Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Prospects in Mitigating Global Warming by Biomimetic Carbon Sequestration Using Recombinant Microbial Carbonic Anhydrases

  • Chapter
  • First Online:
Carbon Utilization

Part of the book series: Green Energy and Technology ((GREEN))

  • 1121 Accesses

  • 2 Citations

Abstract

Carbon capture storage and utilization (CCSU) can be a probable and efficient solution for mitigating global warming. It refers to the conversion and storage of CO2 in stable and usable forms. Carbon sequestration using carbonic anhydrase (CA) has attracted much attention in the recent years. Due to high temperature and CO2 content in flue gas emitted from coal-based thermal plants, the enzyme for CO2 sequestration must have thermostability, tolerance to high CO2 and heavy metals, and alkalistability for mineralization. The extremophilic microbial CAs with these attributes would be useful in sequestering CO2. The production of large quantities of native carbonic anhydrase from wild microbial strains for carbon capture becomes costly because they possess low levels of CA. The cloning CA-encoding genes from extremophiles and their overexpression in heterologous hosts such as E. coli would bring down the cost of enzyme production. Further improvement in the desirable properties of CAs can be achieved through protein engineering approaches. In this chapter, an attempt has been made to review developments in the production of recombinant CAs, their characteristics and applicability in carbon sequestration. Other biotechnological applications of CAs are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CCSU:

Carbon capture storage and utilization

CCS:

Carbon capture and storage

CA:

Carbonic anhydrase

GHGs:

Green house gases

IPPU:

Industrial processes and products use

IPCC:

Intergovernmental panel on climate change

CCM:

CO2 concentrating mechanism

NOx :

Nitrogen oxides

SOx :

Sulfur oxides

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

ArgHCl:

Arginine hydrochloride

PU:

Polyurethane

MDEA:

Methyl diethanolamine

HFM:

Hollow fiber membrane

nM:

Nanomolar

mM:

Millimolar

pM:

Picomolar

DMAEMA:

N,N-dimethylaminoethyl methacrylate

PolySFHb-SOD-CAT-CA:

Poly stroma-free hemoglobin catalase superoxide dismutase carbonic anhydrase

RuBisCo:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

CLM:

Control liquid membrane

hCAII:

Human carbonic anhydrase II

NCA:

Neisseria. gonorrhoeae-Carbonic Anhydrase

ECCA:

Escherichia coli Carbonic Anhydrase

VchCA:

Vibrio cholerae α-Carbonic Anhydrase

α-CA-HP:

Α Carbonic Anhydrase Helicobacter pylori

β-CA-HP:

Î’ Carbonic Anhydrase Helicobacter pylori

stCA1:

Salmonella typhimurium Carbonic Anhydrase 1

stCA2:

Salmonella typhimurium Carbonic Anhydrase 2

TweCA:

Thalassiosira weissflogii Carbonic Anhydrase

TwCA1:

Thalassiosira weissflogii Carbonic Anhydrase 1

PhaCAγ:

Pseudoalteromonas haloplanktis Carbonic Anhydrase γ

PgiCA:

Porphyromonas gingivalis Carbonic Anhydrase

mtCA1:

Mycobacterium tuberculosis Carbonic Anhydrase 1

PCA:

Streptococcus pneumoniae Carbonic Anhydrase

SSpCA:

Sulfurihydrogenibium yellowstonense Carbonic Anhydrase

sazCA:

Sulfurihydrogenibium azorense Carbonic Anhydrase

taCA:

Thermovibrio ammonificans Carbonic Anhydrase

PCR:

Polymerase Chain Reaction

DvCA:

Desulfovibrio vulgaris Carbonic Anhydrase

PMCA:

Persephonella marina EX-H1 Carbonic Anhydrase

SOD:

Superoxide dismutase

References

  • Adams RM, Hurd BH, Lenhart S, Leary N (1998) Effects of global climate change on agriculture: an interpretative review. Climate Res 11:19–30

    Article  Google Scholar 

  • Alber BE, Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Natl Acad Sci 91:6909–6913

