Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Introduction to Bioinformatics Resources for Post-transcriptional Regulation of Gene Expression

  • Protocol
  • First Online:
Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2404))

  • 3337 Accesses

Abstract

Untranslated regions of mRNA (UTRs) are involved in defining the fate of the transcript through processes such as mRNA localization, degradation, translation initiation regulation, and several others: the action of trans-factors such as RNA-binding proteins and non-coding RNAs, combined with the presence of defined sequence and structural cis-elements, ultimately determines protein synthesis levels. Identifying functional regions in UTRs and uncovering post-transcriptional regulators acting upon these is thus of paramount importance to understand this regulatory layer: these tasks can now be approached computationally to reduce the testable hypothesis space and drive the experimental validation in a more effective way.

This chapter will focus on presenting databases and tools allowing to study the various aspects of post-transcriptional regulation, including the profiling of actively translated mRNAs, regulatory network analysis (e.g., RBP and ncRNA binding sites), trans-factor binding sites prediction, motif search (sequence and secondary structure), and other aspects of this regulatory layer: two potential analysis pipelines are also presented as practical examples of how these tools could be integrated and effectively employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  2. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15:205–213

    Article  CAS  PubMed  Google Scholar 

  3. Milek M, Wyler E, Landthaler M (2012) Transcriptome-wide analysis of protein-RNA interactions using high-throughput sequencing. Semin Cell Dev Biol 23:206–212

    Article  CAS  PubMed  Google Scholar 

  4. Arava Y (2003) Isolation of polysomal RNA for microarray analysis. Methods Mol Biol 224:79–87

    CAS  PubMed  Google Scholar 

  5. Ule J, Jensen KB, Ruggiu M et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  CAS  PubMed  Google Scholar 

  6. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460:479–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Linder B, Grozhik AV, Olarerin-George AO et al (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12:767–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Nostrand EL, Pratt GA, Shishkin AA et al (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13:508–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zarnegar BJ, Flynn RA, Shen Y et al (2016) irCLIP platform for efficient characterization of protein–RNA interactions. Nat Methods 13:489–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kargapolova Y, Levin M, Lackner K, Danckwardt S (2017) sCLIP—an integrated platform to study RNA–protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs. Nucleic Acids Res 45:6074–6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. George H, Ule J, Hussain S (2017) Illustrating the epitranscriptome at nucleotide resolution using methylation-iCLIP (miCLIP). Methods Mol Biol 1562:91–106

    Article  CAS  PubMed  Google Scholar 

  14. Ray D, Kazan H, Chan ET et al (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol 27:667–670

    Article  CAS  PubMed  Google Scholar 

  15. Cook KB, Vembu S, Ha KCH et al (2017) RNAcompete-S: combined RNA sequence/structure preferences for RNA binding proteins derived from a single-step in vitro selection. Methods 126:18–28

    Article  CAS  PubMed  Google Scholar 

  16. Lambert N, Robertson A, Jangi M et al (2014) RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol Cell 54:887–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Campbell ZT, Bhimsaria D, Valley CT et al (2012) Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. Cell Rep 1:570–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin C, Miles WO (2019) Beyond CLIP: advances and opportunities to measure RBP-RNA and RNA-RNA interactions. Nucleic Acids Res 47:5490–5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larsson O, Sonenberg N, Nadon R (2011) anota: analysis of differential translation in genome-wide studies. Bioinformatics 27:1440–1441

    Article  CAS  PubMed  Google Scholar 

  20. Tebaldi T, Dassi E, Kostoska G et al (2014) tRanslatome: an R/Bioconductor package to portray translational control. Bioinformatics 30:289–291

    Article  CAS  PubMed  Google Scholar 

  21. Olshen AB, Hsieh AC, Stumpf CR et al (2013) Assessing gene-level translational control from ribosome profiling. Bioinformatics 29:2995–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao Z, Zou Q, Liu Y, Yang X (2016) Genome-wide assessment of differential translations with ribosome profiling data. Nat Commun 7:11194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhong Y, Karaletsos T, Drewe P et al (2017) RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints. Bioinformatics 33:139–141

