotes RAS-driven malignant progression. Cancer Res. 2018;78(5):1155–68. https://doi.org/10.1158/0008-5472.CAN-17-1544.

    Article  CAS  PubMed  Google Scholar 

  71. Maes K, Menu E, Van Valckenborgh E, Van Riet I, Vanderkerken K, De Bruyne E. Epigenetic modulating agents as a new therapeutic approach in multiple myeloma. Cancers (Basel). 2013;5(2):430–61. https://doi.org/10.3390/cancers5020430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pawlyn C, Bright MD, Buros AF, et al. Overexpression of EZH2 in multiple myeloma is associated with poor prognosis and dysregulation of cell cycle control. Blood Cancer J. 2017;7(3):e549. https://doi.org/10.1038/bcj.2017.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Houde C, Li Y, Song L, et al. Overexpression of the NOTCH ligand JAG2 in malignant plasma cells from multiple myeloma patients and cell lines. Blood. 2004;104(12):3697–704. https://doi.org/10.1182/blood-2003-12-4114.

    Article  CAS  PubMed  Google Scholar 

  74. Pawlyn C, Kaiser MF, Heuck C, et al. The spectrum and clinical impact of epigenetic modifier mutations in myeloma. Clin Cancer Res. 2016;22(23):5783–94. https://doi.org/10.1158/1078-0432.CCR-15-1790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Turner JG, Gump JL, Zhang C, et al. ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood. 2006;108(12):3881–9. https://doi.org/10.1182/blood-2005-10-009084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gutiérrez NC, Sarasquete ME, Misiewicz-Krzeminska I, et al. Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia. 2010;24(3):629–37. https://doi.org/10.1038/leu.2009.274.

    Article  CAS  PubMed  Google Scholar 

  77. Welch JS, Ley TJ, Link DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78. https://doi.org/10.1016/j.cell.2012.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang X, Wong MPM, Ng RK. Aberrant DNA methylation in acute myeloid leukemia and its clinical implications. Int J Mol Sci. 2019;20(18):4576. https://doi.org/10.3390/ijms20184576.

    Article  CAS  PubMed Central  Google Scholar 

  79. Trino S, Zoppoli P, Carella AM, et al. DNA methylation dynamic of bone marrow hematopoietic stem cells after allogeneic transplantation. Stem Cell Res Ther. 2019;10(1):138. https://doi.org/10.1186/s13287-019-1245-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75(3):555–62.

    Article  CAS  Google Scholar 

  81. Liang Y, Van Zant G, Szilvassy SJ. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood. 2005;106(4):1479–87. https://doi.org/10.1182/blood-2004-11-4282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weidner CI, Wagner W. The epigenetic tracks of aging. Biol Chem. 2014;395(11):1307–14. https://doi.org/10.1515/hsz-2014-0180.

    Article  CAS  PubMed  Google Scholar 

  83. Vas V, Senger K, Dörr K, Niebel A, Geiger H. Aging of the microenvironment influences clonality in hematopoiesis. PLoS ONE. 2012;7(8): e42080. https://doi.org/10.1371/journal.pone.0042080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rodriguez RM, Suarez-Alvarez B, Salvanés R, et al. DNA methylation dynamics in blood after hematopoietic cell transplant. PLoS ONE. 2013;8(2):e56931. https://doi.org/10.1371/journal.pone.0056931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Frobel J, Rahmig S, Franzen J, Waskow C, Wagner W. Epigenetic aging of human hematopoietic cells is not accelerated upon transplantation into mice. Clin Epigenetics. 2018;10:67. https://doi.org/10.1186/s13148-018-0499-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lowe D, Horvath S, Raj K. Epigenetic clock analyses of cellular senescence and ageing. Oncotarget. 2016;7(8):8524–31. https://doi.org/10.18632/oncotarget.7383.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gnyszka A, Jastrzebski Z, Flis S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res. 2013;33(8):2989–96.

    CAS  PubMed  Google Scholar 

  88. Leone G, Voso MT, Teofili L, Lübbert M. Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS. Clin Immunol. 2003;109(1):89–102. https://doi.org/10.1016/s1521-6616(03)00207-9.

    Article  CAS  PubMed  Google Scholar 

  89. Cowan LA, Talwar S, Yang AS. Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics. 2010;2(1):71–86. https://doi.org/10.2217/epi.09.44.

    Article  CAS  PubMed  Google Scholar 

  90. Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–9. https://doi.org/10.1182/blood-2015-01-621664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol. 2002;321(4):591–9. https://doi.org/10.1016/s0022-2836(02)00676-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Daher-Reyes GS, Merchan BM, Yee KWL. Guadecitabine (SGI-110): an investigational drug for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Expert Opin Investig Drugs. 2019;28(10):835–49. https://doi.org/10.1080/13543784.2019.1667331.

    Article  CAS  PubMed  Google Scholar 

  93. Valente S, Liu Y, Schnekenburger M, et al. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem. 2014;57(3):701–13. https://doi.org/10.1021/jm4012627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Irwin RE, Pentieva K, Cassidy T, et al. The interplay between DNA methylation, folate and neurocognitive development. Epigenomics. 2016;8(6):863–79. https://doi.org/10.2217/epi-2016-0003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Subrata Banerjee for his comments on the manuscript.

Funding

No funding is availed for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization S.C., S.G.; writing—original draft preparation, S.C, S.G.

Corresponding author

Correspondence to Saran Chattopadhyaya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This review article does not contain any studies with human participants or animals performed by any of the authors. Therefore, “consent to participate” is not applicable here.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyaya, S., Ghosal, S. DNA methylation: a saga of genome maintenance in hematological perspective. Human Cell 35, 448–461 (2022). https://doi.org/10.1007/s13577-022-00674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13577-022-00674-9

Keywords