    Article  Google Scholar 

  • Alvizo O, Nguyen LJ, Savile CK, Bresson JA, Lakhapatri SL, Solis EO, Fox RJ, Broering JM, Benoit MR, Zimmerman SA, Novick SJ (2014) Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. Proc Natl Acad Sci 111:16436–16441

    Article  Google Scholar 

  • Anand A, Kumar V, Satyanarayana T (2013) Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17:357–366

    Article  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  Google Scholar 

  • Benson S, Cook P, Anderson J, Bachu S, Nimir HB, Basu B, Bradshaw J, Deguchi G, Gale J, von Goerne G, Heidug W (2005) Underground geological storage. IPCC special report on carbon dioxide capture and storage, pp 195–276

    Google Scholar 

  • Bian Y, Rong Z, Chang TMS (2012) Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase: a novel biotechnology-based blood substitute that transports both oxygen and carbon dioxide and also acts as an antioxidant. Artif Cells Blood Substit Biotechnol 40:28–37

    Article  Google Scholar 

  • Bozym R, Hurst TK, Westerberg N, Stoddard A, Fierke CA, Frederickson CJ, Thompson RB (2008) Determination of zinc using carbonic anhydrase-based fluorescence biosensors. Methods Enzymol 450:287–309

    Article  Google Scholar 

  • Burghout P, Vullo D, Scozzafava A, Hermans PW, Supuran CT (2011) Inhibition of the β-carbonic anhydrase from Streptococcus pneumoniae by inorganic anions and small molecules: Toward innovative drug design of antiinfectives? Bioorg Med Chem 19:243–248

    Article  Google Scholar 

  • Bury-Moné S, Mendz GL, Ball GE, Thibonnier M, Stingl K, Ecobichon C, Avé P, Huerre M, Labigne A, Thiberge JM, De Reuse H (2008) Roles of α and β carbonic anhydrases of Helicobacter pylori in the urease-dependent response to acidity and in colonization of the murine gastric mucosa. Infect Immun 76:497–509

    Article  Google Scholar 

  • Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98:253–279

    Article  Google Scholar 

  • Capassoa C, De Lucaa V, Carginalea V, Caramuscioc P, Cavalheiroc CF, Canniod R, Rossia M (2012) Characterization and properties of a new thermoactive and thermostable carbonic anhydrase. Chem Eng Trans 27:271–276

    Google Scholar 

  • Chirica LC, Elleby B, Lindskog S (2001) Cloning, expression and some properties of α-carbonic anhydrase from Helicobacter pylori. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1544:55–63

    Article  Google Scholar 

  • Chirică LC, Elleby B, Jonsson BH, Lindskog S (1997) The complete sequence, expression in Escherichia coli, purification and some properties of carbonic anhydrase from Neisseria gonorrhoeae. Eur J Biochem 244:755–760

    Article  Google Scholar 

  • Clark EDB (2001) Protein refolding for industrial processes. Curr Opin Biotechnol 12:202–207

    Article  Google Scholar 

  • Cronk JD, Endrizzi JA, Cronk MR, O’neill JW, Zhang KY (2001) Crystal structure of E. coli β-carbonic anhydrase, an enzyme with an unusual pH–dependent activity. Protein Sci 10:911–922

    Article  Google Scholar 

  • Dahlberg L, Holst O, Kristjansson JK (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40:63–68

    Article  Google Scholar 

  • Daigle R. Desrochers M, CO2 Solution Inc (2009) Carbonic anhydrase having increased stability under high temperature conditions. U.S. Patent 7,521,217

    Google Scholar 

  • Daigle R, Madore É, Fradette S (2015) Daigle and Richard, 2015. Techniques for CO 2 Capture Using Sulfurihydrogenibium sp. Carbonic Anhydrase. U.S. Patent 20,150,283,502

    Google Scholar 

  • Davis GD, Elisee C, Newham DM, Harrison RG (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388

    Article  Google Scholar 

  • De Luca V, Vullo D, Del Prete S, Carginale V, Scozzafava A, Osman SM, AlOthman Z, Supuran CT, Capasso C (2015) Cloning, characterization and anion inhibition studies of a new γ-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Bioorg Med Chem 23:4405–4409

