Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Introduction to Conducting Polymers

  • Chapter
  • First Online:
Advances in Hybrid Conducting Polymer Technology

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 836 Accesses

  • 12 Citations

Abstract

In recent years, the research about Conducting Polymers (CPs) have seen exponential growth due to their versatile applications. The widespread attention on CPs is due to its extraordinary properties such as simple preparation step, low cost of monomers, environmentally benign, and most importantly the high conducting properties like metals. In addition, lightweight of CPs and non-corrosive nature, have made it one of the versatile polymers in the materials group. These remarkable properties of CPs have made it to be easily integrated with the latest applications on photocatalyst, sensors, and actuators, solar cells, energy devices, and batteries. However, many have not realised the historical background of these versatile CPs. Hence, this chapter is an attempt to address the forgotten history of CPs with respect to certain selected well-known CPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shirakawa, H., Louis, J., Macdiarmid, A.G.: Synthesis of electrically conducting organic polymers: halogene derivatives of polyacetylene, (CH)x. J. C. S. Chem. Comm. 578, 578–580 (1977)

    Article  Google Scholar 

  2. Chiang, C., et al.: Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977)

    Article  Google Scholar 

  3. Kumar, L., Rawal, I., Kaur, A., Annapoorni, S.: Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuat. B Chem. 240, 408–416 (2017)

    Article  Google Scholar 

  4. AlSalhi, M.S., Alam, J., Dass, L.A., Raja, M.: Recent advances in conjugated polymers for light emitting devices. Int. J. Mol. Sci. 12(3), 2036–2054 (2011)

    Article  Google Scholar 

  5. Yun, S., Freitas, J.N., Nogueira, A.F., Wang, Y., Ahmad, S., Wang, Z.S.: Dye-sensitised solar cells employing polymers. Prog. Polym. Sci. 59(February), 1–40 (2016)

    Article  Google Scholar 

  6. Ng, H.M., Ramesh, S., Ramesh, K.: Quasi-solid polymer electrolyte composed of poly(1-vinylpyrrolidone-co-vinyl acetate) copolymer and the influence of its composition on electrochemical properties and the performances of dye-sensitised solar cells. Polym. Plast. Technol. Eng. 57(2), 98–107 (2018)

    Article  Google Scholar 

  7. Kausar, A.: Overview on conducting polymer in energy storage and energy conversion system. J. Macromol. Sci. Part A 54(9), 640–653 (2017)

    Article  Google Scholar 

  8. Deshpande, P.P., Jadhav, N.G., Gelling, V.J., Sazou, D.: Conducting polymers for corrosion protection: a review. J. Coatings Technol. Res. 11(4), 473–494 (2014)

    Article  Google Scholar 

  9. Shahabuddin, S., Sarih, N.M., Ismail, F.H., Shahid, M.M., Huang, N.M.: Synthesis of chitosan grafted-polyaniline/Co 3 O 4 nanocube nanocomposites and their photocatalytic activity toward methylene blue dye degradation. RSC Adv. 5(102), 83857–83867 (2015)

    Article  Google Scholar 

  10. Koh, Y., Sambasevam, K.P., Yahya, R., Phang, S.: Improvement of microwave absorption for PAni/HA/TiO2/Fe3O4 nanocomposite after chemical treatment. Polym. Compos. 34(7), 1186–1194 (2013)

    Article  Google Scholar 

  11. Weder, C.: Functional polymer blends and nanocomposites. Chimia (Aarau) 63(11), 758–763 (2009)

    Article  Google Scholar 

  12. Opoku, F., Kiarii, E. M., Govender, P. P., Mamo, M. A.: Metal oxide polymer nanocomposites in water treatments. Descr. Inorg. Chem. Res. Met. Compd. August 2017

    Google Scholar 

  13. Syed, S.: Polyaniline based nanocomposites as adsorbents and photocatalysts in the removal of organic dyes. pp. 1–179 (2016)

    Google Scholar 

  14. Kumar, R., Singh, S., Yadav, B.C.: Conducting polymers: synthesis, properties and applications. Int. Adv. Res. J. Sci. Eng. Technol. 2(11), 595–604 (2015)

    Google Scholar 

  15. Kaur, G., Adhikari, R., Cass, P., Bown, M., Gunatillake, P.: Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5(47), 37553–37567 (2015)

    Article  Google Scholar 

  16. Scott, J.C.: History of conductive polymers, In: Eftekhari, A. (ed.) Nanostructured Conductive Polymers, John Wiley & Sons Ltd, pp. 1–17 (2010)

