Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Antidiabetic Phytochemicals and Their Applications in Modern Medicine

  • Chapter
  • First Online:
Plant-derived Bioactives

Abstract

Being counted as one among the top most four non-communicable diseases (NCD) in the world, diabetes is steadily increasing in incidences over the last quarter century. The change in dietary habits, sedentary lifestyles, stress, and aggravating genetic disposition factors are among the major causes of the disease. Diabetes is classified based on the pathological reasons that finally result in uncontrolled blood sugar. These include the destruction of pancreatic β-cells by autoimmune antibodies, mutational errors in insulin secretion pathway, insulin sensitivity, and drug-induced diabetes. Drugs that are effective in managing diabetes act through the modulation of specific target proteins that help in effective insulin secretion, enhancing sensitivity and reducing secondary complication. Phytochemicals are the treasure of bioactive molecules, having immense potential to prevent and cure most of the disease known till date. Antidiabetic drug molecules derived from plant sources, as well as through chemical synthesis are presently available in the market, and they possess considerable side effects in one way or another. So, molecules that could manage blood sugar better than existing is a hot topic of research. Due to alarming rise in incidence of diabetes, most of key players in drug industry are focussing to widen the range of antidiabetic drugs, identification of new targets and molecules, and combination of drugs. This chapter mainly focuses on the prospects of phytochemicals as hypoglycaemic drug and diabetes management regimen, present scenario, and scope in the modern medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 175.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

17β-HSD1:

17β-hydroxysteroid dehydrogenase type 1

ADD:

Antidiabetic drugs

AMPK:

Adenosine monophosphate-activated protein kinase

DAG:

Diacylglycerol

EMA:

European Medical Association

FFA:

Free fatty acid

GFAT:

Glutamine fructose-6-phosphate amido transferase

GLP1 :

Glucagon-like peptide-1

GLUT:

Glucose transporter

IAPP :

Islet amyloid polypeptide

IDF:

International Diabetes Federation

PPARγ:

Peroxisome proliferator-activated receptor-gamma

PTP1B:

Protein tyrosine phosphatases-1B

SGLT :

Sodium glucose transporter protein

STZ:

Streptozotocin

TAG:

Diacylglycerol

USFDA:

US Food and Drug Administration

WHO:

World Health Organization

References

  • Abbasi J (2018) Oral GLP-1 analog for type 2 diabetes on the horizon. JAMA 320:539

    PubMed  Google Scholar 

  • Abedini A, Cao P, Plesner A, Zhang J, He M, Derk J, Patil SA, Rosario R, Lonier J, Song F, Koh H, Li H, Raleigh DP, Schmidt AM (2018) RAGE binds preamyloid IAPP intermediates and mediates pancreatic beta cell proteotoxicity. J Clin Invest 128:682–698

    Article  PubMed  PubMed Central  Google Scholar 

  • Abramson A, Caffarel-Salvador E, Khang M, Dellal D, Silverstein D, Gao Y, Frederiksen MR, Vegge A, Hubálek F, Water JJ, Friderichsen AV, Fels J, Kirk RK, Cleveland C, Collins J, Tamang S, Hayward A, Landh T, Buckley ST, Roxhed N, Rahbek U, Langer R, Traverso G (2019) An ingestible self-orienting system for oral delivery of macromolecules. Science 363:611–615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agarwal YO, Sharma PK, Shrivastava B, Ojha S, Upadhya HM, Arya DS, Goyal SN (2014) Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats. PLoS One 9:e111212

    Article  CAS  Google Scholar 

  • Ahangarpour A, Mohammadian M, Dianat M (2012) Antidiabetic effect of hydroalcoholic Urtica dioica leaf extract in male rats with fructose-induced insulin resistance. Iran J Med Sci 37:181–186

    PubMed  PubMed Central  Google Scholar 

  • Ahmed ABA, Rao AS, Rao MV (2010) In vitro callus and in vivo leaf extract of Gymnema sylvestre stimulate β-cells regeneration and anti-diabetic activity in Wistar rats. Phytomedicine 17:1033–1039

    Article  PubMed  Google Scholar 

  • Akash MSH, Rehman K, Tariq M, Chen S (2015) Zingiber officinale and type 2 diabetes mellitus: evidence from experimental studies. Crit Rev Eukaryot Gene Expr 25:91–112

