Abstract
In recent years, the research about Conducting Polymers (CPs) have seen exponential growth due to their versatile applications. The widespread attention on CPs is due to its extraordinary properties such as simple preparation step, low cost of monomers, environmentally benign, and most importantly the high conducting properties like metals. In addition, lightweight of CPs and non-corrosive nature, have made it one of the versatile polymers in the materials group. These remarkable properties of CPs have made it to be easily integrated with the latest applications on photocatalyst, sensors, and actuators, solar cells, energy devices, and batteries. However, many have not realised the historical background of these versatile CPs. Hence, this chapter is an attempt to address the forgotten history of CPs with respect to certain selected well-known CPs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shirakawa, H., Louis, J., Macdiarmid, A.G.: Synthesis of electrically conducting organic polymers: halogene derivatives of polyacetylene, (CH)x. J. C. S. Chem. Comm. 578, 578–580 (1977)
Chiang, C., et al.: Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977)
Kumar, L., Rawal, I., Kaur, A., Annapoorni, S.: Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuat. B Chem. 240, 408–416 (2017)
AlSalhi, M.S., Alam, J., Dass, L.A., Raja, M.: Recent advances in conjugated polymers for light emitting devices. Int. J. Mol. Sci. 12(3), 2036–2054 (2011)
Yun, S., Freitas, J.N., Nogueira, A.F., Wang, Y., Ahmad, S., Wang, Z.S.: Dye-sensitised solar cells employing polymers. Prog. Polym. Sci. 59(February), 1–40 (2016)
Ng, H.M., Ramesh, S., Ramesh, K.: Quasi-solid polymer electrolyte composed of poly(1-vinylpyrrolidone-co-vinyl acetate) copolymer and the influence of its composition on electrochemical properties and the performances of dye-sensitised solar cells. Polym. Plast. Technol. Eng. 57(2), 98–107 (2018)
Kausar, A.: Overview on conducting polymer in energy storage and energy conversion system. J. Macromol. Sci. Part A 54(9), 640–653 (2017)
Deshpande, P.P., Jadhav, N.G., Gelling, V.J., Sazou, D.: Conducting polymers for corrosion protection: a review. J. Coatings Technol. Res. 11(4), 473–494 (2014)
Shahabuddin, S., Sarih, N.M., Ismail, F.H., Shahid, M.M., Huang, N.M.: Synthesis of chitosan grafted-polyaniline/Co 3 O 4 nanocube nanocomposites and their photocatalytic activity toward methylene blue dye degradation. RSC Adv. 5(102), 83857–83867 (2015)
Koh, Y., Sambasevam, K.P., Yahya, R., Phang, S.: Improvement of microwave absorption for PAni/HA/TiO2/Fe3O4 nanocomposite after chemical treatment. Polym. Compos. 34(7), 1186–1194 (2013)
Weder, C.: Functional polymer blends and nanocomposites. Chimia (Aarau) 63(11), 758–763 (2009)
Opoku, F., Kiarii, E. M., Govender, P. P., Mamo, M. A.: Metal oxide polymer nanocomposites in water treatments. Descr. Inorg. Chem. Res. Met. Compd. August 2017
Syed, S.: Polyaniline based nanocomposites as adsorbents and photocatalysts in the removal of organic dyes. pp. 1–179 (2016)
Kumar, R., Singh, S., Yadav, B.C.: Conducting polymers: synthesis, properties and applications. Int. Adv. Res. J. Sci. Eng. Technol. 2(11), 595–604 (2015)
Kaur, G., Adhikari, R., Cass, P., Bown, M., Gunatillake, P.: Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5(47), 37553–37567 (2015)
Scott, J.C.: History of conductive polymers, In: Eftekhari, A. (ed.) Nanostructured Conductive Polymers, John Wiley & Sons Ltd, pp. 1–17 (2010)
Essays, U.: History of conducting polymers engineering essay. UKEssays.com (2018) (Online). Available: https://www.ukessays.com/essays/engineering/history-of-conducting-polymers-engineering-essay.php?vref=1. Accessed 29 Apr 2020
Walatka, V., Labes, M., Perlstein, J.: Polysulfur Nitride—a one-dimensional chain with a metallic ground state. Phys. Rev. Lett. 31(18), 1139–1142 (1973)
Bengt, N.: The Nobel Prize in Chemistry, 2000: Conductive polymers. Kungl, Vetenskapsakademien (2000)
MacDiarmid, A.G., Heeger, A.J.: Organic metals and semiconductors: the chemistry of polyacetylene, (CH)x, and its derivatives. Synth. Met. 1(2), 101–118 (1980)
Etemad, S., Heeger, A.J.: Polyacetylene, (CH)x: the prototype conducting polymer. Annu. Rev. Phys. Chem. 33(1), 443–469 (1982)
Saxman, A.M., Liepins, R., Aldissi, M.: Polyacetylene: Its synthesis, doping and structure. Prog. Polym. Sci. 11(1–2), 57–89 (1985)
