Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

The Interplay Between Plant Functional Traits and Climate Change

  • Chapter
  • First Online:
Plant Functional Traits for Improving Productivity
  • 804 Accesses

  • 38 Citations

Abstract

Global climate change poses extraordinary challenges to ecosystems, profoundly affecting plant species and their functional traits. The chapter explores the dynamic relationships between crucial plant functional traits and various aspects of climate change, including temperature changes, rainfall patterns, and elevated atmospheric CO2 concentrations. Understanding the complex connection between plant functional traits and climate change becomes paramount for sustainable development as universal heat rises and climatic patterns change. This chapter also highlights the dynamic interactions between plant characteristics and the evolving climate while being true to the SDGs. We investigate how climate change affects the functional traits of plants, such as leaf morphology, photosynthetic efficiency, and reproductive strategies, and how these changes, in turn, affect ecosystems. Our investigation shows that climate-induced modifications in plant functional traits have far-reaching consequences for ecosystem structure and function. Changes in leaf morphology, photosynthesis rates, and reproductive strategies impact individual plant fitness, community structure, and overall ecosystem resilience. It is important to highlight the complex relationships between plant functional traits and climate change to predict the future of ecosystems. To provide a comprehensive understanding of the mechanisms driving plant characteristic responses to changes in climate, further research directions shall focus on integrating observational and experimental approaches, considering both individual species and community-level dynamics. This synthesis contributes to the broader effort to develop effective strategies to mitigate and adapt to the ecological consequences of ongoing climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 129.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–372

    Article  PubMed  Google Scholar 

  • Alnsour M, Ludwig-Müller J (2015) Potential effects of climate change on plant primary and secondary metabolism and its influence on plant ecological interactions. J Endocytobiosis Cell Res 26:90–99

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Berry JA, Beerling DJ, Franks PJ (2010) Stomata: key players in the earth system, past and present. Curr Opin Plant Biol 13(3):232–239

    Article  Google Scholar 

  • Bhattacharyya S (2022) Mechanism of temperature stress acclimation and the role of transporters in plants. In: Plant perspectives to global climate changes. Academic Press, pp 413–457

    Chapter  Google Scholar 

  • Bishop KA, Betzelberger AM, Long SP, Ainsworth EA (2015) Is there potential to adapt soybean (Glycine max M err.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell Environ 38(9):1765–1774

    Article  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  • Brouwer R (1983) Functional equilibrium: sense or nonsense? Netherlands J Agric Sci 31(4):335–348

    Article  Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Díaz S (2000) Consequences of changing biodiversity. Nature 405(6783):234–242

    Article  CAS  PubMed  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci 97(24):13430–13435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2(1):45–65

    Article  Google Scholar 

  • Dermody O, Long SP, DeLucia EH (2006) How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently? New Phytol 169(1):145–155

    Article  CAS  PubMed  Google Scholar 

  • de Vries J, Evers JB, Kuyper TW, van Ruijven J, Mommer L (2021) Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytol 231(3):1171–1182

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan EJ, Gluckman PD, Dearden PK (2014) Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype? J Exp Zool B Mol Dev Evol 322(4):208–220

    Article  CAS  PubMed  Google Scholar 

  • Dusenge ME, Duarte AG, Way DA (2019) Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol 221(1):32–49

    Article  CAS  PubMed  Google Scholar 

  • Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Stokes A (2021) Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol 232(3):1123–1158

    Article  PubMed  Google Scholar 

  • Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Rivas-Ubach A, Oravec M, Vecerova K, Penuelas J (2014) Opposite metabolic responses of shoots and roots to drought. Sci Rep 4(1):6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givnish TJ (1987) Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol 106:131–160

    Article  Google Scholar 

  • Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19(1):4–19

    Article  CAS  PubMed  Google Scholar 

  • Gray SB, Strellner RS, Puthuval KK, Ng C, Shulman RE, Siebers MH, Leakey AD (2012) Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress. Funct Plant Biol 40(2):137–147