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Wang W, Uren PJ et al (2017) Riborex: fast and flexible identification of differential translation from Ribo-seq data. Bioinformatics 33:1735–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oertlin C, Lorent J, Murie C et al (2019) Generally applicable transcriptome-wide analysis of translation using anota2seq. Nucleic Acids Res 47:e70–e70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ernlund AW, Schneider RJ, Ruggles KV (2018) RIVET: comprehensive graphic user interface for analysis and exploration of genome-wide translatomics data. BMC Genomics 19:809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stocks MB, Moxon S, Mapleson D et al (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28:2059–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wan C, Gao J, Zhang H et al (2017) CPSS 2.0: a computational platform update for the analysis of small RNA sequencing data. Bioinformatics 33:3289–3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giurato G, De Filippo MR, Rinaldi A et al (2013) iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq. BMC Bioinformatics 14:362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sun Z, Evans J, Bhagwate A et al (2014) CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data. BMC Genomics 15:423

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vitsios DM, Enright AJ (2015) Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics 31:3365–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi J, Dong M, Li L et al (2015) mirPRo—a novel standalone program for differential expression and variation analysis of miRNAs. Sci Rep 5:14617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barturen G, Rueda A, Hamberg M et al (2014) sRNAbench: profiling of small RNAs and its sequence variants in single or multi-species high-throughput experiments. Methods Next Gen Seq 1:21–31

    Google Scholar 

  34. Aparicio-Puerta E, Lebrón R, Rueda A et al (2019) sRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression. Nucleic Acids Res 47:W530–W535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fehlmann T, Backes C, Kahraman M et al (2017) Web-based NGS data analysis using miRMaster: a large-scale meta-analysis of human miRNAs. Nucleic Acids Res 45:8731–8744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu X, Kim T-K, Baxter D et al (2017) sRNAnalyzer—a flexible and customizable small RNA sequencing data analysis pipeline. Nucleic Acids Res 45:12140–12151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pogorelcnik R, Vaury C, Pouchin P et al (2018) sRNAPipe: a Galaxy-based pipeline for bioinformatic in-depth exploration of small RNAseq data. Mob DNA 9:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kuksa PP, Amlie-Wolf A, Katanic Ž et al (2018) SPAR: small RNA-seq portal for analysis of sequencing experiments. Nucleic Acids Res 46:W36–W42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu Y, Baras AS, Halushka MK (2018) miRge 2.0 for comprehensive analysis of microRNA sequencing data. BMC Bioinformatics 19:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Desvignes T, Batzel P, Sydes J et al (2019) miRNA analysis with Prost! Reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish. Sci Rep 9:3913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Li J, Kho AT, Chase RP et al (2020) COMPSRA: a COMprehensive Platform for Small RNA-Seq data Analysis. Sci Rep 10:4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Uren PJ, Bahrami-Samani E, Burns SC et al (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28:3013–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kucukural A, Özadam H, Singh G et al (2013) ASPeak: an abundance sensitive peak detection algorithm for RIP-Seq. Bioinformatics 29:2485–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Zhao DY, Greenblatt JF, Zhang Z (2013) RIPSeeker: a statistical package for identifying protein-associated transcripts from RIP-seq experiments. Nucleic Acids Res 41:e94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lovci MT, Ghanem D, Marr H et al (2013) Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat Struct Mol Biol 20:1434–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Corcoran DL, Georgiev S, Mukherjee N et al (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12:R79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sievers C, Schlumpf T, Sawarkar R et al (2012) Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res 40:e160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang T, Chen B, Kim M et al (2014) A model-based approach to identify binding sites in CLIP-Seq data. PLoS One 9:e93248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Blankenberg D, Von Kuster G, Coraor N et al (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb1910s89

  50. Chen B, Yun J, Kim MS et al (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol 15:R18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Krakau S, Richard H, Marsico A (2017) PureCLIP: capturing target-specific protein–RNA interaction footprints from single-nucleotide CLIP-seq data. Genome Biol 18:240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Drewe-Boss P, Wessels H-H, Ohler U (2018) omniCLIP: probabilistic identification of protein-RNA interactions from CLIP-seq data. Genome Biol 19:183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Liu Q, Shvarts T, Sliz P, Gregory RI (2020) RiboToolkit: an integrated platform for analysis and annotation of ribosome profiling data to decode mRNA translation at codon resolution. Nucleic Acids Res 48:W218–W229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fang H, Huang Y-F, Radhakrishnan A et al (2018) Scikit-ribo enables accurate estimation and robust modeling of translation dynamics at codon resolution. Cell Syst 6:180–191.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khorshid M, Rodak C, Zavolan M (2011) CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res 39:D245–D252

