Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Augmentation of Plant Salt Stress Tolerance by Microorganisms

  • Chapter
  • First Online:
Microbiological Activity for Soil and Plant Health Management
  • 1538 Accesses

  • 1 Citation

Abstract

Salinity stress is one of the major abiotic stress, which has drastically resulted in a global reduction of agricultural productivity. Around 20% of the global irrigated land falls under the category of saline soil. The elevated amount of soluble salts present in the cultivable land poses severe problems for crop survival and affects various physiological and metabolic processes of the plants. Enhancing the quality of saline soils by chemical methods have shown limited achievements as they also disturb the balance of natural soil ecosystem. Thus, an alternative strategy to compensate for the excessive amounts of salts present in the soil with no harm to the environment is required. Salt-tolerant microorganisms or halophiles can survive in the harsh saline environment and are also important in plant growth and survival. Lately, the plant growth-promoting rhizobacteria, mycorrhiza, and fungal endophytes have been extensively studied for the reclamation of extremely saline habitats. Thus, understanding of the molecular mechanisms and identification of salt-tolerant microorganisms which can benefit crop survivability under extreme saline conditions without harming the ecosystem are necessary. Here, we provide an overview of our current understanding of salt stress and various microorganisms including bacteria, fungi, and endophytes useful to enhance the production of crops under saline environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON, Egamberdieva D (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13(1):37–44

    CAS  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(5757):91–94

    CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589

    CAS  PubMed  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    CAS  PubMed  Google Scholar 

  • ALKahtani MD, Attia KA, Hafez YM, Khan N, Eid AM, Ali MA, Abdelaal KA (2020) Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy 10:1180

    CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10(2):51–54

    CAS  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40(1):326–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora M et al (2020) Interaction between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants. Symbiosis 80(1):61–73

    CAS  Google Scholar 

  • Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366:93–105

    CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45(4):405–413

    Google Scholar 

  • Barnawal D, Bharti N, Tripathi A, Pandey SS, Chanotiya CS, Kalra A (2016) ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul 35(2):553–564

    CAS  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161:502–514. https://doi.org/10.1111/ppl.12614

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    CAS  Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. J Soil Sci Plant Nutr 13:123–141

    Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6(1):1–16

    CAS  Google Scholar 

  • Bhatt P (2018) Insilico tools to study the bioremediation in microorganisms. In: Pathak V, Navneet (eds) Handbook of research on microbial tools for environmental waste management. IGI Global, Hershey, PA, pp 389–395. https://doi.org/10.4018/978-1-5225-3540-9.ch018

    Chapter  Google Scholar 

  • Bhatt P, Barh A (2018) Bioinformatic tools to study the soil microorganisms: an in silico approach for sustainable agriculture. In: Choudhary D, Kumar M, Prasad R, Kumar V (eds) In silico approach for sustainable agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-0347-0_10

    Chapter  Google Scholar 

  • Bhatt P, Nailwal TK (2018) Crop improvement through microbial technology: a step toward sustainable agriculture. In: Crop improvement through microbial biotechnology. Ch-11. Elsevier, Amsterdam, pp 245–253. https://doi.org/10.1016/B978-0-444-63987-5.00011-6

    Chapter  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    CAS  PubMed  Google Scholar 

  • Bhise KK, Dandge PB (2019) Mitigation of salinity stress in plants using plant growth promoting bacteria. Symbiosis 79(3):191–204

    Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465(1–2):140–151

    CAS  PubMed  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campanelli A, Ruta C, De Mastro G, Morone-Fortunato I (2013) The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis 59(2):65–76

    Google Scholar 

  • Chinnaswamy A et al (2018) A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Ann Appl Biol 172(3):295–308

    CAS  Google Scholar 

  • Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci 111(17):6497–6502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui MH, Yoo KS, Hyoung S, Nguyen HTK, Kim YY, Kim HJ, Shin JS (2013) An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett 587(12):1773–1778

    CAS  PubMed  Google Scholar 

  • Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity: a European scale review. Sci Total Environ 573:727–739

    CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • del Carmen Orozco-Mosqueda M, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439

    Google Scholar 

  • Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175(3):387–404

    CAS  PubMed  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128(2):379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz KJ, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245(1–4):3–14

    CAS  PubMed  Google Scholar 

  • Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569(1–3):317–320

    CAS  PubMed  Google Scholar 

  • Egamberdieva D et al (2016) A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis fish.) under salt stress. Appl Microbiol Biotechnol 100(6):2829–2841

    CAS  PubMed  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano JM (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36(10):1771–1782

    CAS  PubMed  Google Scholar 

  • Evans MJ, Choi WG, Gilroy S, Morris RJ (2016) A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiol 171(3):1771–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22(3):203–217

    CAS  PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23(1):71–86

    CAS  PubMed  Google Scholar 

  • FAO (2016) Saline soils and their management. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/x5871e/x5871e04.htm. (cross reference: Litalien, A. & Zeeb, B. (2020). Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Science of the Total Environment, 698, 134235)