    Article  Google Scholar 

  • Gray SB, Dermody O, Klein SP, Locke AM, Mcgrath JM, Paul RE, Leakey AD (2016) Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat Plants 2(9):1–8

    Article  Google Scholar 

  • Guo R, Wen ZM, Wang HX, Qi DH (2015) Relationships among leaf traits and their expression in different vegetation zones in Yanhe River basin, Northwest China. Ying Yong Sheng Tai Xue Bao (J Appl Ecol) 26(12):3627–3633

    CAS  Google Scholar 

  • Hannah LJ, Lovejoy TE (eds) (2003) Climate change and biodiversity: synergistic impacts (No. 4). Center for Applied Biodiversity Science at Conservation International

    Google Scholar 

  • Harrison SP, Cramer W, Franklin O, Prentice IC, Wang H, Brannstrom A et al (2021) Eco-evolutionary optimality as a means to improve vegetation and land-surface models. New Phytol 231(6):2125–2141

    Article  PubMed  Google Scholar 

  • Hartmann DL, Tank AMK, Rusticucci M, Alexander LV, Brönnimann S, Charabi YAR, Zhai P (2013) Observations: atmosphere and surface. In: Climate change 2013 the physical science basis: working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 159–254

    Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10

    Article  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370

    Article  Google Scholar 

  • Johnson MP, Wientjes E (2020) The relevance of dynamic thylakoid organisation to photosynthetic regulation. Biochim Biophys Acta Bioenerg 1861(4):148039

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security—a review. Progress Nat Sci 19(12):1665–1674

    Article  Google Scholar 

  • Kao W-Y-Y, Forseth IN (1992) Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant Cell Environ 15:703–710

    Article  CAS  Google Scholar 

  • Kühn N, Tovar C, Carretero J, Vandvik V, Enquist BJ, Willis KJ (2021) Globally important plant functional traits for coping with climate change. Front Biogeogr 13(4):e53774

    Article  Google Scholar 

  • Kumar N, Kumar N, Shukla A, Shankhdhar SC, Shankhdhar D (2015) Impact of terminal heat stress on pollen viability and yield attributes of rice (Oryza sativa L.). Cereal Res Commun 43(4):616–626

    Article  CAS  Google Scholar 

  • Kumar N, Shankhdhar SC, Shankhdhar D (2016) Impact of elevated temperature on antioxidant activity and membrane stability in different genotypes of rice (Oryza sativa L.). Indian J Plant Physiol (Now Plant Physiol Rep) 21(1):37–43

    Article  Google Scholar 

  • Kumar N, Suyal DC, Sharma IP, Verma A, Singh H (2017) Elucidating stress proteins in rice (Oryza sativa L.) genotype under elevated temperature: a proteomic approach to understand heat stress response. 3 Biotech 7:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Jeena N, Singh H (2019) Elevated temperature modulates rice pollen structure: a study from foothill Himalayan agro-ecosystem in India. 3 Biotech 9:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Dwivedi GK, Tewari S, Paul J, Anand R, Kumar N, Kumar P, Singh H, Kaushal R (2020a) Carbon mineralization and inorganic nitrogen pools under Terminalia chebula Retz.-based agroforestry system in Himalayan Foothills, India. For Sci 66(5):634–643

    Google Scholar 

  • Kumar A, Kumar P, Singh H, Kumar N (2020b) Adaptation and mitigation potential of roadside trees with bio-extraction of heavy metals under vehicular emissions and their impact on physiological traits during seasonal regimes. Urban For Urban Green 58:126900

    Article  Google Scholar 

  • Kumar N, Jeena N, Kumar A, Khairakpam R, Singh H (2021) Comparative response of rice cultivars to elevated air temperature in Bhabar region of Indian Himalaya: status on yield attributes. Heliyon 7:e07474

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Kumar P, Singh H, Bisht S, Kumar N (2021a) Relationship of physiological plant functional traits with soil carbon stock in temperate forest of Garhwal Himalaya. Curr Sci 120(8):1368–1373

    Article  CAS  Google Scholar 

  • Kumar A, Kumar P, Singh H, Kumar N (2021b) Modulation of plant functional traits under essential plant nutrients during seasonal regime in natural forests of Garhwal Himalayas. Plant Soil 465:197–212