    Article  PubMed  Google Scholar 

  • Akiyama S, Katsumata S, Suzuki K, Ishimi Y, Wu J, Uehara M (2010) Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J Clin Biochem Nutr 46:87–92

    Article  PubMed  CAS  Google Scholar 

  • American Diabetes Association (2013) Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36:1033–1046

    Article  PubMed Central  Google Scholar 

  • American Diabetes Association (2019a) Economic costs of diabetes in the U.S. in 2017. Diabetes Care 41:917–928

    Article  Google Scholar 

  • American Diabetes Association (2019b) Position statement on standards of medical care in diabetes—2019 abridged for primary care providers. Clin Diabetes 37:11–34

    Article  PubMed Central  Google Scholar 

  • Anderson A, Walker BR (2013) 11β-HSD1 inhibitors for the treatment of type 2 diabetes and cardiovascular disease. Drugs 73:1385–1393

    Article  PubMed  CAS  Google Scholar 

  • Andrade-Cetto A, Wiedenfeld H (2004) Hypoglycemic effect of Acosmium panamense bark on streptozotocin diabetic rats. J Ethnopharmacol 90:217–220

    Article  PubMed  Google Scholar 

  • Aquilante CL (2010) Sulfonylurea pharmacogenomics in type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev Cardiovasc Ther 8:359–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharya S, Oksbjerg N, Young JF, Jeppesen PB (2014) Caffeic acid, naringenin and quercetin enhance glucose-stimulated insulin secretion and glucose sensitivity in INS-1E cells. Diabetes Obes Metab 16:602–612

    Article  PubMed  CAS  Google Scholar 

  • Blander G, Guarnte L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    Article  PubMed  CAS  Google Scholar 

  • Cadavez L, Montane J, Alcarraz-Vizan G, Visa M, Vidal-Fabrega L, Servitja JM, Novials A (2014) Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression. PLoS One 9:e101797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chawla A, Chawla R, Jaggi S (2016) Microvascular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab 20:546–551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chincholkar A, Pentewar G (2017) Cost variation analysis of oral anti-diabetic agents available in drug store of the tertiary care hospital and in Indian market. Int J Basic Clin Pharmacol 6:1794–1798

    Article  Google Scholar 

  • Choi JH, Banks AS, Estall JL, Kajimura S, Boström P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Blüher M, Griffin PR, Spiegelman BM (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466:451–456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S (2012) Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35:2121–2127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das UN (1999) GLUT-4, tumor necrosis factor, essential fatty acids and daf-genes and their role in insulin resistance and non-insulin dependent diabetes mellitus. Prostaglandins Leukot Essent Fat Acids 60:13–20

    Article  CAS  Google Scholar 

  • Dhanya R, Arun KB, Syama HP, Nisha P, Sundaresan A, Santhosh Kumar TR, Jayamurthy P (2014) Rutin and quercetin enhance glucose uptake in L6 myotubes under oxidative stress induced by tertiary butyl hydrogen peroxide. Food Chem 158:546–554

    Article  PubMed  CAS  Google Scholar 

  • Duwaerts CC, Maher JJ (2019) Macronutrients and the adipose-liver axis in obesity and fatty liver. Cell Mol Gastroenterol Hepatol 7:749–761

    Article  PubMed  PubMed Central  Google Scholar 

  • Eidi A, Eidi M, Esmaeili E (2006) Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 13:624–629

    Article  PubMed  CAS  Google Scholar 

  • Etxeberria U, de la Garza AL, Campión J, Martínez JA, Milagro FI (2012) Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Targets 16:269–297

    Article  PubMed  CAS  Google Scholar 

  • Florence NT, Benoit MZ, Jonas K, Alexandra T, Desire DD, Pierre K, Theophile D (2014) Antidiabetic and antioxidant effects of Annona muricata (Annonaceae), aqueous extract on streptozotocin-induced diabetic rats. J Ethnopharmacol 151:784–790