    Article  CAS  PubMed  Google Scholar 

  56. Ray D, Kazan H, Cook KB et al (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cook KB, Kazan H, Zuberi K et al (2011) RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 39:D301–D308

    Article  CAS  PubMed  Google Scholar 

  58. Giudice G, Sánchez-Cabo F, Torroja C, Lara-Pezzi E (2016) ATtRACT—a database of RNA-binding proteins and associated motifs. Database. https://doi.org/10.1093/database/baw035

  59. Zhu Y, Xu G, Yang YT et al (2019) POSTAR2: deciphering the post-transcriptional regulatory logics. Nucleic Acids Res 47:D203–D211

    Article  CAS  PubMed  Google Scholar 

  60. Yang Y-CT, Di C, Hu B et al (2015) CLIPdb: a CLIP-seq database for protein-RNA interactions. BMC Genomics 16:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Benoit Bouvrette LP, Bovaird S, Blanchette M, Lécuyer E (2020) oRNAment: a database of putative RNA binding protein target sites in the transcriptomes of model species. Nucleic Acids Res 48:D166–D173

    PubMed  Google Scholar 

  62. Dassi E, Re A, Leo S et al (2014) AURA 2: empowering discovery of post-transcriptional networks. Translation 2:e27738

    Article  PubMed  PubMed Central  Google Scholar 

  63. Blin K, Dieterich C, Wurmus R et al (2014) DoRiNA 2.0—upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 43:D160–D167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Li J-H, Liu S, Zhou H et al (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97

    Article  CAS  PubMed  Google Scholar 

  65. Grillo G, Turi A, Licciulli F et al (2010) UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38:D75–D80

    Article  CAS  PubMed  Google Scholar 

  66. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

    Article  CAS  PubMed  Google Scholar 

  67. Chen Y, Wang X (2020) miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 48:D127–D131

    Article  CAS  PubMed  Google Scholar 

  68. Hsu S-D, Chu C-H, Tsou A-P et al (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36:D165–D169

    Article  CAS  PubMed  Google Scholar 

  69. Huang H-Y, Lin Y-C-D, Li J et al (2019) miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res 48:D148–D154

    PubMed Central  Google Scholar 

  70. Cho S, Jang I, Jun Y et al (2013) MiRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res 41:D252–D257

    Article  CAS  PubMed  Google Scholar 

  71. Andrés-León E, González Peña D, Gómez-López G, Pisano DG (2015) miRGate: a curated database of human, mouse and rat miRNA–mRNA targets. Database. https://doi.org/10.1093/database/bav035

  72. Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12:697

    Article  CAS  PubMed  Google Scholar 

  73. Rennie W, Kanoria S, Liu C et al (2016) STarMirDB: a database of microRNA binding sites. RNA Biol 13:554–560

    Article  PubMed  PubMed Central  Google Scholar 

  74. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S et al (2017) DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res 46:D239–D245

    Article  PubMed Central  CAS  Google Scholar 

  75. Karagkouni D, Paraskevopoulou MD, Tastsoglou S et al (2019) DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Res 48:D101–D110

    PubMed Central  Google Scholar 

  76. Quek XC, Thomson DW, Maag JLV et al (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43:D168–D173

    Article  CAS  PubMed  Google Scholar 

  77. Bu D, Yu K, Sun S et al (2012) NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 40:D210–D215

    Article  CAS  PubMed  Google Scholar 

  78. Cheng L, Wang P, Tian R et al (2019) LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res 47:D140–D144

    Article  CAS  PubMed  Google Scholar 

  79. Zhang X, Wu D, Chen L et al (2014) RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction. RNA 20:989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Teng X, Chen X, Xue H et al (2020) NPInter v4.0: an integrated database of ncRNA interactions. Nucleic Acids Res 48:D160–D165

    Article  CAS  PubMed  Google Scholar 

  81. Burge SW, Daub J, Eberhardt R et al (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41:D226–D232

    Article  CAS  PubMed  Google Scholar 

  82. Chang T-H, Huang H-Y, Hsu JB-K et al (2013) An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics 14(Suppl 2):S4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Müller S, Rycak L, Afonso-Grunz F et al (2014) APADB: a database for alternative polyadenylation and microRNA regulation events. Database. https://doi.org/10.1093/database/bau076