    Article  Google Scholar 

  • De Luca V, Vullo D, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C (2013) An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorg Med Chem 21:1465–1469

    Article  Google Scholar 

  • De Luca V, Vullo D, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C (2012) Anion inhibition studies of an α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Bioorg Med Chem Lett 22:5630–5634

    Article  Google Scholar 

  • Del Prete S, De Luca V, Vullo D, Scozzafava A, Carginale V, Supuran CT, Capasso C (2014a) Biochemical characterization of the γ-carbonic anhydrase from the oral pathogen Porphyromonas gingivalis, PgiCA. J Enzyme Inhib Med Chem 29:532–537

    Article  Google Scholar 

  • Del Prete S, Isik S, Vullo D, De Luca V, Carginale V, Scozzafava A, Supuran CT, Capasso C (2012) DNA cloning, characterization, and inhibition studies of an α-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. J Med Chem 55:10742–10748

    Article  Google Scholar 

  • Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen SA, Capasso C, Supuran CT (2014b) Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—The η-carbonic anhydrases. Bioorg Med Chem Lett 24:4389–4396

    Article  Google Scholar 

  • Del Prete S, Vullo D, Scozzafava A, Capasso C, Supuran CT (2014c) Cloning, characterization and anion inhibition study of the δ-class carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii. Bioorg Med Chem 22:531–537

    Article  Google Scholar 

  • Emameh RZ, Barker H, Tolvanen ME, Ortutay C, Parkkila S (2014) Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Parasites Vectors 7:38

    Article  Google Scholar 

  • EminoÄŸlu A, Vullo D, Aşık A, Çolak DN, Supuran CT, Çanakçı S, Osman Beldüz A (2015) Cloning, expression and biochemical characterization of a β-carbonic anhydrase from the soil bacterium Enterobacter sp. B13. J Enzyme Inhib Med Chem 26:1–8

    Google Scholar 

  • Fan LH, Liu N, Yu MR, Yang ST, Chen HL (2011) Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO2 sequestration. Biotechnol Bioeng 108:2853–2864

    Article  Google Scholar 

  • Faridi S, SatyanarayanaT (2015) Bioconversion of industrial CO2 emissions into utilizable products. In Chandra R (ed) Environmental waste management. CRC Press, pp 111–156

    Google Scholar 

  • Ferry JG (2010) The γ class of carbonic anhydrases. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1804:374–381

    Article  Google Scholar 

  • Fisher Z, Boone CD, Biswas SM, Venkatakrishnan B, Aggarwal M, Tu C, Agbandje-McKenna M, Silverman D, McKenna R (2012) Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II. Protein Eng Des Sel 25:347–355

    Article  Google Scholar 

  • Frederickson CJ, Giblin LJ, Krężel A, McAdoo DJ, Muelle RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM (2006) Concentrations of extracellular free zinc (pZn) e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198:285–293

    Article  Google Scholar 

  • Fujita N, Mori H, Yura T, Ishihama A (1994) Systematic sequencing of the Escherichia coli genome: analysis of the 2.4–4.1 min (110,917–193,643 bp) region. Nucleic Acids Res 22:1637–1639

    Article  Google Scholar 

  • Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  Google Scholar 

  • Herzog HJ (1998) Ocean sequestration of CO2—an overview. In: Fourth international conference on greenhouse gas control technologies, August 30–September 2, Interlaken, Switzerland, pp 1–5

    Google Scholar 

  • Hevehan DL, De Bernardez Clark E (1997) Oxidative renaturation of lysozyme at high concentrations. Biotechnol Bioeng 54:221–230

    Article  Google Scholar 

  • Houghton TJ (2005) Global warming. Rep Prog Phys 68:1343–1403

    Article  Google Scholar 

  • http://timeforchange.org/what-is-a-carbon-footprint-definition

  • http://www.protelica.com/Carbonicanhydrase

  • Huang CC, Lesburg CA, Kiefer LL, Fierke CA, Christianson DW (1996) Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II. Biochemistry 35:3439–3446

    Article  Google Scholar 

  • Huang S, Xue Y, Sauer-Eriksson E, Chirica L, Lindskog S, Jonsson BH (1998) Crystal structure of carbonic anhydrase from Neisseria gonorrhoeae and its complex with the inhibitor acetazolamide. J Mol Biol 283:301–310