Chien, J. C. W.: Polyacetylene : Chemistry, Physics, and Material Science. Elsevier Science (1984)
Brédas, J.L., Street, G.B., Thémans, B., André, J.M.: Organic polymers based on aromatic rings (polyparaphenylene, polypyrrole, polythiophene): evolution of the electronic properties as a function of the torsion angle between adjacent rings. J. Chem. Phys. 83(3), 1323–1329 (1985)
Hertel, D., Setayesh, S., Nothofer, H.G., Scherf, U., Müllen, K., Bässler, H.: Phosphorescence in Conjugated Poly(para-phenylene)-Derivatives. Adv. Mater. 13(1), 65–70 (2001)
Ahlskog, M., Reghu, M., Noguchi, T., Ohnishi, T.: Doping and conductivity studies on poly(p-phenylene vinylene). Synth. Met. 89(1), 11–15 (1997)
Kimura, M., et al.: Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display. IEEE Trans. Electron Devices 46(12), 2282–2288 (1999)
De Carvalho, L.C., Dos Santos, C.N., Alves, H.W.L., Alves, J.L.A.: Theoretical studies of poly(para-phenylene vinylene) (PPV) and poly(para-phenylene) (PPP). Microelectron. J. 34(5–8), 623–625 (2003)
Kiebooms, R., Resel, R., Vanderzande, D., Leising, G.: Polymer leds based on N-Alkylsulfinyl Ppv precursor polymers. MRS Proc. 558, 409 (1999)
Melzer, C., et al.: Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14(9), 865–870 (2004)
Van der Zanden, B., Goossens, A.: Oxygen doping of TiO2/poly(phenylene-vinylene) bilayer solar cells. J. Appl. Phys. 94(10), 6959–6965 (2003)
Heeger, A.J.: Semiconducting and Metallic Polymers: the fourth generation of polymeric materials (nobel lecture). Angew. Chem. Int. Ed. Engl. 40(14), 2591–2611 (2001)
Papeo, G., Pulici, M.: Italian chemists’ contributions to named reactions in organic synthesis: an historical perspective. Molecules 18(9), 10870–10900 (2013)
Song, X., et al.: In situ pPy-modification of chitosan porous membrane from mussel shell as a cardiac patch to repair myocardial infarction. Appl. Mater. Today 15, 87–99 (2019)
Kutsche, C., Targove, J., Haaland, P.: Microlithographic patterning of polythiophene films. J. Appl. Phys. 73(5), 2802–2804 (1993)
Xu, Q., An, L., Yu, M., Wang, S.: Design and synthesis of a new conjugated polyelectrolyte as a reversible pH sensor. Macromol. Rapid Commun. 29(5), 390–395 (2008)
Huo, L., Guo, X., Zhang, S., Li, Y., Hou, J.: PBDTTTZ: a broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules 44(11), 4035–4037 (2011)
Mannerbro, R., Ranlöf, M., Robinson, N., Forchheimer, R.: Inkjet printed electrochemical organic electronics. Synth. Met. 158(13), 556–560 (2008)
Nawa, K., Imae, I., Noma, N., Shirota, Y.: Synthesis of a novel type of electrochemically doped vinyl polymer containing pendant terthiophene and its electrical and electrochromic properties. Macromolecules 28(3), 723–729 (1995)
Ren, L., Zhang, X.F.: Preparation and characterisation of polyaniline micro/nanotubes with dopant acid mordant dark yellow GG. Synth. Met. 160(7–8), 783–787 (2010)
Sambasevam, K. P., Mohamad, S., Phang, S.-W.: Effect of dopant concentration on polyaniline for hydrazine detection vol. 33, Elsevier (2015)
Kawata, K., Gan, S.N., Ang, D.T.C., Sambasevam, K.P., Phang, S.W., Kuramoto, N.: Preparation of polyaniline/TiO2 nanocomposite film with good adhesion behavior for dye-sensitised solar cell application. Polym. Compos. 34(11), 1884–1891 (2013)
Zheng, L., Song, J.: Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine. Sens. Actuat. B Chem. 135(2), 650–655 (2009)
Moulton, S., Innis, P., Kane-Maguire, L.A., Ngamna, O., Wallace, G.: Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions. Curr. Appl. Phys. 4(2–4), 402–406 (2004)
Sambasevam, K.P., Mohamad, S., Phang, S.W.: Sensor kimia untuk mengesan hidrazin dengan menggunakan polyanilina berbentuk filem nipis. Malaysian J. Anal. Sci. 21(4), 762–769 (2017)
Letheby, H.: On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 15, 161 (1862)
Bai, H., Chen, Q., Li, C., Lu, C., Shi, G.: Electrosynthesis of polypyrrole/sulfonated polyaniline composite films and their applications for ammonia gas sensing. Polymer (Guildf) 48(14), 4015–4020 (2007)
Pang, Z., Fu, J., Lv, P., Huang, F., Wei, Q.: Effect of CSA concentration on the ammonia sensing properties of CSA-Doped PA6/PANI composite nanofibers. Sensors 14(11), 21453–21465 (2014)
Kavirajaa Pandian, S.: Synthesis and characterisation of polyaniline for hydrazine detection/Kavirajaa Pandian Sambasevam (2015)