    Article  CAS  Google Scholar 

  • Kumar A, Singh H, Kumari G, Bisht S, Malik A, Kumar N, Singh M, Raturi A, Barthwal S, Thakur A, Kaushal R (2022) Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations. Environ Pollut 313:120191

    Article  CAS  PubMed  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16(5):545–556

    Article  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in US agricultural yields. Science 299(5609):1032–1032

    Article  CAS  PubMed  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100(916):603–609

    Article  Google Scholar 

  • Madhu M, Hatfield JL (2013) Dynamics of plant root growth under increased atmospheric carbon dioxide. Agron J 105(3):657–669

    Article  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 247–845

    Google Scholar 

  • Meng TT, Ni J, Guohong W (2007) Plant functional traits and environmental and ecosystem functions. J Plant Ecol 1:150–165

    Google Scholar 

  • Mishra T (2016) Climate change and production of secondary metabolites in medicinal plants: a review. Int J Herb Med 4(4):27–30

    Google Scholar 

  • Morgan PB, Bollero GA, Nelson RL, Dohleman FG, Long SP (2005) Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Glob Chang Biol 11(10):1856–1865

    Article  Google Scholar 

  • Pachauri RK, Team CW, Meyer LA (2014) IPCC, 2014: climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, p 151

    Google Scholar 

  • Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytol 166(3):791–800

    Article  PubMed  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87(7):1733–1743

    Article  PubMed  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Funct Plant Biol 27(12):1191–1191

    Article  Google Scholar 

  • Post E, Forchhammer MC (2001) Pervasive influence of large-scale climate in the dynamics of a terrestrial vertebrate community. BMC Ecol 1(1):1–7

    Article  Google Scholar 

  • Qiuhong F, Zuomin S, Lili D (2008) Response and application of plant functional traits to environment. For Sci 4:125–131

    Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80(6):1955–1969

    Article  Google Scholar 

  • Reich PB, Hobbie SE, Lee TD (2014) Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat Geosci 7(12):920–924

    Article  CAS  Google Scholar 

  • Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198(4):983–1000

    Article  PubMed  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30(9):1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Way DA, Kubien DS (2008) Rubisco, Rubisco activase, and global climate change. J Exp Bot 59(7):1581–1595

    Article  CAS  PubMed  Google Scholar 

  • Sala OE, Stuart Chapin FIII, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Schiphorst C, Achterberg L, Gomez R, Koehorst R, Bassi R, van Amerongen H, Wientjes E (2022) The role of light-harvesting complex I in excitation energy transfer from LHCII to photosystem I in Arabidopsis. Plant Physiol 188(4):2241–2252

    Article  CAS  PubMed  Google Scholar 

  • Schottler MA, Toth SZ (2014) Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Front Plant Sci 5:188

    PubMed  PubMed Central  Google Scholar 

  • Shi Y, Wen Z, Gong S (2011) Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River basin, Shaanxi Province, China. Shengtai Xuebao (Acta Ecol Sin) 31(22):6805–6814

    Google Scholar 

  • Singh H, Verma A (2013a) Physiological responses of rice cultivars to various nitrogen levels. Int J Agric Environ Biotechnol 6(3):383–388

    Article  Google Scholar 

  • Singh H, Verma A (2013b) Characterization and screening of high nitrogen efficient rice genotype to curtail environmental pollution. Int J Agric Environ Biotechnol 6(1):23–30

    Google Scholar 

  • Singh H, Verma A, Shukla A (2010a) Comparative study of yield and yield components of hybrid and inbred genotypes of rice (Oryza Sativa L.). Int J Agric Environ Biotechnol 3:355–360

    Google Scholar 

  • Singh H, Verma A, Krishnamoorthy M, Shukla A (2010b) Consequence of diverse nitrogen levels on leaf pigments in five rice genotypes under field emergent circumstance. Int J Bioresour Stress Manag 1:189–193