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12(4):185–190

    CAS  PubMed  Google Scholar 

  • Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Yvon R (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28(5):666–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira MJ, Silva H, Cunha A (2019) Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with Iron limitation in saline soils: a review. Pedosphere 29(4):409–420

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol:945–963

    Google Scholar 

  • Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, Brunoud G, Testerink C (2013) Halotropism is a response of plant roots to avoid a saline environment. Curr Biol 23(20):2044–2050

    CAS  PubMed  Google Scholar 

  • Gamalero E et al (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. J Appl Microbiol 108(1):236–245

    CAS  PubMed  Google Scholar 

  • Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PMY, Dinneny JR (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25(6):2132–2154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14(5):307–312

    PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    CAS  PubMed  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30(8):1383–1391

    CAS  PubMed  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    CAS  Google Scholar 

  • Hamayun M et al (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686

    PubMed  PubMed Central  Google Scholar 

  • Han QQ, Wu YN, Gao HJ, Xu R, Paré PW, Shi H, Zhao Q, Li HR, Khan SA, Wang YQ, Wang SM (2017) Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03. Acta Physiol Plant 39(1):–35

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Bhowmik PC, Hossain M, Rahman MM, Fujita M (2014) Potential use of halophytes to remediate saline soils. BioMed Res Int 2014:589341

    PubMed  PubMed Central  Google Scholar 

  • Hashem A et al (2016a) Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). Biomed Res Int:2016

    Google Scholar 

  • Hashem A et al (2016b) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089

    PubMed  PubMed Central  Google Scholar 

  • Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D, Abd-Allah EF (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25:1102–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat R et al (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Google Scholar 

  • Hayes S, Pantazopoulou CK, van Gelderen K, Reinen E, Tween AL, Sharma A, Pierik R (2019) Soil salinity limits plant shade avoidance. Curr Biol 29(10):1669–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Islam F, Yasmeen T, Ali S, Ali B, Farooq MA, Gill RA (2015) Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol Plant 37:153

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55(1):45

    PubMed  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33(3):797–802

    Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6(2):275–286

    CAS  PubMed  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69(1–2):91–105

    CAS  PubMed  Google Scholar 

  • Jiang Y, Yang B, Deyholos MK (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Gen Genomics 282(5):503–516

    CAS  Google Scholar 

  • Jiang Z, Zhou X, Tao M, Yuan F, Liu L, Wu F, Li C (2019) Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572(7769):341–346

    CAS  PubMed  Google Scholar 

  • Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromatic Plants 3:71–77

    Google Scholar 

  • Kalev SD, Toor GS (2018) The composition of soils and sediments. In: Green chemistry. Elsevier, pp 339–357

    Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291

    CAS  PubMed  Google Scholar 

  • Khalid M, Bilal M, Hassani D, Iqbal HM, Wang H, Huang D (2017) Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot Stud 58:1–7

    CAS  Google Scholar 

  • Khalil HA, Eissa AM, El-Shazly SM, Nasr AMA (2011) Improved growth of salinity-stressed citrus after inoculation with mycorrhizal fungi. Sci Hortic 130(3):624–632

    CAS  Google Scholar 

  • Khan AL et al (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12(1):3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan NA, Khan MIR, Ferrante A, Poor P (2017) Ethylene: a key regulatory molecule in plants. Front Plant Sci 8:1782

    PubMed  PubMed Central  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang SM, Lee IJ (2019) Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol 69:797–808

    CAS  Google Scholar 

  • Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37(2):109

    PubMed  PubMed Central  Google Scholar 

  • Kumar N, Gangola S, Bhatt P, Jeena N, Khwairakpam R (2019) Soil genesis, survey and classification. In: Varma A, Choudhary D (eds) Mycorrhizosphere and pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_8

    Chapter  Google Scholar 

  • Kumar V, Kumar P, Khan A (2020) Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. Biocatal Agric Biotechnol 23:101463

    Google Scholar 

  • Kunte HJ (2006) Osmoregulation in bacteria: compatible solute accumulation and osmosensing. Environ Chem 3(2):94–99

    CAS  Google Scholar 

  • Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127(3):228–233

    Google Scholar 

  • Li HQ, Jiang XW (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64:235–241

    CAS  Google Scholar 

  • López-Bucio J et al (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact 20(2):207–217

    PubMed  Google Scholar 

  • Maggio A et al (2010) Contrasting effects of GA 3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29(1):63–72

    CAS  Google Scholar 

  • Mahajan S, Sopory S, Tuteja N, Asaf A, Marg A (2006) CBL-CIPK paradigm: role in calcium and stress signaling in plants. Proc Indian Natl Sci Acad 72(2):63

    CAS  Google Scholar 

  • Manjili FA, Sedghi M, Pessarakli M (2012) Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars under salinity stress. J Plant Nutr 35(7):1098–1111

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    CAS  PubMed  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    CAS  PubMed  Google Scholar 

  • Nahar K, Hasanuzzaman M, Fujita M (2016) Roles of osmolytes in plant adaptation to drought and salinity. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi

    Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    CAS  PubMed  Google Scholar 

  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9(34)

    Google Scholar 

  • Omar MNA, Osman MEH, Kasim WA, Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. In: Salinity and water stress. Springer, Dordrecht