    Article  Google Scholar 

  • IPCC (Inter-governmental Panel on Climate Change) (2014) Climate change 2014 synthesis report. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jahn A, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293

    Article  Google Scholar 

  • Jeyakanthan J, Rangarajan S, Mridula P, Kanaujia SP, Shiro Y, Kuramitsu S, Yokoyama S, Sekar K (2008) Observation of a calcium-binding site in the γ-class carbonic anhydrase from Pyrococcus horikoshii. Acta Crystallogr D Biol Crystallogr 64:1012–1019

    Article  Google Scholar 

  • Jo BH, Kim IG, Seo JH, Kang DG, Cha HJ (2013) Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Appl Environ Microbiol 79:6697–6705

    Article  Google Scholar 

  • Jo BH, Seo JH, Cha HJ (2014) Bacterial extremo-α-carbonic anhydrases from deep-sea hydrothermal vents as potential biocatalysts for CO2 sequestration. J Mol Catal B Enzym 109:31–39

    Article  Google Scholar 

  • Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, Pearson A, Macalady JL (2012) Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J 6:158–170

    Article  Google Scholar 

  • Joseph P, Turtaut F, Ouahrani-Bettache S, Montero JL, Nishimori I, Minakuchi T, Vullo D, Scozzafava A, Köhler S, Winum JY, Supuran CT (2010) Cloning, characterization, and inhibition studies of a β-carbonic anhydrase from Brucella suis. J Med Chem 53:2277–2285

    Article  Google Scholar 

  • Kaar JL, Oh HI, Russell AJ, Federspiel WJ (2007) Towards improved artificial lungs through biocatalysis. Biomaterials 28:3131–3139

    Article  Google Scholar 

  • Kanth BK, Jun SY, Kumari S, Pack SP (2014) Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: its expression and characterization for CO2-sequestration applications. Process Biochem 49:2114–2121

    Article  Google Scholar 

  • Kanth BK, Min K, Kumari S, Jeon H, Jin ES, Lee J, Pack SP (2012) Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO2 sequestration application. Appl Biochem Biotechnol 167:2341–2356

    Article  Google Scholar 

  • Kaur S, Mishra MN, Tripathi AK (2009) Regulation of expression and biochemical characterization of a β-class carbonic anhydrase from the plant growth-promoting rhizobacterium, Azospirillum brasilense Sp7. FEMS Microbiol Lett 299:149–158

    Article  Google Scholar 

  • Ki MR, Min K, Kanth BK, Lee J, Pack SP (2013) Expression, reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO2 sequestration application. Bioprocess Biosyst Eng 36:375–381

    Article  Google Scholar 

  • Kim IG, Jo BH, Kang DG, Kim CS, Choi YS, Cha HJ (2012) Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere 87:1091–1096

    Article  Google Scholar 

  • Kindermann G, Obersteiner M, Sohngen B, Sathaye J, Andrasko K, Rametsteiner E, Schlamadinger B, Wunder S, Beach R (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. Proc Natl Acad Sci 105:10302–10307

    Article  Google Scholar 

  • Kübler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ 22:1303–1310

    Article  Google Scholar 

  • Kudou M, Yumioka R, Ejima D, Arakawa T, Tsumoto K (2011) A novel protein refolding system using lauroyl-l-glutamate as a solubilizing detergent and arginine as a folding assisting agent. Protein Expr Purif 75:46–54

    Article  Google Scholar 

  • Kumar V, Satyanarayana T (2011) Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol Lett 33:2279–2285

    Article  Google Scholar 

  • Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci 97:4627–4631

    Article  Google Scholar 

  • Lapointe M, MacKenzie TD, Morse D (2008) An external δ-carbonic anhydrase in a free-living marine dinoflagellate may circumvent diffusion-limited carbon acquisition. Plant Physiol 147:1427–1436

    Article  Google Scholar 

  • Lee RBY, Smith JAC, Rickaby RE (2013) Cloning, expression and characterization of the δ-carbonic anhydrase of Thalassiosira weissflogii (Bacillariophyceae). J Phycol 49:170–177