    Google Scholar 

  17. Essays, U.: History of conducting polymers engineering essay. UKEssays.com (2018) (Online). Available: https://www.ukessays.com/essays/engineering/history-of-conducting-polymers-engineering-essay.php?vref=1. Accessed 29 Apr 2020

  18. Walatka, V., Labes, M., Perlstein, J.: Polysulfur Nitride—a one-dimensional chain with a metallic ground state. Phys. Rev. Lett. 31(18), 1139–1142 (1973)

    Article  Google Scholar 

  19. Bengt, N.: The Nobel Prize in Chemistry, 2000: Conductive polymers. Kungl, Vetenskapsakademien (2000)

    Google Scholar 

  20. MacDiarmid, A.G., Heeger, A.J.: Organic metals and semiconductors: the chemistry of polyacetylene, (CH)x, and its derivatives. Synth. Met. 1(2), 101–118 (1980)

    Article  Google Scholar 

  21. Etemad, S., Heeger, A.J.: Polyacetylene, (CH)x: the prototype conducting polymer. Annu. Rev. Phys. Chem. 33(1), 443–469 (1982)

    Article  Google Scholar 

  22. Saxman, A.M., Liepins, R., Aldissi, M.: Polyacetylene: Its synthesis, doping and structure. Prog. Polym. Sci. 11(1–2), 57–89 (1985)

    Article  Google Scholar 

  23. Chien, J. C. W.: Polyacetylene : Chemistry, Physics, and Material Science. Elsevier Science (1984)

    Google Scholar 

  24. Brédas, J.L., Street, G.B., Thémans, B., André, J.M.: Organic polymers based on aromatic rings (polyparaphenylene, polypyrrole, polythiophene): evolution of the electronic properties as a function of the torsion angle between adjacent rings. J. Chem. Phys. 83(3), 1323–1329 (1985)

    Article  Google Scholar 

  25. Hertel, D., Setayesh, S., Nothofer, H.G., Scherf, U., Müllen, K., Bässler, H.: Phosphorescence in Conjugated Poly(para-phenylene)-Derivatives. Adv. Mater. 13(1), 65–70 (2001)

    Article  Google Scholar 

  26. Ahlskog, M., Reghu, M., Noguchi, T., Ohnishi, T.: Doping and conductivity studies on poly(p-phenylene vinylene). Synth. Met. 89(1), 11–15 (1997)

    Article  Google Scholar 

  27. Kimura, M., et al.: Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display. IEEE Trans. Electron Devices 46(12), 2282–2288 (1999)

    Article  Google Scholar 

  28. De Carvalho, L.C., Dos Santos, C.N., Alves, H.W.L., Alves, J.L.A.: Theoretical studies of poly(para-phenylene vinylene) (PPV) and poly(para-phenylene) (PPP). Microelectron. J. 34(5–8), 623–625 (2003)

    Article  Google Scholar 

  29. Kiebooms, R., Resel, R., Vanderzande, D., Leising, G.: Polymer leds based on N-Alkylsulfinyl Ppv precursor polymers. MRS Proc. 558, 409 (1999)

    Article  Google Scholar 

  30. Melzer, C., et al.: Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14(9), 865–870 (2004)

    Google Scholar 

  31. Van der Zanden, B., Goossens, A.: Oxygen doping of TiO2/poly(phenylene-vinylene) bilayer solar cells. J. Appl. Phys. 94(10), 6959–6965 (2003)

    Article  Google Scholar 

  32. Heeger, A.J.: Semiconducting and Metallic Polymers: the fourth generation of polymeric materials (nobel lecture). Angew. Chem. Int. Ed. Engl. 40(14), 2591–2611 (2001)

    Article  Google Scholar 

  33. Papeo, G., Pulici, M.: Italian chemists’ contributions to named reactions in organic synthesis: an historical perspective. Molecules 18(9), 10870–10900 (2013)

    Article  Google Scholar 

  34. Song, X., et al.: In situ pPy-modification of chitosan porous membrane from mussel shell as a cardiac patch to repair myocardial infarction. Appl. Mater. Today 15, 87–99 (2019)

    Article  Google Scholar 

  35. Kutsche, C., Targove, J., Haaland, P.: Microlithographic patterning of polythiophene films. J. Appl. Phys. 73(5), 2802–2804 (1993)

    Article  Google Scholar 

  36. Xu, Q., An, L., Yu, M., Wang, S.: Design and synthesis of a new conjugated polyelectrolyte as a reversible pH sensor. Macromol. Rapid Commun. 29(5), 390–395 (2008)