    Article  PubMed  Google Scholar 

  • Ghazali NA, Elmy A, Yuen LC, Sani NZ, Das S, Suhaimi F, Yusof R, Yusoff NH, Thent ZC (2016) Piper betel leaves induces wound healing activity via proliferation of fibroblasts and reducing 11β hydroxysteroid dehydrogenase-1 expression in diabetic rat. J Ayurveda Integr Med 7:198–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, More P, Derle A, Patil AB, Markad P, Asok A, Kumbhar N, Shaikh ML, Ramanamurthy B, Shinde VS, Dhavale DD, Chopade BA (2014) Diosgenin from Dioscorea bulbifera: novel hit for the treatment of type II diabetes mellitus with inhibitory activity against α-amylase and α-glucosidase. PLoS One 9:e106039. https://doi.org/10.1371/journal.pone.0106039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Global anti-diabetic drugs market research report 2019 (2019). https://www.wiseguyreports.com/reports/3825670-global-anti-diabetic-drugs-market-research-report2019

  • Godinho R, Mega C, Edite TL, Carvalho E, Teixeria F, Fernandes R, Reis F (2015) The place of dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapeutics: a “me too” or “the special one” antidiabetic class? J Diabetes Res 2015:806979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Governa P, Baini G, Borgonetti V, Cettolin G, Giachetti D, Magnano AR, Miraldi E, Biagi M (2018) Phytotherapy in the management of diabetes: a review. Molecules 23:105

    Article  PubMed Central  CAS  Google Scholar 

  • Gunawan-Puteri MD, Kato E, Kawabata J (2012) α-Amylase inhibitors from an Indonesian medicinal herb, Phyllanthus urinaria. J Sci Food Agric 92:606–609

    Article  PubMed  CAS  Google Scholar 

  • Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, Siddiqui RA (2015) Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 22:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hampp C, Borders-Hemphill V, Moeny DG, Wysowski DK (2014) Use of antidiabetic drugs in the U.S., 2003–2012. Diabetes Care 37:1367–1374

    Article  PubMed  CAS  Google Scholar 

  • Hegazy GA, Alnoury AM, Gad HG (2013) The role of Acacia arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med J 34:727–733

    PubMed  Google Scholar 

  • Hermayer KL, Dake A (2016) Newer oral and noninsulin therapies to treat type 2 diabetes mellitus. Cleve Clin J Med 83(5 Suppl 1):S18–S26

    Article  PubMed  Google Scholar 

  • Heymsfield SB, Wadden TA (2017) Mechanisms, pathophysiology, and management of obesity. N Engl J Med 376:254–266

    Article  PubMed  CAS  Google Scholar 

  • Hinnen D (2017) Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spec 30:202–210

    Article  Google Scholar 

  • Hossain CM, Ghosh MK, Satapathy BS, Dey NS, Mukherjee B (2014) Apigenin causes biochemical modulation, glut4 and cd38 alterations to improve diabetes and to protect damages of some vital organs in experimental diabetes. Am J Pharmacol Toxicol 9:39–52

    Article  CAS  Google Scholar 

  • India State-Level Disease Burden Initiative Diabetes Collaborators (2018) The increasing burden of diabetes and variations among the states of India: the Global Burden of Disease Study 1990–2016. Lancet Glob Health 6:e1352–e1362

    Article  Google Scholar 

  • International Diabetes Federation (2017) IDF Diabetes Atlas, 8th edn. International Diabetes Federation, Brussels. http://diabetesatlas.org/resources/2017-atlas.html

    Google Scholar 

  • Jaiswal YS, Tatke PA, Gabhe SY, Vaidya AB (2016) Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n-streptozotocin diabetic rats. J Tradit Complement Med 7:421–427

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DS, Podolsky SH, Greene JA (2012) The burden of disease and the changing task of medicine. N Engl J Med 366:2333–2338

    Article  PubMed  CAS  Google Scholar 

  • Joshi T, Singh AK, Haratipur P, Sah AN, Pandey AK, Naseri R, Juyal V, Farzaei MH (2019) Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications. J Cell Physiol 234:17212–17231

    Article  PubMed  CAS  Google Scholar 

  • Kairupan TS, Chenga K-C, Asakawaa A, Amitania H, Yagic T, Atakaa K, Rokota NT, Kapantowd NH, Katoe I, Inui A (2019) Rubiscolin-6 activates opioid receptors to enhance glucose uptake in skeletal muscle. J Food Drug Anal 27:266–274

    Article  PubMed  CAS  Google Scholar 

  • Kalra S, Kesavadev J, Chadha M, Kumar GV (2018) Sodium-glucose cotransporter-2 inhibitors in combination with other glucose-lowering agents for the treatment of type 2 diabetes mellitus. Indian J Endocr Metab 22:827–836

