Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Nessler Histological Staining for Ammonia Detection in Formalin-Fixed Paraffin-Embedded (FFPE) Mammalian Tissue

  • Protocol
  • First Online:
Experimental and Clinical Methods in Hepatic Encephalopathy Research

Part of the book series: Neuromethods ((NM,volume 219))

  • 170 Accesses

Abstract

Hyperammonemia, a life-threatening condition, is a common complication of a wide variety of disorders as well as a primary etiologic agent of hepatic encephalopathy (HE), a decline in brain functions secondary to advanced liver dysfunction and failure. Measurements of ammonia in blood were first described more than a century ago and since then, several new methods have been proposed for the determination of ammonia in biological fluids. The direct enzymatic determination of ammonia in plasma is nowadays the most commonly used ammonia assay in clinical chemistry. Here, we summarize the current recommendations for the quantification of ammonia in biological fluids, in particular in plasma, by listing sample pre-analysis handling requisites and principal potential contaminants.

Ammonia homeostasis is a whole-body dynamic process tightly regulated. Assessing the altered accumulation of ammonia and disrupted metabolism in the different organ/systems tissues is important for increasing our knowledge of the underlying disturbed molecular mechanisms in a series of pathologies. Therefore, the establishment of adequate methodologies for the detection of ammonia in mammalian tissue is of paramount importance. Herein, we provide a detailed description of a method for detecting ammonia in formalin-fixed paraffin-embedded mammalian tissue. This histological-based method takes advantage of the Nessler colorimetric reaction to detect ammonia analyzing this metabolite distribution in specific regions of interest of the mammalian brain, liver, and other organs of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huizenga JR, Tangerman A, Gips CH (1994) Determination of ammonia in biological fluids. Ann Clin Biochem 31(Pt 6):529–543

    Article  CAS  PubMed  Google Scholar 

  2. Gebhardt R, Matz-Soja M (2014) Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J Gastroenterol 20(26):8491–8504

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jungermann K, Kietzmann T (1996) Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr 16:179–203

    Article  CAS  PubMed  Google Scholar 

  4. Wang P et al (2023) Gut microbiome-derived ammonia modulates stress vulnerability in the host. Nat Metab 5:1986–2001

    Google Scholar 

  5. Mathias RS, Kostiner D, Packman S (2001) Hyperammonemia in urea cycle disorders: role of the nephrologist. Am J Kidney Dis 37(5):1069–1080

    Article  CAS  PubMed  Google Scholar 

  6. Haberle J et al (2018) Hyperammonaemia in classic organic acidaemias: a review of the literature and two case histories. Orphanet J Rare Dis 13(1):219

    Article  PubMed  PubMed Central  Google Scholar 

  7. Glasgow AM, Cotton RB, Dhiensiri K (1972) Reye’s syndrome. I. Blood ammonia and consideration of the nonhistologic diagnosis. Am J Dis Child 124(6):827–833

    Article  CAS  PubMed  Google Scholar 

  8. Kenzaka T et al (2015) Hyperammonemia in urinary tract infections. PLoS One 10(8):e0136220

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nott L et al (2007) Hyperammonemia encephalopathy: an important cause of neurological deterioration following chemotherapy. Leuk Lymphoma 48(9):1702–1711

    Article  CAS  PubMed  Google Scholar 

  10. Segura-Bruna N et al (2006) Valproate-induced hyperammonemic encephalopathy. Acta Neurol Scand 114(1):1–7

    Article  CAS  PubMed  Google Scholar 

  11. Kotsiliti E (2022) Hyperammonaemia in liver cirrhosis. Nat Rev Gastroenterol Hepatol 19(10):624

    PubMed  Google Scholar 

  12. Jalan R, Lee WM (2009) Treatment of hyperammonemia in liver failure: a tale of two enzymes. Gastroenterology 136(7):2048–2051

    Article  CAS  PubMed  Google Scholar 

  13. Jover-Cobos M, Khetan V, Jalan R (2014) Treatment of hyperammonemia in liver failure. Curr Opin Clin Nutr Metab Care 17(1):105–110