    Article  Google Scholar 

  • Li M, Su ZG, Janson JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33:1–10

    Article  Google Scholar 

  • Lim X (2015) How to make most of Carbon Dioxide. Nature 526:629–630

    Article  Google Scholar 

  • Lindskog S, Coleman JE (1973) The catalytic mechanism of carbonic anhydrase. Proc Natl Acad Sci 70:2505–2508

    Article  Google Scholar 

  • Lindskog S, Nyman PO (1964) Metal-binding properties of human erythrocyte carbonic anhydrases. Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects 85:462–474

    Article  Google Scholar 

  • MacAuley SR, Zimmerman SA, Apolinario EE, Evilia C, Hou YM, Ferry JG, Sowers KR (2009) The archetype γ-class carbonic anhydrase (Cam) contains iron when synthesized in vivo. Biochemistry 48:817–819

    Article  Google Scholar 

  • Maggiore SM, Richard JC, Brochard L (2003) What has been learnt from p/v curves in patients with acute lung injury/acute respiratory distress syndrome. Eur Respir J 22:22s–26s

    Article  Google Scholar 

  • Marston FAO (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J 240:1–12

    Article  Google Scholar 

  • McCranor BJ, Bozym RA, Vitolo MI, Fierke CA, Bambrick L, Polster BM, Fiskum G, Thompson RB (2012) Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. J Bioenerg Biomembr 44:253–263

    Article  Google Scholar 

  • Meldrum NU, Roughton FJW (1933) Carbonic anhydrase. Its preparation and properties. J Physiol 80(2):113

    Article  Google Scholar 

  • Merlin C, Masters M, McAteer S, Coulson A (2003) Why is carbonic anhydrase essential to Escherichia coli. J Bacteriol 185:6415–6424

    Article  Google Scholar 

  • Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082

    Article  Google Scholar 

  • Migliardini F, De Luca V, Carginale V, Rossi M, Corbo P, Supuran CT, Capasso C (2014) Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on polyurethane foam. J Enzyme Inhib Med Chem 29:146–150

    Article  Google Scholar 

  • Min DH (2011) Carbon sequestration potential of switch grass as a bioenergy crop. Michigan State University

    Google Scholar 

  • Minakuchi T, Nishimori I, Vullo D, Scozzafava A, Supuran CT (2009) Molecular cloning, characterization, and inhibition studies of the Rv1284 β-carbonic anhydrase from Mycobacterium tuberculosis with sulfonamides and a sulfamate. J Med Chem 52:2226–2232

    Article  Google Scholar 

  • Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46:921–926

    Article  Google Scholar 

  • Muyssen BT, De Schamphelaere KA, Janssen CR (2006) Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. Aquat Toxicol 77:393–401

    Article  Google Scholar 

  • Nara TY, Togashi H, Sekikawa C, Kawakami M, Yaginuma N, Sakaguchi K, Mizukami F, Tsunoda T (2009) Use of zeolite to refold a disulfide-bonded protein. Colloids Surf B 68:68–73

    Article  Google Scholar 

  • Newman LM, Clark L, Ching C, Zimmerman S, Codexis Inc (2010) Carbonic anhydrase polypeptides and uses thereof. U.S. Patent Application 12/684,800

    Google Scholar 

  • Ohtake S, Kita Y, Arakawa T (2011) Interactions of formulation excipients with proteins in solution and in the dried state. Adv Drug Deliv Rev 63:1053–1073

    Article  Google Scholar 

  • Orr FM Jr (2009) CO2 capture and storage: are we ready? Energy Environ Sci 2:449–458

    Article  Google Scholar 

  • Orsini G, Goldberg ME (1978) The renaturation of reduced chymotrypsinogen A in guanidine HCl. Refolding versus aggregation. J Biol Chem 253:3453–3458

    Google Scholar 

  • Parr JF, Sullivan LA (2005) Soil carbon sequestration in phytoliths. Soil Biol Biochem 37:117–124

    Article  Google Scholar 

  • Prabhu C, Wanjari S, Gawande S, Das S, Labhsetwar N, Kotwal S, Puri AK, Satyanarayana T, Rayalu S (2009) Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials. J Mol Catal B Enzym 60:13–21