Nguyen, D. N., Yoon, H.: Recent advances in nanostructured conducting polymers: from synthesis to practical applications. Polymers (Basel). 8(4) (2016)
Bakhshi, A.K., Bhalla, G.: Electrically conducting polymers: materials of the twentyfirst century. J. Sci. Ind. Res. 63(September), 715–728 (2004)
Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: Synthesis, applications and future prospects. J. Ind. Eng. Chem. (2017)
Danks, A.E., Hall, S.R., Schnepp, Z.: The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3(2), 91–112 (2016)
Yamak, H. B.: Emulsion polymerization : effects of polymerisation variables on the properties of vinyl acetate based emulsion polymers. Emuls. Polym. 35–73 (2013)
Wang, Y., Jing, X., Kong, J.: Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synth. Met. 157(6–7), 269–275 (2007)
Yasuda, A., Shimidzu, T.: Chemical and electrochemical analyses of polyaniline prepared with FeCl3. Synth. Met. 61(3), 239–245 (1993)
Hand, R.L.: The Anodic decomposition pathways of ortho- and meta-substituted anilines. J. Electrochem. Soc. 125(7), 1059 (1978)
Peng, X., Zhang, L., Chen, Y., Li, F., Zhou, W.: In situ preparation and fluorescence quenching properties of polythiophene/ZnO nanocrystals hybrids through atom-transfer radical polymerisation and hydrolysis. Appl. Surf. Sci. 256(9), 2948–2955 (2010)
Kwon, J.D., Kim, P.H., Keum, J.H., Kim, J.S.: Polypyrrole/titania hybrids: Synthetic variation and test for the photovoltaic materials. Sol. Energy Mater. Sol. Cells 83(2–3), 311–321 (2004)
Matsumura, S., et al.: Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: Novel branched poly(ether-ketone)s. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 49(1), 511–512 (2008)
Clément, S., et al.: Synthesis and characterisation of π-conjugated polymer/silica hybrids containing regioregular ionic polythiophenes. J. Mater. Chem. 21(8), 2733 (2011)
Yan, S., Wu, Q., Chang, A., Lu, F., Xu, H.C., Wu, W.: Electrochemical synthesis of polymer microgels. Polym. Chem. 6, 3979–3987 (2015)
Sadki, S., Schottland, P., Sabouraud, G., Brodie, N.: The mechanisms of pyrrole electropolymerisation. RSC Adv. 283–293 (2000)
Bhadra, S., Khastgir, D., Singha, N.K., Lee, J.H.: Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34(8), 783–810 (2009)
Paper, C., et al.: Fabrication of Graphene/Polyaniline 3(7), 1745–1752 (2009)
Liu, Y., Huang, J., Tsai, C., Chuang, T. C., Wang, C.: Effect of TiO2 nanoparticles on the electropolymerisation of polypyrrole. 387, 155–159 (2004)
Cai, G.F., Tu, J. P., Zhou, D., Zhang, J. H., Wang, X. L., Gu, C. D.: Solar energy materials & solar cells dual electrochromic fi lm based on WO 3/polyaniline core/shell nanowire array 122, 51–58 (2014)
Jacob, D., Mini, P.A., Balakrishnan, A., Nair, S.V., Subramanian, K.R.V.: Electrochemical behaviour of graphene – poly (3, 4-ethylene- dioxythiophene ) ( PEDOT ) composite electrodes for supercapacitor applications. Bull. Mater. Sci 37(1), 61–69 (2014)
Yamada, K., Yamada, Y., Sone, J.: Three-dimensional photochemical microfabrication of poly(3,4-ethylene- dioxythiophene) in transparent polymer sheet. Thin Solid Films 554, 102–105 (2014)
Lee, W., Hyung, K.H., Hwang, Y., Cho, B.W., Lee, S.H., Han, S.H.: Photoelectrochemical polymerisation of thiophene on self-assembled RuL 2(NCS) 2/Di(3-aminopropyl)viologen on indium thin oxide. J. Nanosci. Nanotechnol. 11(5), 4501–4505 (2011)
Zhang, J., et al.: Poly(3,4-ethylenedioxythiophene) hole-transporting material generated by photoelectrochemical polymerisation in aqueous and organic medium for all-solid-state dye-sensitised solar cells. J. Phys. Chem. C 118(30), 16591–16601 (2014)
Zhang, J., Jarboui, A., Vlachopoulos, N., Jouini, M., Boschloo, G., Hagfeldt, A.: Photoelectrochemical polymerization of EDOT for solid state dye sensitized solar cells: role of dye and solvent. Electrochim. Acta 179, 220–227 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Shahabuddin, S., Mazlan, N.A., Baharin, S.N.A., Sambasevam, K.P. (2021). Introduction to Conducting Polymers. In: Shahabuddin, S., Pandey, A.K., Khalid, M., Jagadish, P. (eds) Advances in Hybrid Conducting Polymer Technology. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62090-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-62090-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62089-9
Online ISBN: 978-3-030-62090-5
eBook Packages: EngineeringEngineering (R0)