Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Automated Plate Reader-Based Assays of Light-Activated GPCRs

  • Protocol
  • First Online:
Optogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2840))

  • 543 Accesses

Abstract

In the emerging field of optogenetics, light-sensitive G-protein coupled receptors (GPCRs) allow for the temporally precise control of canonical cell signaling pathways. Expressing, stimulating, and measuring the activity of light-sensitive GPCRs (e.g., opsins or chimeric OptoXRs) in mammalian cells is a nontrivial task as many standard assay practices are not compatible with light-sensitive molecular tools. In this chapter, we present a method for quantifying opsin activity in automated plate reader-based assays without the need for additional optical hardware (i.e., light sources). The protocol is applied to assess cAMP levels downstream of a chimeric OptoXR but can be expanded to other opsins and second messengers, such as Ca2+ mobilization. We describe how the internal optical components in commonly available plate readers can be utilized to both activate and detect kinetic and dose–response relationships, as well as provide general guidance for optimizing assays with light-sensitive molecular tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from ÂŁ29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. https://doi.org/10.1146/annurev-neuro-061010-113817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459(7245):356–363. https://doi.org/10.1038/nature08144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hauser AS et al (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16(12):829–842. https://doi.org/10.1038/nrd.2017.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Airan RD et al (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029. https://doi.org/10.1038/nature07926

    Article  CAS  PubMed  Google Scholar 

  5. Tichy AM, Gerrard EJ, Sexton PM, Janovjak H (2019) Light-activated chimeric GPCRs: limitations and opportunities. Curr Opin Struct Biol 57:196–203. https://doi.org/10.1016/j.sbi.2019.05.006

    Article  CAS  PubMed  Google Scholar 

  6. Spangler SM, Bruchas MR (2017) Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr Opin Pharmacol 32:56–70. https://doi.org/10.1016/j.coph.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Y, Meng J, Xu C, Liu J (2021) Multiple GPCR functional assays based on resonance energy transfer sensors. Front Cell Dev Biol 9:611443. https://doi.org/10.3389/fcell.2021.611443

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang R, Xie X (2012) Tools for GPCR drug discovery. Acta Pharmacol Sin 33(3):372–384. https://doi.org/10.1038/aps.2011.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tichy AM, So WL, Gerrard EJ, Janovjak H (2022) Structure-guided optimization of light-activated chimeric G-protein-coupled receptors. Structure 30(8):1075–1087 e1074. https://doi.org/10.1016/j.str.2022.04.012

    Article  CAS  PubMed  Google Scholar 

  10. Moglich A, Moffat K (2010) Engineered photoreceptors as novel optogenetic tools. Photochem Photobiol Sci 9(10):1286–1300. https://doi.org/10.1039/c0pp00167h

    Article  CAS  PubMed  Google Scholar 

  11. Morri M et al (2018) Optical functionalization of human Class A orphan G-protein-coupled receptors. Nat Commun 9(1):1950. https://doi.org/10.1038/s41467-018-04342-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Capek D et al (2019) Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration. elife 8. https://doi.org/10.7554/eLife.42093

  13. Bailes HJ, Lucas RJ (2013) Human melanopsin forms a pigment maximally sensitive to blue light (lambdamax approximately 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades. Proc Biol Sci 280(1759):20122987. https://doi.org/10.1098/rspb.2012.2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brueggemann LI, Sullivan JM (2002) HEK293S cells have functional retinoid processing machinery. J Gen Physiol 119(6):593–612. https://doi.org/10.1085/jgp.20018495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bailes HJ, Zhuang LY, Lucas RJ (2012) Reproducible and sustained regulation of Galphas signalling using a metazoan opsin as an optogenetic tool. PLoS One 7(1):e30774. https://doi.org/10.1371/journal.pone.0030774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rodgers J et al (2021) Using a bistable animal opsin for switchable and scalable optogenetic inhibition of neurons. EMBO Rep 22(5):e51866. https://doi.org/10.15252/embr.202051866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Richter F et al (2015) Upgrading a microplate reader for photobiology and all-optical experiments. Photochem Photobiol Sci 14(2):270–279. https://doi.org/10.1039/c4pp00361f

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gerrard, E.J., Tichy, AM., Janovjak, H. (2025). Automated Plate Reader-Based Assays of Light-Activated GPCRs. In: Baumschlager, A. (eds) Optogenetics. Methods in Molecular Biology, vol 2840. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-4047-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-4047-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-4046-3

  • Online ISBN: 978-1-0716-4047-0

  • eBook Packages: Springer Protocols

Key words

Publish with us

Policies and ethics