    Article  Google Scholar 

  • Prabhu C, Wanjari S, Puri A, Bhattacharya A, Pujari R, Yadav R, Das S, Labhsetwar N, Sharma A, Satyanarayanan T, Rayalu S (2011) Region-specific bacterial carbonic anhydrase for biomimetic sequestration of carbon dioxide. Energy Fuels 25:1327–1332

    Article  Google Scholar 

  • Prasad S, Khadatare PB, Roy I (2011) Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl Environ Microbiol 77:4603–4609

    Article  Google Scholar 

  • Princiotta FT (2007) The role of power generation technology in mitigating global climate change. In: Challenges of power engineering and environment. Springer, Berlin, pp 3–13

    Google Scholar 

  • Puskás LG, Inui M, Zahn K, Yukawa H (2000) A periplasmic, α-type carbonic anhydrase from Rhodopseudomonas palustris is essential for bicarbonate uptake. Microbiology 146:2957–2966

    Article  Google Scholar 

  • Ramanan R, Kannan K, Sivanesan SD, Mudliar S, Kaur S, Tripathi AK, Chakrabarti T (2009) Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World J Microbiol Biotechnol 25:981–987

    Article  Google Scholar 

  • Rout GR, Das P (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. In: Sustainable Agriculture. Springer, Agronomie, pp 3–11

    Google Scholar 

  • Russo ME, Olivieri G, Capasso C, De Luca V, Marzocchella A, Salatino P, Rossi M (2013) Kinetic study of a novel thermo-stable α-carbonic anhydrase for biomimetic CO2 capture. Enzyme Microbial Technol 53:271–277

    Article  Google Scholar 

  • Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  Google Scholar 

  • Sakono M, Kawashima YM, Ichinose H, Maruyama T, Kamiya N, Goto M (2004) Direct refolding of inclusion bodies using reversed micelles. Biotechnol Prog 20:1783–1787

    Article  Google Scholar 

  • Salemme FR, Weber PC Imiplex Llc (2013) Engineered carbonic anhydrase proteins for CO2 scrubbing applications. U.S. Patent Application 13/797,283

    Google Scholar 

  • Satav SS, Bhat S, Thayumanavan S (2010) Feedback regulated drug delivery vehicles: carbon dioxide responsive cationic hydrogels for antidote release. Biomacromolecules 11:1735–1740

    Article  Google Scholar 

  • Seckbach J, Oren A, Stan-Lotter H (eds) (2013) Polyextremophiles: life under multiple forms of stress, vol 27. Springer Science & Business Media

    Google Scholar 

  • Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54

    Article  Google Scholar 

  • Silverman DN, Lindskog S (1988) The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Acc Chem Res 21:30–36

    Article  Google Scholar 

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    Article  Google Scholar 

  • Smith KS, Cosper NJ, Stalhandske C, Scott RA, Ferry JG (2000) Structural and kinetic characterization of an archaeal β-class carbonic anhydrase. J Bacteriol 182:6605–6613

    Article  Google Scholar 

  • So AK, Espie GS (1998) Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Plant Mol Biol 37:205–215

    Article  Google Scholar 

  • Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. In: Proceedings of the national academy of sciences, pp pnas-0812721106

    Google Scholar 

  • Soltes-Rak E, Mulligan ME, Coleman JR (1997) Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J Bacteriol 179:769–774

    Article  Google Scholar 

  • Srivastava S, Bharti RK, Verma PK, Shekhar Thakur I (2015) Cloning and expression of gamma carbonic anhydrase from Serratia sp. ISTD04 for sequestration of carbon dioxide and formation of calcite. Bioresour Technol 188:209–213

    Article  Google Scholar 

  • Stadie WC, O’Brien H (1933) The catalysis of the hydration of carbon dioxide and dehydration of carbonic acid by an enzyme isolated from red blood cells. J Biol Chem 103:521–529

    Google Scholar 

  • Steiner H, Jonsson BH, Lindskog S (1975) The catalytic mechanism of carbonic anhydrase. Eur J Biochem 59:253–259