    CAS  PubMed  Google Scholar 

  14. Butterworth RF (2000) Complications of cirrhosis III. Hepatic encephalopathy. J Hepatol 32(1 Suppl):171–180

    Article  CAS  PubMed  Google Scholar 

  15. Kaplon J et al (2019) Improved assay protocol for measurement of ammonia on the Roche Cobas 8000 automated platform. Pract Lab Med 13:e00115

    Article  CAS  PubMed  Google Scholar 

  16. Wannasilp N et al (2006) Heparin is an unsuitable anticoagulant for the detection of plasma ammonia. Clin Chim Acta 371(1–2):196–197

    Article  CAS  PubMed  Google Scholar 

  17. Wannasilp N et al (2005) EDTA should be the anticoagulant of choice for the measurement of plasma ammonia: report of a problem sample. Clin Chim Acta 357(1):84–85

    Article  CAS  PubMed  Google Scholar 

  18. Barsotti RJ (2001) Measurement of ammonia in blood. J Pediatr 138(1 Suppl):S11–9;discussion S19–20

    Google Scholar 

  19. Haberle J (2011) Clinical practice: the management of hyperammonemia. Eur J Pediatr 170(1):21–34

    Article  PubMed  Google Scholar 

  20. Rodriguez-Agudo R et al (2022) Methionine cycle rewiring by targeting miR-873-5p modulates ammonia metabolism to protect the liver from acetaminophen. Antioxidants (Basel) 11(5):897

    Google Scholar 

  21. De Chiara F et al (2018) Urea cycle dysregulation in non-alcoholic fatty liver disease. J Hepatol 69(4):905–915

    Article  PubMed  Google Scholar 

  22. Gutierrez-de-Juan V et al (2017) A morphological method for ammonia detection in liver. PLoS One 12(3):e0173914

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ballester MP et al (2023) Development and validation of the AMMON-OHE model to predict risk of overt hepatic encephalopathy occurrence in outpatients with cirrhosis. J Hepatol 79(4):967–976

    Article  PubMed  Google Scholar 

  24. Mercado-Gomez M et al (2024) The lipopolysaccharide-TLR4 axis regulates hepatic glutaminase 1 expression promoting liver ammonia build-up as steatotic liver disease progresses to steatohepatitis. Metabolism 158:155952

    Google Scholar 

  25. Thomsen KL et al (2023) Role of ammonia in NAFLD: an unusual suspect. JHEP Rep 5(7): 100780

    Google Scholar 

Download references

Acknowledgments

Teresa C. Delgado is funded by “Ayuda RYC2020-029316-I financiada por MCIN/AEI/10.13039/501100011033 y por El FSE invierte en tu futuro.” This work was supported by the Gilead Sciences Research Scholars Program in Global Liver (to TCD), grant from Ministerio de Ciencia, Innovación y Universidades (MICINN: PID2022-139395OB-100 integrado en el Plan Estatal de Investigación Científica y Técnica e Innovación, con Fondos FEDER). This work was supported by grants from Ministerio de Ciencia, Innovación y Universidades MICINN: PID2020-117116RB-I00 integrado en el Plan Estatal de Investigación Científica y Técnica e Innovación, cofinanciado con Fondos FEDER for (MLM-C); Project funded by CIBEREHD. This work was partially funded by the Basque Department of Health (2023222005) (for JdH). JdH and TCD are members of the European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN) Project ID No. 739543.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Delgado, T.C., de las Heras, J., Martínez-Chantar, M.L. (2025). Nessler Histological Staining for Ammonia Detection in Formalin-Fixed Paraffin-Embedded (FFPE) Mammalian Tissue. In: Balzano, T. (eds) Experimental and Clinical Methods in Hepatic Encephalopathy Research. Neuromethods, vol 219. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-4354-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-4354-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-4353-2

  • Online ISBN: 978-1-0716-4354-9

  • eBook Packages: Springer Protocols

Key words

Publish with us

Policies and ethics