Abstract
The CoGe software suite at genomevolution.org hosts a number of tools that facilitate genomic research on plant and animal whole-genome multiplication—polyploidy. SynMap permits analysis and visualization of two-way syntenic dotplot alignments of genomes, includes many options and data/graphics download possibilities, and even permits three-genome synteny maps and interactive views. FractBias is a tool that operates within SynMap that permits calculation and graphic display of genome fragments (such as chromosomes) of one species mapped to another, displaying both blockwise homology depths and the extent of syntenic gene (syntelog) loss following polyploidy events. SynMap macrosynteny results can segue into the microsynteny tool GEvo, which provides genome-browser-like views of homologous genome blocks. CoGe FeatView allows call-up of given gene features already stored in the CoGe resource, and CoGeBlast permits searches for additional features that can be analyzed or downloaded further. Links from these tools can be fed into SynFind, which can find syntenic blocks surrounding a feature across multiple specified genomes while also simultaneously providing overall genome-wide syntenic depth calculations that can be interpreted to reflect polyploidy levels. Here, we describe basic use of these tools on the CoGe software suite.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lyons E et al (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148(4):1772–1781
Lyons E et al (2008) The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids. Trop Plant Biol 1(3):181–190
Joyce B et al (2017) Comparative genomics using CoGe, hook, line, and sinker. Bioinformatics in aquaculture: principles and methods. Wiley, Hoboken
Haug-Baltzell A et al (2017) SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics 33(14):2197–2198
Lyons E et al (2011) Using genomic sequencing for classical genetics in E. coli K12. PloS One 6(2):e16717
Ibarra-Laclette E et al (2013) Architecture and evolution of a minute plant genome. Nature 498(7452):94–98
Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604
Soltis DE et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96(1):336–348
Chanderbali AS et al (2017) Evolution of floral diversity: genomics, genes and gamma. Philos Trans R Soc B Biol Sci 372(1713):20150509
Jiao Y et al (2012) A genome triplication associated with early diversification of the core eudicots. Genome Biol 13(1):1–14
Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467
Joyce BL et al (2017) FractBias: a graphical tool for assessing fractionation bias following polyploidy. Bioinformatics 33(4):552–554
Sankoff D, Zheng C (2012) Fractionation, rearrangement and subgenome dominance. Bioinformatics 28(18):i402–i408
Alger EI, Edger PP (2020) One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr Opin Plant Biol 54:108–113
Cheng F et al (2018) Gene retention, fractionation and subgenome differences in polyploid plants. Nat Plants 4(5):258–268
Garsmeur O et al (2014) Two evolutionarily distinct classes of paleopolyploidy. Mol Biol Evol 31(2):448–454
Zhao M et al (2017) Patterns and consequences of subgenome differentiation provide insights into the nature of paleopolyploidy in plants. Plant Cell 29(12):2974–2994
Li Q et al (2019) Unbiased subgenome evolution following a recent whole-genome duplication in pear (Pyrus bretschneideri Rehd.). Hortic Res 6(1):1–12
Castillo AI et al (2018) A tutorial of diverse genome analysis tools found in the CoGe web-platform using Plasmodium spp. as a model. Database:2018
Tang H et al (2015) SynFind: compiling syntenic regions across any set of genomes on demand. Genome Biol Evol 7(12):3286–3298
Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20(1):1–14
Tang H et al (2011) Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinform 12(1):1–11
Krabbenhoft TJ et al (2021) Chromosome-level genome assembly of Chinese Sucker (Myxocyprinus asiaticus) reveals strongly conserved synteny following a catostomid-specific whole-genome duplication. Genome Biol Evol 13(9):evab190
Vandepoele K et al (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci 101(6):1638–1643
Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27(9):937–945
Jaillon O et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431(7011):946–957
Davesne D et al (2021) Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication. Proc Natl Acad Sci 118(30)
Macqueen DJ, Johnston IA (2014) A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc B Biol Sci 281(1778):20132881
Lien S et al (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533(7602):200–205
Xu P et al (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46(11):1212–1219
Li J-T et al (2021) Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat Genet:1–11
Braasch I et al (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet 48(4):427–437
Conant GC (2020) The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS One 15(4):e0231356
Schultz EA, Haughn GW (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3(8):771–781
Blázquez MA et al (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124(19):3835–3844
Sayou C et al (2014) A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343(6171):645–648
Albert VA, Oppenheimer DG, Lindqvist C (2002) Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci 7(7):297–301
Kaul S et al (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815
Denoeud F et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345(6201):1181–1184
Sankoff D, Zheng C (2018) Whole genome duplication in plants: implications for evolutionary analysis. In: Comparative genomics. Springer, Humana Press, New York, NY. pp 291–315
Zhang L et al (2018) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res 5(1):1–11
Wang X et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039
Sun F et al (2017) The high-quality genome of Brassica napus cultivar ‘ZS 11’reveals the introgression history in semi-winter morphotype. Plant J 92(3):452–468
Liu S, Snowdon R, Chalhoub B (2018) The Brassica napus genome. Springer, Switzerland
Liu S et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5(1):1–11
Liu S, Snowdon R, Kole C (2021) The Brassica oleracea genome. Springer, Switzerland
Nelson AD et al (2018) EPIC-CoGe: managing and analyzing genomic data. Bioinformatics 34(15):2651–2653
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Albert, V.A., Krabbenhoft, T.J. (2023). Navigating the CoGe Online Software Suite for Polyploidy Research. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_2
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2561-3_2
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2560-6
Online ISBN: 978-1-0716-2561-3
eBook Packages: Springer Protocols