  84. Bakheet T, Hitti E, Khabar KSA (2018) ARED-Plus: an updated and expanded database of AU-rich element-containing mRNAs and pre-mRNAs. Nucleic Acids Res 46:D218–D220

    Article  CAS  PubMed  Google Scholar 

  85. Fallmann J, Sedlyarov V, Tanzer A et al (2016) AREsite2: an enhanced database for the comprehensive investigation of AU/GU/U-rich elements. Nucleic Acids Res 44:D90–D95

    Article  CAS  PubMed  Google Scholar 

  86. Mokrejs M, Masek T, Vopálensky V et al (2010) IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res 38:D131–D136

    Article  CAS  PubMed  Google Scholar 

  87. Zhao J, Li Y, Wang C et al (2020) IRESbase: a comprehensive database of experimentally validated internal ribosome entry sites. Genomics Proteomics Bioinformatics 18:129–139

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kolekar P, Pataskar A, Kulkarni-Kale U et al (2016) IRESPred: web server for prediction of cellular and viral internal ribosome entry site (IRES). Sci Rep 6:27436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Castellano S, Gladyshev VN, Guigó R, Berry MJ (2008) SelenoDB 1.0 : a database of selenoprotein genes, proteins and SECIS elements. Nucleic Acids Res 36:D332–D338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Campillos M, Cases I, Hentze MW, Sanchez M (2010) SIREs: searching for iron-responsive elements. Nucleic Acids Res 38:W360–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jacobs GH, Chen A, Stevens SG et al (2009) Transterm: a database to aid the analysis of regulatory sequences in mRNAs. Nucleic Acids Res 37:D72–D76

    Article  CAS  PubMed  Google Scholar 

  92. Liu Y, Sun S, Bredy T et al (2017) MotifMap-RNA: a genome-wide map of RBP binding sites. Bioinformatics 33:2029–2031

    Article  CAS  PubMed  Google Scholar 

  93. Agostini F, Zanzoni A, Klus P et al (2013) catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29:2928–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Armaos A, Cirillo D, Gaetano Tartaglia G (2017) omiXcore: a web server for prediction of protein interactions with large RNA. Bioinformatics 33:3104–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cirillo D, Blanco M, Armaos A et al (2016) Quantitative predictions of protein interactions with long noncoding RNAs. Nat Methods 14:5–6

    Article  PubMed  CAS  Google Scholar 

  96. Muppirala UK, Honavar VG, Dobbs D (2011) Predicting RNA-protein interactions using only sequence information. BMC Bioinformatics 12:489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Paz I, Kosti I, Ares M Jr et al (2014) RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res 42:W361–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Biswas A, Brown CM (2014) Scan for Motifs: a webserver for the analysis of post-transcriptional regulatory elements in the 3′ untranslated regions (3' UTRs) of mRNAs. BMC Bioinformatics 15:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Pan X, Rijnbeek P, Yan J, Shen H-B (2018) Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. BMC Genomics 19:511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Yu H, Wang J, Sheng Q et al (2019) beRBP: binding estimation for human RNA-binding proteins. Nucleic Acids Res 47:e26

    Article  CAS  PubMed  Google Scholar 

  101. Yan Z, Hamilton WL, Blanchette M (2020) Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions. Bioinformatics 36:i276–i284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Deng L, Yang W, Liu H (2019) PredPRBA: prediction of Protein-RNA binding affinity using gradient boosted regression trees. Front Genet 10:637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lam JH, Li Y, Zhu L et al (2019) A deep learning framework to predict binding preference of RNA constituents on protein surface. Nat Commun 10:4941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Qiu J, Bernhofer M, Heinzinger M et al (2020) ProNA2020 predicts protein–DNA, protein–RNA, and protein–protein binding proteins and residues from sequence. J Mol Biol 432:2428–2443

    Article  CAS  PubMed  Google Scholar 

  105. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  106. Vejnar CE, Blum M, Zdobnov EM (2013) miRmap web: comprehensive microRNA target prediction online. Nucleic Acids Res 41:W165–W168

    Article  PubMed  PubMed Central  Google Scholar 

  107. Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wang X, El Naqa IM (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24:325–332

