Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Navigating the CoGe Online Software Suite for Polyploidy Research

  • Protocol
  • First Online:
Polyploidy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2545))

  • 1729 Accesses

  • 9 Citations

Abstract

The CoGe software suite at genomevolution.org hosts a number of tools that facilitate genomic research on plant and animal whole-genome multiplication—polyploidy. SynMap permits analysis and visualization of two-way syntenic dotplot alignments of genomes, includes many options and data/graphics download possibilities, and even permits three-genome synteny maps and interactive views. FractBias is a tool that operates within SynMap that permits calculation and graphic display of genome fragments (such as chromosomes) of one species mapped to another, displaying both blockwise homology depths and the extent of syntenic gene (syntelog) loss following polyploidy events. SynMap macrosynteny results can segue into the microsynteny tool GEvo, which provides genome-browser-like views of homologous genome blocks. CoGe FeatView allows call-up of given gene features already stored in the CoGe resource, and CoGeBlast permits searches for additional features that can be analyzed or downloaded further. Links from these tools can be fed into SynFind, which can find syntenic blocks surrounding a feature across multiple specified genomes while also simultaneously providing overall genome-wide syntenic depth calculations that can be interpreted to reflect polyploidy levels. Here, we describe basic use of these tools on the CoGe software suite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lyons E et al (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148(4):1772–1781

    Article  CAS  Google Scholar 

  2. Lyons E et al (2008) The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids. Trop Plant Biol 1(3):181–190

    Article  CAS  Google Scholar 

  3. Joyce B et al (2017) Comparative genomics using CoGe, hook, line, and sinker. Bioinformatics in aquaculture: principles and methods. Wiley, Hoboken

    Google Scholar 

  4. Haug-Baltzell A et al (2017) SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics 33(14):2197–2198

    Article  CAS  Google Scholar 

  5. Lyons E et al (2011) Using genomic sequencing for classical genetics in E. coli K12. PloS One 6(2):e16717

    Article  CAS  Google Scholar 

  6. Ibarra-Laclette E et al (2013) Architecture and evolution of a minute plant genome. Nature 498(7452):94–98

    Article  CAS  Google Scholar 

  7. Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  CAS  Google Scholar 

  8. Soltis DE et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96(1):336–348

    Article  Google Scholar 

  9. Chanderbali AS et al (2017) Evolution of floral diversity: genomics, genes and gamma. Philos Trans R Soc B Biol Sci 372(1713):20150509

    Article  Google Scholar 

  10. Jiao Y et al (2012) A genome triplication associated with early diversification of the core eudicots. Genome Biol 13(1):1–14

    Article  Google Scholar 

  11. Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  Google Scholar 

  12. Joyce BL et al (2017) FractBias: a graphical tool for assessing fractionation bias following polyploidy. Bioinformatics 33(4):552–554

    Article  CAS  Google Scholar 

  13. Sankoff D, Zheng C (2012) Fractionation, rearrangement and subgenome dominance. Bioinformatics 28(18):i402–i408

    Article  CAS  Google Scholar 

  14. Alger EI, Edger PP (2020) One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr Opin Plant Biol 54:108–113

    Article  CAS  Google Scholar 

  15. Cheng F et al (2018) Gene retention, fractionation and subgenome differences in polyploid plants. Nat Plants 4(5):258–268

    Article  CAS  Google Scholar 

  16. Garsmeur O et al (2014) Two evolutionarily distinct classes of paleopolyploidy. Mol Biol Evol 31(2):448–454

    Article  CAS  Google Scholar 

  17. Zhao M et al (2017) Patterns and consequences of subgenome differentiation provide insights into the nature of paleopolyploidy in plants. Plant Cell 29(12):2974–2994

    Article  CAS  Google Scholar 

  18. Li Q et al (2019) Unbiased subgenome evolution following a recent whole-genome duplication in pear (Pyrus bretschneideri Rehd.). Hortic Res 6(1):1–12

    Article  Google Scholar 

  19. Castillo AI et al (2018) A tutorial of diverse genome analysis tools found in the CoGe web-platform using Plasmodium spp. as a model. Database:2018

    Google Scholar 

  20. Tang H et al (2015) SynFind: compiling syntenic regions across any set of genomes on demand. Genome Biol Evol 7(12):3286–3298

    Article  Google Scholar 

  21. Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20(1):1–14

    Article  Google Scholar 

  22. Tang H et al (2011) Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinform 12(1):1–11

    Article  Google Scholar 

  23. Krabbenhoft TJ et al (2021) Chromosome-level genome assembly of Chinese Sucker (Myxocyprinus asiaticus) reveals strongly conserved synteny following a catostomid-specific whole-genome duplication. Genome Biol Evol 13(9):evab190

    Article  Google Scholar 

  24. Vandepoele K et al (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci 101(6):1638–1643

    Article  CAS  Google Scholar 

  25. Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27(9):937–945

    Article  CAS  Google Scholar 

  26. Jaillon O et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431(7011):946–957

    Article  Google Scholar 

  27. Davesne D et al (2021) Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication. Proc Natl Acad Sci 118(30)

    Google Scholar 

  28. Macqueen DJ, Johnston IA (2014) A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc B Biol Sci 281(1778):20132881

    Article  Google Scholar 

  29. Lien S et al (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533(7602):200–205

    Article  CAS  Google Scholar 

  30. Xu P et al (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46(11):1212–1219

    Article  CAS  Google Scholar 

  31. Li J-T et al (2021) Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat Genet:1–11

    Google Scholar 

  32. Braasch I et al (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet 48(4):427–437

    Article  CAS  Google Scholar 

  33. Conant GC (2020) The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS One 15(4):e0231356

    Article  CAS  Google Scholar 

  34. Schultz EA, Haughn GW (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3(8):771–781

    Article  Google Scholar 

  35. Blázquez MA et al (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124(19):3835–3844

    Article  Google Scholar 

  36. Sayou C et al (2014) A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343(6171):645–648

    Article  CAS  Google Scholar 

  37. Albert VA, Oppenheimer DG, Lindqvist C (2002) Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci 7(7):297–301

    Article  CAS  Google Scholar 

  38. Kaul S et al (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  CAS  Google Scholar 

  39. Denoeud F et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345(6201):1181–1184

    Article  CAS  Google Scholar 

  40. Sankoff D, Zheng C (2018) Whole genome duplication in plants: implications for evolutionary analysis. In: Comparative genomics. Springer, Humana Press, New York, NY. pp 291–315

    Google Scholar 

  41. Zhang L et al (2018) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res 5(1):1–11

    Article  Google Scholar 

  42. Wang X et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Article  CAS  Google Scholar 

  43. Sun F et al (2017) The high-quality genome of Brassica napus cultivar ‘ZS 11’reveals the introgression history in semi-winter morphotype. Plant J 92(3):452–468

    Article  CAS  Google Scholar 

  44. Liu S, Snowdon R, Chalhoub B (2018) The Brassica napus genome. Springer, Switzerland

    Google Scholar 

  45. Liu S et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5(1):1–11

    Google Scholar 

  46. Liu S, Snowdon R, Kole C (2021) The Brassica oleracea genome. Springer, Switzerland

    Google Scholar 

  47. Nelson AD et al (2018) EPIC-CoGe: managing and analyzing genomic data. Bioinformatics 34(15):2651–2653

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Albert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Albert, V.A., Krabbenhoft, T.J. (2023). Navigating the CoGe Online Software Suite for Polyploidy Research. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2561-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2560-6

  • Online ISBN: 978-1-0716-2561-3

  • eBook Packages: Springer Protocols

Key words

Publish with us

Policies and ethics