    Google Scholar 

  • Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186

    CAS  Google Scholar 

  • Piernik A, Hrynkiewicz K, Wojciechowska A, SzymaÅ„ska S, Lis MI, Muscolo A (2017) Effect of halotolerant endophytic bacteria isolated from Salicornia europaea L. on the growth of fodder beet (Beta vulgaris L.) under salt stress. Arch Agron Soil Sci 63:1404–1418

    Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Mäser P (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11(8):372–374

    CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32(1):181–200

    CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26(7):673–684

    CAS  PubMed  Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166(13):1350–1359

    CAS  PubMed  Google Scholar 

  • Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, Jiang JH (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374(1–2):753–766

    CAS  Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34(7):1245–1259

    CAS  PubMed  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2:6

    PubMed  PubMed Central  Google Scholar 

  • Rath KM, Fierer N, Murphy DV, Rousk J (2019) Linking bacterial community composition to soil salinity along environmental gradients. ISME J 13(3):836–846

    CAS  PubMed  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME, Davy AJ (2010) Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol 12(1):79–87

    PubMed  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    CAS  PubMed  Google Scholar 

  • Ruppel S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct Plant Biol 40(9):940–951

    CAS  PubMed  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    CAS  PubMed  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    PubMed  PubMed Central  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  PubMed  Google Scholar 

  • Sarkar A et al (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169(1):20–32

    CAS  PubMed  Google Scholar 

  • Satyaprakash M et al (2017) Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int J Curr Microbiol App Sci 6(4):2133–2144

    CAS  Google Scholar 

  • Schirawski J, Perlin MH (2018) Plant–microbe interaction 2017—the good, the bad and the diverse. Multidisciplinary Digital Publishing Institute

    Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112(7):1209–1221

    PubMed  PubMed Central  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    CAS  Google Scholar 

  • Shilev S, Sancho ED, Benlloch-González M (2012) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manag 95:S37–S41

    CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    CAS  PubMed  Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria. Resonance 18:275–281

    Google Scholar 

  • Singh RP, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67

    CAS  PubMed  Google Scholar 

  • Stavridou E, Hastings A, Webster RJ, Robson PR (2017) The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus× giganteus. GCB Bioenergy 9(1):92–104

    CAS  Google Scholar 

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125:31–40

    CAS  Google Scholar 

  • Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35:425–437

    PubMed  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47(8):907

    CAS  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    CAS  PubMed  Google Scholar 

  • Tolba ST, Ibrahim M, Amer EA, Ahmed DA (2019) First insights into salt tolerance improvement of Stevia by plant growth-promoting Streptomyces species. Arch Microbiol 201:1295–1306

    CAS  PubMed  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16(9):2481–2498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuna AL et al (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62(1):1–9

    CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. In: Methods in enzymology, vol 428. Academic Press, pp 419–438

    Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    PubMed  PubMed Central  Google Scholar 

  • Valenzuela CE, Acevedo-Acevedo O, Miranda GS, Vergara-Barros P, Holuigue L, Figueroa CR, Figueroa PM (2016) Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J Exp Bot 67(14):4209–4220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71

    Google Scholar 

  • Vejan P et al (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21(5):573

    PubMed Central  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    CAS  PubMed  Google Scholar 

  • Verma S, Bhatt P, Verma A et al (2021) Microbial technologies for heavy metal remediation: effect of process conditions and current practices. Clean Techn Environ Policy. https://doi.org/10.1007/s10098-021-02029-8

  • Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167(3):222–230

    CAS  PubMed  Google Scholar 

  • Wang X, Chen X, Liu Y, Gao H, Wang Z, Sun G (2011) CkDREB gene in Caragana korshinskii is involved in the regulation of stress response to multiple abiotic stresses as an AP2/EREBP transcription factor. Mol Biol Rep 38(4):2801–2811

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13:e0196408

    PubMed  PubMed Central  Google Scholar 

  • Waqas M et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17(9):10754–10773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304

    Google Scholar 

  • Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, Shen WB (2011) Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J 66(2):280–292

    CAS  PubMed  Google Scholar 

  • Xiong Y-W et al (2019) Enhancement of growth and salt tolerance of tomato seedlings by a natural halotolerant actinobacterium Glutamicibacter halophytocola KLBMP 5180 isolated from a coastal halophyte. Plant Soil 445(1–2):307–322

    CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009a) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    CAS  PubMed  Google Scholar 

  • Yang O, Popova OV, Süthoff U, Lüking I, Dietz KJ, Golldack D (2009b) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436(1–2):45–55

    CAS  PubMed  Google Scholar 

  • Yao L et al (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54

    CAS  Google Scholar 

  • Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Müller J, Baluska F (2016) A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119

    CAS  PubMed  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135(2):615–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, K., Adhikari, A., Pant, V., Bisht, T.S. (2021). Augmentation of Plant Salt Stress Tolerance by Microorganisms. In: Soni, R., Suyal, D.C., Bhargava, P., Goel, R. (eds) Microbiological Activity for Soil and Plant Health Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-2922-8_10

Download citation

Keywords

Publish with us

Policies and ethics