    Article  PubMed  CAS  Google Scholar 

  109. Linsley PS, Schelter J, Burchard J et al (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27:2240–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sturm M, Hackenberg M, Langenberger D, Frishman D (2010) TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics 11:292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Mitra R, Bandyopadhyay S (2011) MultiMiTar: a novel multi objective optimization based miRNA-target prediction method. PLoS One 6:e24583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans Evol Comput 12:269–283

    Article  Google Scholar 

  113. Paraskevopoulou MD, Georgakilas G, Kostoulas N et al (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41:W169–W173

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wolstencroft K, Haines R, Fellows D et al (2013) The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Res 41:W557–W561

    Article  PubMed  PubMed Central  Google Scholar 

  115. Oulas A, Karathanasis N, Louloupi A et al (2012) A new microRNA target prediction tool identifies a novel interaction of a putative miRNA with CCND2. RNA Biol 9:1196–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Coronnello C, Benos PV (2013) ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res 41:W159–W164

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ding J, Li X, Hu H (2016) TarPmiR: a new approach for microRNA target site prediction. Bioinformatics 32:2768–2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. John B, Enright AJ, Aravin A et al (2004) Human MicroRNA targets. PLoS Biol 2:e363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Krek A, Grün D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  121. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  122. Sabarinathan R, Tafer H, Seemann SE et al (2013) The RNAsnp web server: predicting SNP effects on local RNA secondary structure. Nucleic Acids Res 41:W475–W479

    Article  PubMed  PubMed Central  Google Scholar 

  123. Halvorsen M, Martin JS, Broadaway S, Laederach A (2010) Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet 6:e1001074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. He F, Wei R, Zhou Z et al (2019) Integrative analysis of somatic mutations in non-coding regions altering RNA secondary structures in cancer genomes. Sci Rep 9:8205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Corley M, Solem A, Qu K et al (2015) Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark. Nucleic Acids Res 43:1859–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yao Z, Weinberg Z, Ruzzo WL (2006) CMfinder—a covariance model based RNA motif finding algorithm. Bioinformatics 22:445–452

    Article  CAS  PubMed  Google Scholar 

  127. Hiller M, Pudimat R, Busch A, Backofen R (2006) Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Res 34:e117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rabani M, Kertesz M, Segal E (2008) Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc Natl Acad Sci U S A 105:14885–14890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Goodarzi H, Najafabadi HS, Oikonomou P et al (2012) Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 485:264–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fukunaga T, Ozaki H, Terai G et al (2014) CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data. Genome Biol 15:R16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Zambelli F, Pavesi G (2015) De novo secondary structure motif discovery using RNAProfile. Methods Mol Biol 1269:49–62

    Article  CAS  PubMed  Google Scholar 

  133. Pietrosanto M, Adinolfi M, Casula R et al (2018) BEAM web server: a tool for structural RNA motif discovery. Bioinformatics 34:1058–1060

    Article  CAS  PubMed  Google Scholar 

  134. Maticzka D, Lange SJ, Costa F, Backofen R (2014) GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biol 15:R17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Bahrami-Samani E, Penalva LOF, Smith AD, Uren PJ (2015) Leveraging cross-link modification events in CLIP-seq for motif discovery. Nucleic Acids Res 43:95–103

    Article  CAS  PubMed  Google Scholar 

  136. Polishchuk M, Paz I, Yakhini Z, Mandel-Gutfreund Y (2018) SMARTIV: combined sequence and structure de-novo motif discovery for in-vivo RNA binding data. Nucleic Acids Res 46:W221–W228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Munteanu A, Mukherjee N, Ohler U (2018) SSMART: sequence-structure motif identification for RNA-binding proteins. Bioinformatics 34:3990–3998

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kazan H, Morris Q (2013) RBPmotif: a web server for the discovery of sequence and structure preferences of RNA-binding proteins. Nucleic Acids Res 41:W180–W186

    Article  PubMed  PubMed Central  Google Scholar 

  139. Kazan H, Ray D, Chan ET et al (2010) RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput Biol 6:e1000832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Cereda M, Pozzoli U, Rot G et al (2014) RNAmotifs: prediction of multivalent RNA motifs that control alternative splicing. Genome Biol 15:R20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Dassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Destefanis, E., Dassi, E. (2022). Introduction to Bioinformatics Resources for Post-transcriptional Regulation of Gene Expression . In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 2404. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1851-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1851-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1850-9

  • Online ISBN: 978-1-0716-1851-6

  • eBook Packages: Springer Protocols

Key words

Publish with us

Policies and ethics