    Google Scholar 

  • Singh H, Verma A, Rai SK (2013a) Biochemical evaluation of different rice genotypes grown at various nitrogen levels using SDS-PAGE. Curr Adv Agric Sci 5(1):144–146

    Google Scholar 

  • Singh H, Verma A, Shukla A (2013b) Guttation fluid as a physiological marker for selection of nitrogen efficient rice (Oryza sativa L.) genotypes. Afr J Biotechnol 12(44):6276–6281

    Article  Google Scholar 

  • Singh H, Verma A, Ansari MW, Shukla A (2014) Physiological response of rice (Oryza sativa L.) genotypes to elevated nitrogen applied under field conditions. Plant Signal Behav 9:e29015. https://doi.org/10.4161/psb.29015

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh H, Yadav M, Kumar N, Kumar A, Kumar M (2020) Assessing adaptation and mitigation potential of roadside trees under the influence of vehicular emissions: a case study of Grevillea robusta and Mangifera indica planted in an urban city of India. PLoS One 15(1):e0227380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Singh H, Sharma SK, Nautiyal R (2021) Seasonal variation in biochemical responses of bamboo clones in the sub-tropical climate of Indian Himalayan foothills. Heliyon 7(4):e06859. https://doi.org/10.1016/j.heliyon.2021.e06859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Singh H, Kumar A, Kumar M, Barthwal S, Thakur A (2024) Soil nitrogen availability determines the CO2 fertilization effect on tree species (Neolamarckia cadamba): growth and physiological evidence. Environ Sustain. https://doi.org/10.1007/s42398-023-00300-w

  • Skirycz A, De Bodt S, Obata T, De Clercq I, Claeys H, De Rycke R, Inzeo D (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152(1):226–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon S (ed) (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press

    Google Scholar 

  • Swann AL (2018) Plants and drought in a changing climate. Curr Clim Change Rep 4:192–201

    Article  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71(4):391–411

    Article  CAS  PubMed  Google Scholar 

  • Tollefson J (2016) Global warming already driving increases in rainfall extremes. Nature:443–444. https://doi.org/10.1038/nature.2016.19508

  • Verelst W, Skirycz A, Inze D (2010) Abscisic acid, ethylene and gibberellic acid act at different developmental stages to instruct the adaptation of young leaves to stress. Plant Signal Behav 5(4):473–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892

    Article  Google Scholar 

  • Wang CS, Wang SP (2015) A review of research on responses of leaf traits to climate change. Chin J Plant Ecol 39(2):206–216

    Article  Google Scholar 

  • Wang P, Wang T, Han J, Li M, Zhao Y, Su T, Ma C (2021) Plant autophagy: an intricate process controlled by various signalling pathways. Front Plant Sci 12:754982

    Article  PubMed  PubMed Central  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Whippo CW, Hangarter RP (2006) Phototropism: bending towards enlightenment. Plant Cell 18(5):1110–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu A, Xiong X, González-M R, Li R, Li A, Liu J, Zhang Q (2023) Climate change reshapes plant trait spectrum to explain biomass dynamics in an old-growth subtropical forest. Front Plant Sci 14:1260707

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M (2020) Effect of abiotic stress on crops. In: Sustainable crop production. IntechOpen, p 3

    Google Scholar 

  • Yang X, Li R, Jablonski A, Stovall A, Kim J, Yi K, Lerdau M (2023) Leaf angle as a leaf and canopy trait: rejuvenating its role in ecology with new technology. Ecol Lett 26:1005

    Article  PubMed  Google Scholar 

  • Zhang J, Li P (2019) Response of plant functional traits to climate change. In: IOP conference series: earth and environmental science, Jul 2019, vol 300(3). IOP Publishing, p 032078

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanta, C., Kumar, A., Chauhan, A., Singh, H., Sharma, I.P. (2024). The Interplay Between Plant Functional Traits and Climate Change. In: Kumar, N., Singh, H. (eds) Plant Functional Traits for Improving Productivity. Springer, Singapore. https://doi.org/10.1007/978-981-97-1510-7_3

Download citation

Keywords

Publish with us

Policies and ethics