    Article  CAS  Google Scholar 

  • Kanaujia A, Duggar R, Pannakal ST, Yadav SS, Katiyar CK, Bansal V, Anand S, Sujatha S, Lakshmi BS (2010) Insulinomimetic activity of two new gallotannins from the fruits of Capparis moonii. Bioorg Med Chem 18:3940–3945

    Article  PubMed  CAS  Google Scholar 

  • Khan MF, Dixit P, Jaiswal N, Tamrakar AK, Srivastava AK, Maurya R (2012) Chemical constituents of Kigelia pinnata twigs and their GLUT4 translocation modulatory effect in skeletal muscle cells. Fitoterapia 83:125–129

    Article  PubMed  CAS  Google Scholar 

  • Kidane Y, Bokrezion T, Mebrahtu J, Mehari M, Gebreab YB, Fessehaye N, Achila OO (2018) In Vitro inhibition of α-amylase and α-glucosidase by extracts from Psiadia punctulata and Meriandra bengalensis. Evid Based Complement Alternat Med 16:2164345

    Google Scholar 

  • Kim JS, Kwon CS, Son KH (2000) Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci Biotechnol Biochem 64:2458–2461

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Pan JH, Cho HT, Kim YJ (2016) Black ginseng extract counteracts streptozotocin-induced diabetes in mice. PLoS One 11:e0146843. https://doi.org/10.1371/journal.pone.0146843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koupy D, Kotolova H, Kucerova JR (2015) Effectiveness of phytotherapy in supportive treatment of type 2 diabetes mellitus II. Fenugreek (Trigonella foenum-graecum). Ceska Slov Farm 64:67–71

    PubMed  CAS  Google Scholar 

  • Kumar A, Gnananath K, Gande S, Goud E, Rajesh P, Nagarjuna S (2011) Anti-diabetic activity of ethanolic extract of Achyranthes aspera leaves in streptozotocin induced diabetic rats. J Pharm Res 4:3124–3125

    Google Scholar 

  • Lee JO, Lee SK, Kim JH, Kim N, You GY, Moon JW, Kim SJ, Park SH, Kim HS (2012) Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells. J Biol Chem 287:44121–44129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loviscach M, Rehman N, Carter L, Mudaliar S, Mohadeen P, Ciaraldi TP, Veerkamp JH, Henry RR (2000) Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 43:304–311

    Article  PubMed  CAS  Google Scholar 

  • Malandrucco I, Pasqualetti P, Giordani I (2012) Very-low-calorie diet: a quick therapeutic tool to improve beta cell function in morbidly obese patients with type 2 diabetes. Am J Clin Nutr 95:609–613

    Article  PubMed  CAS  Google Scholar 

  • Malini P, Kanchana G, Rajadurai M (2011) Antidiabetic efficacy of ellagic acid in streptozotocin induced diabetes mellitus in albino wistar rats. Asian J Pharmaceut Clin Res 4:124–128

    Google Scholar 

  • Meng S, Cao J, Feng Q, Peng J, Hu Y (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid base Compl Alternative Med 2013:801457. https://doi.org/10.1155/2013/801457

    Article  Google Scholar 

  • Mishra S, Singh AS, Mishra N, Pandey H, Tiwari VK (2017) Carbohydrate-based antidiabetic agents from nature. In: Brahmachari G (ed) Discovery and development of antidiabetic agents from natural products. Elsevier, Amsterdam, pp 147–183

    Chapter  Google Scholar 

  • Montane J, de Pablo S, Obach M, Cadavez L, Castano C, Alcarraz Vizan G, Visa M, Rodriguez-Comas J, Parrizas M, Servitja JM, Novials A (2016) Protein disulfide isomerase ameliorates beta-cell dysfunction in pancreatic islets over expressing human islet amyloid polypeptide. Mol Cell Endocrinol 420:57–65

    Article  PubMed  CAS  Google Scholar 

  • Montane J, de Pablo S, Castano C, Rodriguez-Comas J, Cadavez L, Obach M, Visa M, Alcarraz-Vizan G, Sanchez Martinez M, Nonell-Canals A, Parrizas M, Servitja JM, Novials A (2017) Amyloid-induced beta-cell dysfunction and islet inflammation are ameliorated by 4-phenylbutyrate (PBA) treatment. FASEB J 31:5296–5306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montvida O, Shaw J, Atherton JJ, Stinger F, Paul SK (2018) Long-term trends in antidiabetes drug usage in the U.S.: real-world evidence in patients newly diagnosed with type 2 diabetes. Diabetes Care 41:69–78

    Article  PubMed  Google Scholar 

  • Morgan BJ, Sy C, Albiston AL (2011) GLUT4 associated proteins as therapeutic targets for diabetes. Recent Pat Endocr Metab Immune Drug Discov 5:25–32

    Article  PubMed  CAS  Google Scholar 

  • Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, Markle JM, Hegele RA, Huff MW (2009) Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58:2198–2210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nanni V, Canuti L, Gismondi A, Canini A (2018) Hydroalcoholic extract of Spartium junceum L flowers inhibits growth and melanogenesis in B16-F10 cells by inducing seneacence. Phytomedicine 46:1–10

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan A, Chinnaiyan M, Karunadevi B (2015) Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl Physiol Nutr Metab 40:769–781

    Article  PubMed  CAS  Google Scholar 

  • Nauck MA (2014) Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther 8:1335–1380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nauck MA, Meier JJ (2016) The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 4:525–536

    Article  PubMed  CAS  Google Scholar 

  • Nguyen NDT, Le LT (2012) Targeted proteins for diabetes drug design. Adv Nat Sci Nanosci Nanotechnol 3:013001. https://doi.org/10.1088/2043-6262/3/1/013001

    Article  Google Scholar 

  • Olaokun OO, McGaw LJ, Eloff JN, Naidoo V (2013) Evaluation of the inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of extracts of ten African Ficus species (Moraceae) used traditionally to treat diabetes. Evid Based Complement Alternat Med 13:2–12

    Article  Google Scholar 

  • Ong KW, Hsu A, Tan BKH (2013) Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by AMPK activation. Biochem Pharmacol 85:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Oskarsson ME, Hermansson E, Wang Y, Welsh N, Presto J, Johansson J, Westermark GT (2018) BRICHOS domain of Bri2 inhibits islet amyloid polypeptide (IAPP) fibril formation and toxicity in human beta cells. Proc Natl Acad Sci U S A 115:E2752–E2761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palanisamy S, Yien ELH, Shi LW, Si LY, Qi SH, Ling LSC, Lun TW, Chen YN (2018) Systematic review of efficacy and safety of newer antidiabetic drugs approved from 2013 to 2017 in controlling HbA1c in diabetes patients. Pharmacy (Basel) 6:57

    Article  Google Scholar 

  • Palsamy P, Sivakumar S, Subramanian S (2010) Resveratrol attenuates hyperglycemia-mediated oxidative stress, proinflammatory cytokines and protects hepatocytes ultrastructure in streptozotocin–nicotinamide-induced experimental diabetic rats. Chem Biol Interact 186:200–210

    Article  PubMed  CAS  Google Scholar 

  • Panunti B, Jawa AA, Fonseca VA (2004) Mechanisms and therapeutic targets in type 2 diabetes mellitus. Drug Discov Today Dis Mech 1:151–157

    Article  CAS  Google Scholar 

  • Paoli P, Cirri P, Caselli A, Ranaldi F, Bruschi G, Santi A, Camici G (2013) The insulin-mimetic effect of morin: a promising molecule in diabetes treatment. Biochim Biophys Acta 30:3102–3111

    Article  CAS  Google Scholar 

  • Park J-S, Yang J-S, Hwang B-Y, Yoo B-K, Han K (2009) Hypoglycemic effect of yacon tuber extract and its constituent, chlorogenic acid, in streptozotocin-induced diabetic rats. Biomol Ther 17:256–262

    Article  CAS  Google Scholar 

  • Patane G, Piro S, Rabuazzo AM, Anello M, Vigneri R, Purrello F (2000) Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells. Diabetes 49:735–740

    Article  PubMed  CAS  Google Scholar 

  • Pathak R, Bridgeman MB (2010) Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. Pharm Therap 35:509–513

    Google Scholar 

  • Pérez López G, González Albarrán O, Cano Megías M (2010) Type 2 sodium-glucose cotransporter (SGLT2) inhibitors: from familial renal glucosuria to the treatment of type 2 diabetes mellitus. Nefrologia 30:618–625

    PubMed  Google Scholar 

  • Poovitha S, Parani M (2016) In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement Altern Med 16(Suppl 1):185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popkin BM, Hawkes C (2016) Sweetening of the global diet, particularly beverages: patterns, trends, and policy responses. Lancet Diabetes Endocrinol 4:174–186

    Article  PubMed  Google Scholar 

  • Popov D (2011) Novel protein tyrosine phosphatase 1B inhibitors: interaction requirements for improved intracellular efficacy in type 2 diabetes mellitus and obesity control. Biochem Biophys Res Commun 410:377–381

    Article  PubMed  CAS  Google Scholar 

  • Priscilla DH, Roy D, Suresh A, Kumar V, Thirumurugan K (2014) Naringenin inhibits α-glucosidase activity: a promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem Biol Interact 210:77–85

    Article  PubMed  CAS  Google Scholar 

  • Puppala M, Ponder J, Suryanarayana P, Reddy GB, Petrash M, Labarbera DV (2012) The isolation and characterisation of β-glucogallin as a novel aldose reductase inhibitor form Emblica officinalis. PLoS One 4:e31399

    Article  CAS  Google Scholar 

  • Qian Y, Ahmad M, Chen S, Gillespie P, Le N, Mennona F, Mischke S, So SS, Wang H, Burghardt C, Tannu S, Conde-Knape K, Kochan J, Bolin D (2011) Discovery of 1-arylcarbonyl-6,7-dimethoxyisoquinoline derivatives as glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitors. Bioorg Med Chem Lett 21:6264–6269

    Article  PubMed  CAS  Google Scholar 

  • Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson A-M, Miftaraj M, McGuire DK, Sattar N, Rosengren A, Gudbjörnsdottir S (2017) Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med 376:1407–1418

    Article  PubMed  Google Scholar 

  • Rojas J, Roberto A, Sofía MM, Maricarmen C, Juan S, José CM, Edward R, Sandra W-D, Marco C, Carlos G, Modesto G-R, Julio CV, Juan H, Valmore B (2016) A tale about perfect partners: new horizons in glimepiride and metformin - mechanisms of action. Archivos Venezolanos deFarmacología y Terapéutica 35:53–66

    Google Scholar 

  • Salimifar M, Fatehi-Hassanabad Z, Fatehi M (2013) A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr Diabetes Rev 9:402–411

    Article  PubMed  CAS  Google Scholar 

  • Samuel VT, Shulman GI (2016) The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 126:12–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangeetha KN, Sujatha S, Muthusamy VS, Anand S, Nithya N, Velmurugan D, Balakrishnan A, Lakshmi BS (2010) 3β-taraxerol of Mangifera indica, a PI3K dependent dual activator of glucose transport and glycogen synthesis in 3T3-L1 adipocytes. Biochim Biophys Acta 1800:359–366

    Article  PubMed  CAS  Google Scholar 

  • Sarian MN, Ahmed QU, Mat So’ad SZ, Alhassan AM, Murugesu S, Perumal V, Syed Mohamad SNA, Khatib A, Latip J (2017) Antioxidant and antidiabetic effects of flavonoids: a structure-activity relationship based study. Biomed Res Int 2017:8386065. https://doi.org/10.1155/2017/8386065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sendrayaperumal V, Iyyam Pillai S, Subramanian S (2014) Design, synthesis and characterization of zinc-morin, a metal flavonol complex and evaluation of its antidiabetic potential in HFD-STZ induced type 2 diabetes in rats. Chem Biol Interact 219:9–17

    Article  PubMed  CAS  Google Scholar 

  • Sharma AK, Bharti S, Goyal S, Arora S, Nepal S, Kishore K, Joshi S, Kumari S, Arya DS (2011) Upregulation of PPAR by Aegle marmelos ameliorates insulin resistance and -cell dysfunction in high fat diet fed-streptozotocin induced type 2 diabetic rats. Phytother Res 25:1457–1465

    Article  PubMed  Google Scholar 

  • Sharma A, Green JB, Dunning A, Lokhnygina Y, Al-Khatib SM, Lopes RD, Buse JB, Lachin JM, Van de Werf F, Armstrong PW, Kaufman KD, Standl E, Chan JCN, Distiller LA, Scott R, Peterson ED, Holman RR, TECOS Study Group (2017) Causes of death in a contemporary cohort of patients with type 2 diabetes and atherosclerotic cardiovascular disease: insights from the TECOS trial. Diabetes Care 40:1763–1770