    Article  Google Scholar 

  • Sung YC, Fuchs JA (1988) Characterization of the cyn operon in Escherichia coli K12. J Biol Chem 263:14769–14775

    Google Scholar 

  • Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12:195–201

    Article  Google Scholar 

  • Thompson RB, Jones ER (1993) Enzyme-based fiber optic zinc biosensor. Anal Chem 65:730–734

    Article  Google Scholar 

  • Thompson RB, Peterson D, Mahoney W, Cramer M, Maliwal BP, Suh SW, Frederickson C, Fierke C, Herman P (2002) Fluorescent zinc indicators for neurobiology. J Neurosci Methods 118:63–75

    Article  Google Scholar 

  • Thompson RB, Whetsell WO Jr, Maliwal BP, Fierke CA, Frederickson CJ (2000) Fluorescence microscopy of stimulated Zn (II) release from organotypic cultures of mammalian hippocampus using a carbonic anhydrase-based biosensor system. J Neurosci Methods 96:35–45

    Article  Google Scholar 

  • Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1–8

    Article  Google Scholar 

  • Umetsu M, Tsumoto K, Hara M, Ashish K, Goda S, Adschiri T, Kumagai I (2003) How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system spectroscopic evidence for highly efficient refolding of a single-chain fv fragment. J Biol Chem 278:8979–8987

    Article  Google Scholar 

  • van de Vossenberg J, Woebken D, Maalcke WJ, Wessels HJ, Dutilh BE, Kartal B, Janssen-Megens EM, Roeselers G, Yan J, Speth D, Gloerich J (2013) The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol 15:1275–1289

    Article  Google Scholar 

  • Vullo D, De Luca V, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C (2012) Anion inhibition studies of the fastest carbonic anhydrase (CA) known, the extremo-CA from the bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem Lett 22:7142–7145

    Article  Google Scholar 

  • Veitch FP, Blankenship LC (1963) Carbonic anhydrases in bacteria. Nature 197:76–77

    Article  Google Scholar 

  • Vullo D, Nishimori I, Minakuchi T, Scozzafava A, Supuran CT (2011) Inhibition studies with anions and small molecules of two novel β-carbonic anhydrases from the bacterial pathogen Salmonella enterica serovar Typhimurium. Bioorg Med Chem Lett 21:3591–3595

    Article  Google Scholar 

  • Wang D, Hurst TK, Thompson RB, Fierke CA (2011) Genetically encoded ratiometric biosensors to measure intracellular exchangeable zinc in Escherichia coli. J Biomed Opt 16:087011

    Google Scholar 

  • Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    Article  Google Scholar 

  • Williamson SJ, Allen LZ, Lorenzi HA, Fadrosh DW, Brami D, Thiagarajan M, McCrow JP, Tovchigrechko A, Yooseph S, Venter JC (2012) Metagenomic exploration of viruses throughout the Indian Ocean. PLoS ONE 7:e42047

    Article  Google Scholar 

  • Xiao L, Hao J, Wang W, Lian B, Shang G, Yang Y, Liu C, Wang S (2014) The up-regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+ deficiency and the heterologously expressed enzyme promotes calcite dissolution. Geomicrobiol J 31:632–641

    Article  Google Scholar 

  • Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452(7183):56–61

    Article  Google Scholar 

  • Yamaguchi S, Yamamoto E, Mannen T, Nagamune T (2013) Protein refolding using chemical refolding additives. Biotechnol J 8:17–31

    Article  Google Scholar 

  • Zhi W, Landry SJ, Gierasch LM, Srere PA (1992) Renaturation of citrate synthase: influence of denaturant and folding assistants. Protein Sci 1:522–529

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Satyanarayana, T., Bose, H. (2017). Prospects in Mitigating Global Warming by Biomimetic Carbon Sequestration Using Recombinant Microbial Carbonic Anhydrases. In: Goel, M., Sudhakar, M. (eds) Carbon Utilization. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3352-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3352-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3351-3

  • Online ISBN: 978-981-10-3352-0

  • eBook Packages: EnergyEnergy (R0)

Keywords

Publish with us

Policies and ethics