    Article  Google Scholar 

  37. Huo, L., Guo, X., Zhang, S., Li, Y., Hou, J.: PBDTTTZ: a broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules 44(11), 4035–4037 (2011)

    Article  Google Scholar 

  38. Mannerbro, R., Ranlöf, M., Robinson, N., Forchheimer, R.: Inkjet printed electrochemical organic electronics. Synth. Met. 158(13), 556–560 (2008)

    Article  Google Scholar 

  39. Nawa, K., Imae, I., Noma, N., Shirota, Y.: Synthesis of a novel type of electrochemically doped vinyl polymer containing pendant terthiophene and its electrical and electrochromic properties. Macromolecules 28(3), 723–729 (1995)

    Article  Google Scholar 

  40. Ren, L., Zhang, X.F.: Preparation and characterisation of polyaniline micro/nanotubes with dopant acid mordant dark yellow GG. Synth. Met. 160(7–8), 783–787 (2010)

    Article  Google Scholar 

  41. Sambasevam, K. P., Mohamad, S., Phang, S.-W.: Effect of dopant concentration on polyaniline for hydrazine detection vol. 33, Elsevier (2015)

    Google Scholar 

  42. Kawata, K., Gan, S.N., Ang, D.T.C., Sambasevam, K.P., Phang, S.W., Kuramoto, N.: Preparation of polyaniline/TiO2 nanocomposite film with good adhesion behavior for dye-sensitised solar cell application. Polym. Compos. 34(11), 1884–1891 (2013)

    Article  Google Scholar 

  43. Zheng, L., Song, J.: Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine. Sens. Actuat. B Chem. 135(2), 650–655 (2009)

    Article  Google Scholar 

  44. Moulton, S., Innis, P., Kane-Maguire, L.A., Ngamna, O., Wallace, G.: Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions. Curr. Appl. Phys. 4(2–4), 402–406 (2004)

    Google Scholar 

  45. Sambasevam, K.P., Mohamad, S., Phang, S.W.: Sensor kimia untuk mengesan hidrazin dengan menggunakan polyanilina berbentuk filem nipis. Malaysian J. Anal. Sci. 21(4), 762–769 (2017)

    Google Scholar 

  46. Letheby, H.: On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 15, 161 (1862)

    Article  Google Scholar 

  47. Bai, H., Chen, Q., Li, C., Lu, C., Shi, G.: Electrosynthesis of polypyrrole/sulfonated polyaniline composite films and their applications for ammonia gas sensing. Polymer (Guildf) 48(14), 4015–4020 (2007)

    Article  Google Scholar 

  48. Pang, Z., Fu, J., Lv, P., Huang, F., Wei, Q.: Effect of CSA concentration on the ammonia sensing properties of CSA-Doped PA6/PANI composite nanofibers. Sensors 14(11), 21453–21465 (2014)

    Article  Google Scholar 

  49. Kavirajaa Pandian, S.: Synthesis and characterisation of polyaniline for hydrazine detection/Kavirajaa Pandian Sambasevam (2015)

    Google Scholar 

  50. Nguyen, D. N., Yoon, H.: Recent advances in nanostructured conducting polymers: from synthesis to practical applications. Polymers (Basel). 8(4) (2016)

    Google Scholar 

  51. Bakhshi, A.K., Bhalla, G.: Electrically conducting polymers: materials of the twentyfirst century. J. Sci. Ind. Res. 63(September), 715–728 (2004)

    Google Scholar 

  52. Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: Synthesis, applications and future prospects. J. Ind. Eng. Chem. (2017)

    Google Scholar 

  53. Danks, A.E., Hall, S.R., Schnepp, Z.: The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3(2), 91–112 (2016)

    Article  Google Scholar 

  54. Yamak, H. B.: Emulsion polymerization : effects of polymerisation variables on the properties of vinyl acetate based emulsion polymers. Emuls. Polym. 35–73 (2013)

    Google Scholar 

  55. Wang, Y., Jing, X., Kong, J.: Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synth. Met. 157(6–7), 269–275 (2007)

    Article  Google Scholar 

  56. Yasuda, A., Shimidzu, T.: Chemical and electrochemical analyses of polyaniline prepared with FeCl3. Synth. Met. 61(3), 239–245 (1993)

    Article  Google Scholar 

  57. Hand, R.L.: The Anodic decomposition pathways of ortho- and meta-substituted anilines. J. Electrochem. Soc. 125(7), 1059 (1978)