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Gupta M (2007) Regeneration of β cells in islets of Langerhans of pancreas of alloxan diabetic rats by acetone extract of Momordica charantia (Linn.) (bitter gourd) fruits. Indian J Exp Bio 45:1055–1062

    Google Scholar 

  • Sridharan K, Mohan R, Ramaratnam S, Panneerselvam D (2011) Ayurvedic treatments for diabetes mellitus. Cochrane Database Syst Rev 12:CD008288

    Google Scholar 

  • Sunil C, Ignacimuthu S, Agastian P (2011) Antidiabetic effect of Symplocos cochinchinensis (Lour.) S. Moore. in type 2 diabetic rats. J Ethnopharmacol 134:298–304

    Article  PubMed  Google Scholar 

  • Szkudelski T, Szkudelska K (2011) Anti-diabetic effects of resveratrol. Ann N Y Acad Sci 1215:34–39

    Article  PubMed  CAS  Google Scholar 

  • Taylor R (2012) Insulin resistance and type 2 diabetes. Diabetes 61:778–779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19:1578. https://doi.org/10.3390/ijms19061578

    Article  PubMed Central  CAS  Google Scholar 

  • Tiwari N, Thakur AK, Kumar V, Dey A, Kumar V (2014) Therapeutic targets for diabetes mellitus: an update. Clin Pharmacol Biopharm 3:117. https://doi.org/10.4172/2167-065X.1000117

    Article  CAS  Google Scholar 

  • Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Suriyanarayanan S, Gunasekaran P, Sivasubramanian S, Ramkumar KM (2014) Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in streptozotocin-induced diabetic rats. Environ Toxicol Pharmacol 37:326–335

    Article  PubMed  CAS  Google Scholar 

  • Variya BC, Bakrania AK, Patel SS (2019) Antidiabetic potential of gallic acid from Emblica officinalis: improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signalling. Phytomedicine:152906. https://doi.org/10.1016/j.phymed.2019.152906

  • Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, Sarigianni M, Matthews DR, Tsapas A (2013) Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 159:262–274

    Article  PubMed  Google Scholar 

  • Vetere A, Choudhary A, Burns SM, Wagner BK (2014) Targeting the pancreatic β-cell to treat diabetes. Nat Rev Drug Discov 13:278–289

    Article  PubMed  CAS  Google Scholar 

  • WHO report on definition, diagnosis and classification of diabetes mellitus and its complications (1999) Department of Noncommunicable Disease Surveillance, World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/66040/WHO_NCD_NCS_99.2.pdf?sequence=1

  • Xiang L, Huang X, Chen L, Rao P, Ke L (2007) The reparative effects of Momordica Charantia Linn. extract on HIT-T15 pancreatic β-cells. Asia Pacific J Clin Nutr 16:249–252

    Google Scholar 

  • Zhang D, Leung PS (2014) Potential roles of GPR120 and its agonists in the management of diabetes. Drug Des Devel Ther 8:1013–1027

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Feng F, Chen T, Li Z, Shen QW (2016) Antidiabetic and antihyperlipidemic activities of Forsythia suspensa (Thunb.) Vahl (fruit) in streptozotocin-induced diabetes mice. J Ethnopharmacol 192:256–263

    Article  PubMed  Google Scholar 

  • Zhou J, Chan L, Zhou S (2012) Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 19:3523–3531

    Article  PubMed  CAS  Google Scholar 

  • Zhu C (2013) Aldose reductase inhibitors as potential therapeutic drugs of diabetic complications. In: Oguntibeju OO (ed) Diabetes mellitus—insights and perspectives. IntechOpen, London. https://doi.org/10.5772/54642

    Chapter  Google Scholar 

  • Zou C, Li W, Pan Y, Khan ZA, Li J, Wu X, Wang Y, Deng L, Liang G, Zhao Y (2017) 11β-HSD1 inhibition ameliorates diabetes-induced cardiomyocyte hypertrophy and cardiac fibrosis through modulation of EGFR activity. Oncotarget 8:96263–96275

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Sreekantan Krishna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishna, M.S., Arun, K.B. (2020). Antidiabetic Phytochemicals and Their Applications in Modern Medicine. In: Swamy, M. (eds) Plant-derived Bioactives. Springer, Singapore. https://doi.org/10.1007/978-981-15-1761-7_11

Download citation

Keywords

Publish with us

Policies and ethics