    Article  Google Scholar 

  58. Peng, X., Zhang, L., Chen, Y., Li, F., Zhou, W.: In situ preparation and fluorescence quenching properties of polythiophene/ZnO nanocrystals hybrids through atom-transfer radical polymerisation and hydrolysis. Appl. Surf. Sci. 256(9), 2948–2955 (2010)

    Article  Google Scholar 

  59. Kwon, J.D., Kim, P.H., Keum, J.H., Kim, J.S.: Polypyrrole/titania hybrids: Synthetic variation and test for the photovoltaic materials. Sol. Energy Mater. Sol. Cells 83(2–3), 311–321 (2004)

    Article  Google Scholar 

  60. Matsumura, S., et al.: Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: Novel branched poly(ether-ketone)s. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 49(1), 511–512 (2008)

    MathSciNet  Google Scholar 

  61. Clément, S., et al.: Synthesis and characterisation of π-conjugated polymer/silica hybrids containing regioregular ionic polythiophenes. J. Mater. Chem. 21(8), 2733 (2011)

    Article  Google Scholar 

  62. Yan, S., Wu, Q., Chang, A., Lu, F., Xu, H.C., Wu, W.: Electrochemical synthesis of polymer microgels. Polym. Chem. 6, 3979–3987 (2015)

    Article  Google Scholar 

  63. Sadki, S., Schottland, P., Sabouraud, G., Brodie, N.: The mechanisms of pyrrole electropolymerisation. RSC Adv. 283–293 (2000)

    Google Scholar 

  64. Bhadra, S., Khastgir, D., Singha, N.K., Lee, J.H.: Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34(8), 783–810 (2009)

    Article  Google Scholar 

  65. Paper, C., et al.: Fabrication of Graphene/Polyaniline 3(7), 1745–1752 (2009)

    Google Scholar 

  66. Liu, Y., Huang, J., Tsai, C., Chuang, T. C., Wang, C.: Effect of TiO2 nanoparticles on the electropolymerisation of polypyrrole. 387, 155–159 (2004)

    Google Scholar 

  67. Cai, G.F., Tu, J. P., Zhou, D., Zhang, J. H., Wang, X. L., Gu, C. D.: Solar energy materials & solar cells dual electrochromic fi lm based on WO 3/polyaniline core/shell nanowire array 122, 51–58 (2014)

    Google Scholar 

  68. Jacob, D., Mini, P.A., Balakrishnan, A., Nair, S.V., Subramanian, K.R.V.: Electrochemical behaviour of graphene – poly (3, 4-ethylene- dioxythiophene ) ( PEDOT ) composite electrodes for supercapacitor applications. Bull. Mater. Sci 37(1), 61–69 (2014)

    Article  Google Scholar 

  69. Yamada, K., Yamada, Y., Sone, J.: Three-dimensional photochemical microfabrication of poly(3,4-ethylene- dioxythiophene) in transparent polymer sheet. Thin Solid Films 554, 102–105 (2014)

    Article  Google Scholar 

  70. Lee, W., Hyung, K.H., Hwang, Y., Cho, B.W., Lee, S.H., Han, S.H.: Photoelectrochemical polymerisation of thiophene on self-assembled RuL 2(NCS) 2/Di(3-aminopropyl)viologen on indium thin oxide. J. Nanosci. Nanotechnol. 11(5), 4501–4505 (2011)

    Article  Google Scholar 

  71. Zhang, J., et al.: Poly(3,4-ethylenedioxythiophene) hole-transporting material generated by photoelectrochemical polymerisation in aqueous and organic medium for all-solid-state dye-sensitised solar cells. J. Phys. Chem. C 118(30), 16591–16601 (2014)

    Article  Google Scholar 

  72. Zhang, J., Jarboui, A., Vlachopoulos, N., Jouini, M., Boschloo, G., Hagfeldt, A.: Photoelectrochemical polymerization of EDOT for solid state dye sensitized solar cells: role of dye and solvent. Electrochim. Acta 179, 220–227 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Shahabuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahabuddin, S., Mazlan, N.A., Baharin, S.N.A., Sambasevam, K.P. (2021). Introduction to Conducting Polymers. In: Shahabuddin, S., Pandey, A.K., Khalid, M., Jagadish, P. (eds) Advances in Hybrid Conducting Polymer Technology. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62090-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62090-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62089-9

  • Online ISBN: 978-3-030-62090-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics