Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Chloroplast Genomics for Sustainable Cotton Production

  • Chapter
  • First Online:
Cotton Precision Breeding

Abstract

Plants are unique in that their cells contain three genomes: in the nucleus, mitochondria, and chloroplasts. Advances in recombinant DNA technology allow the manipulation of all three genomes. Insertion of foreign genes in the nucleus results in low gene expression, random integration of the transgenes, and gene silencing due to epigenetic interactions. Introducing transgenes into the chloroplast genome offers several advantages that include extraordinary gene expression levels (>70% of total soluble proteins), uniform gene expression due to non-Mendelian inheritance, and site-specific integration of the transgene at a chosen location on the chloroplast genome. The most attractive feature of developing transgenic field crops perhaps lies in the fact that chloroplast DNA is not carried in the pollen, particularly in field crops. The inheritance of chloroplasts in angiosperms is predominantly maternal, thereby providing a natural transgene containment system. Despite the huge potential, chloroplast transformation has not been extended to field crops, particularly cotton. There is only one study reporting the development of transgenic cotton expressing a kanamycin selectable marker. The possible reasons that currently hinder the application of this technology to cotton include prolonged and inefficient tissue culture-based protocols for recovering transplastomic plants and the limitation to develop transgenic plants from nongreen plastids through somatic embryogenesis. Efforts are underway to extend chloroplast transformation in agronomically important crops. In this chapter, we highlight the potential of chloroplast transformation technology for developing transgenic cotton for sustainable cotton production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GM:

Genetically modified

Indels:

Insertions and deletions

IR:

Inverted repeat

LSC:

Large single copy

ptDNA:

Plastid DNA

SNPs:

Single nucleotide polymorphism

SSC :

Small single copy

SSRs:

Simple sequence repeats

TSP:

Total soluble proteins

References

  • Ahmad N, Mukhtar Z (2017) Genetic manipulations in crops: challenges and opportunities. Genomics 109:494–505

    CAS  PubMed  Google Scholar 

  • Ahmad N, Michoux F, McCarthy J, Nixon PJ (2012) Expression of the affinity tags, glutathione-S-transferase and maltose-binding protein, in tobacco chloroplasts. Planta 235:863–871

    CAS  PubMed  Google Scholar 

  • Ahmad N, Michoux F, Lossl AG, Nixon PJ (2016) Challenges and perspectives in commercializing plastid transformation technology. J Exp Bot 67:5945–5960

    CAS  PubMed  Google Scholar 

  • Álvarez I, Cronn R, Wendel JF (2005) Phylogeny of the New World diploid cottons (Gossypium L., Malvaceae) based on sequences of three low-copy nuclear genes. Plant Syst Evol 252:199–214

    Google Scholar 

  • Arakawa T, Chong DKX, Lawrence Merritt J, Langridge WHR (1997) Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res 6:403–413

    CAS  PubMed  Google Scholar 

  • Baffes J (2011) Cotton, biotechnology, and economic development. Policy Research Working Paper. 5896. The World Bank, Washington, DC. http://wwwwds.worldbank.org/servlet/WDSContentServer/WDSP/IB/2011/12/05/000158349_20111205112253/Rendered/PDF/WPS5896.pdf

  • Barton KA, Whiteley HR, Yang NS (1987) Bacillus thuringiensis section sign-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to Lepidopteran insects. Plant Physiol 85:1103–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    CAS  PubMed  Google Scholar 

  • Carrière Y, Degain BA, Unnithan GC, Harpold VS, Heuberger S, Li X, Tabashnik BE (2018) Effects of seasonal changes in cotton plants on the evolution of resistance to pyramided cotton producing the Bt toxins Cry1Ac and Cry1F in Helicoverpa zea. Pest Manag Sci 74:627–637

    PubMed  Google Scholar 

  • Chakrabarti SK, Lutz KA, Lertwiriyawong B, Svab Z, Maliga P (2006) Expression of the cry9Aa2 Bt gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res 15:481–488

    CAS  PubMed  Google Scholar 

  • Chapman KD, Austin-Brown S, Sparace SA, Kinney AJ, Ripp KG, Pirtle IL, Pirtle RM (2001) Transgenic cotton plants with increased seed oleic acid content. J Am Oil Chem Soc 78:941–947

    CAS  Google Scholar 

  • Chen PJ, Senthilkumar R, Jane WN, He Y, Tian Z, Yeh KW (2014) Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol J 12:503–515

    CAS  PubMed  Google Scholar 

  • Chen Z, Feng K, Grover CE, Li P, Liu F, Wang Y, Xu Q, Shang M, Zhou Z, Cai X, Wang X, Wendel JF, Wang K, Hua J (2016) Chloroplast DNA structural variation, phylogeny, and age of divergence among diploid cotton species. PLoS One 11:e0157183–e0157183

    PubMed  PubMed Central  Google Scholar 

  • Chen W-b, Lu G-q, Cheng H-m, Liu C-x, Xiao Y-t, Xu C, Shen Z-c, Soberón M, Bravo A, Wu K-m (2017a) Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm. Transgenic Res 26:763–774

    CAS  PubMed  Google Scholar 

  • Chen Z, Grover CE, Li P, Wang Y, Nie H, Zhao Y, Wang M, Liu F, Zhou Z, Wang X, Cai X, Wang K, Wendel JF, Hua J (2017b) Molecular evolution of the plastid genome during diversification of the cotton genus. Mol Phylogenet Evol 112:268–276

    CAS  PubMed  Google Scholar 

  • Cronn RC, Small RL, Haselkorn T, Wendel JF (2002) Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot 89:707–725

    CAS  PubMed  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Lee SB, Panchal T, Wiebe PO (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

    CAS  PubMed  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Btcry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    PubMed  PubMed Central  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    CAS  PubMed  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back! Nat. Biotechnol 12:883

    Google Scholar 

  • Gilbert N (2013) A hard look at GM crops. Nature 497:24–26

    CAS  PubMed  Google Scholar 

  • Gisby MF, Mudd EA, Day A (2012) Growth of transplastomic cells expressing D-amino acid oxidase in chloroplasts is tolerant to D-alanine and inhibited by D-valine. Plant Physiol 160:2219–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greiner S, Lehwark P, Bock R (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47(W1):W59–W64. https://doi.org/10.1093/nar/gkz1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover CE, Zhu X, Grupp KK, Jareczek JJ, Gallagher JP, Szadkowski E, Seijo JG, Wendel JF (2015) Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack. Genet Resour Crop Evol 62:103–114

    Google Scholar 

  • Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114

    CAS  PubMed  Google Scholar 

  • Hussein S, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    CAS  PubMed  Google Scholar 

  • Ibrahim RI, Azuma J, Sakamoto M (2006) Complete nucleotide sequence of the cotton (Gossypium barbadense L.) chloroplast genome with a comparative analysis of sequences among 9 dicot plants. Genes Genet Syst 81:311–321

    CAS  PubMed  Google Scholar 

  • ISAAA (2018) Brief 54: global status of commercialized Biotech/GM crops: 2018. In: James C, editor. International Service for the Acquisition of Agri-biotech Applications (ISAAA)

    Google Scholar 

  • Jin S, Daniell H (2014) Expression of gamma-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stresses by reducing reactive oxygen species. Plant Biotechnol J 12:1274–1285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Kanagaraj A, Verma D, Lange T, Daniell H (2011) Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. Plant Physiol 155:222–235

    CAS  PubMed  Google Scholar 

  • Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J 10:313–327

    CAS  PubMed  Google Scholar 

  • Jin S, Singh ND, Li L, Zhang X, Daniell H (2015) Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol J 13:435–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanin L, Bonadé-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131:1–11

    CAS  Google Scholar 

  • Khan MS (2015) Transplastomics: a convergence of genomics and biotechnology. In: Barh D, Khan MS, Davies E (eds) Plant omics: the omics of plant science. Springer, pp 559–571

    Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker to track plastid transformation in higher plants. Nat Biotechnol 17:910–915

    CAS  PubMed  Google Scholar 

  • Khan MS, Kanwal B, Nazir S (2015) Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants. Front Plant Sci 6:725. https://doi.org/10.3389/fpls.2015.00725

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MS, Nazir S, Amjad H, Jamil S, Khan IA (2017) Genotype-dependent regulation of δ-endotoxin reveals that insect-resistant cotton contains toxin predominantly in seeds. Pak J Agric Sci 54:395–406

    Google Scholar 

  • Khan MS, Mustafa G, Joyia FA (2019) Technical advances in chloroplast biotechnology. technical advances in chloroplast biotechnology. In: Khan MS, Malik KA (eds) Transgenic crops: emerging trends and future perspectives. IntechOpen. https://doi.org/10.5772/intechopen.81240

  • Knight K, Head G, Rogers J (2016) Relationships between Cry1Ac and Cry2Ab protein expression in field-grown Bollgard II® cotton and efficacy against Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae). Crop Prot 79:150–158

    CAS  Google Scholar 

  • Kota M (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci U S A 96:1840–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breeding 11:1–13

    CAS  Google Scholar 

  • Lee S-B, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics 7:61–61

    PubMed  PubMed Central  Google Scholar 

  • Lee S-B, Li B, Jin S, Daniell H (2011) Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol J 9:100–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leister D, Wang L, Kleine T (2017) Organellar gene expression and acclimation of plants to environmental stress. Front Plant Sci 8:387

    PubMed  PubMed Central  Google Scholar 

  • Li P, Li Z, Liu H, Hua J (2014) Cytoplasmic diversity of the cotton genus as revealed by chloroplast microsatellite markers. Genet Resour Crop Evol 61:107–119

    CAS  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CW, Lin CC, Yiu JC, Chen JJ, Tseng MJ (2008) Expression of a Bacillus thuringiensis toxin (Cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet 117:75–88

    CAS  PubMed  Google Scholar 

  • MacArthur M (2000) Triple-resistant canola weeds found in Alta. https://www.producer.com/news/tripleresistant-canola-weeds-found-in-alta/

  • Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510

    CAS  PubMed  PubMed Central  Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Nat Biotechnol 13:362–365

    CAS  Google Scholar 

  • Michoux F, Ahmad N, McCarthy J, Nixon PJ (2011) Contained and high-level production of recombinant proteins in plant chloroplasts using a temporary immersion bioreactor. Plant Biotechnol J 9:575–584

    CAS  PubMed  Google Scholar 

  • Ni M, Ma W, Wang X, Gao M, Dai Y, Wei X, Zhang L, Peng Y, Chen S, Ding L (2017) Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol J 15:1204–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ (2016) Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. Plant J 85:148–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    CAS  PubMed  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci 88:3324–3328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rey P, Sanz-Barrio R, Innocenti G, Ksas B, Courteille A, Rumeau D, Issakidis-Bourguet E, Farran I (2013) Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants. Front Plant Sci 4:390

    PubMed  PubMed Central  Google Scholar 

  • Romanos MA, Makoff AJ, Fairweather NF, Beesley KM, Slater DE, Rayment FB, Payne MM, Clare JJ (1991) Expression of tetanus toxin fragment C in yeast: gene synthesis is required to eliminate fortuitous polyadenylation sites in AT-rich DNA. Nucleic Acids Res 19:1461–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseau-Gueutin M, Keller J, De Carvalho JF, Aïnouche A, Martin G (2018) The intertwined chloroplast and nuclear genome coevolution in plants. In Plant growth and regulation-alterations to sustain unfavorable conditions. IntechOpen

    Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhlman TA, Rajasekaran K, Cary JW (2014) Expression of chloroperoxidase from Pseudomonas pyrrocinia in tobacco plastids for fungal resistance. Plant Sci 228:98–106

    CAS  PubMed  Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of β-ketothiolase. Plant Physiol 138:1232–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheid OM, Paszkowski J, Potrykus I (1991) Reversible inactivation of a transgene in Arabidopsis thaliana. Mol Gen Genet 228:104–112

    Google Scholar 

  • Shen G, Wei J, Qiu X, Hu R, Kuppu S, Auld D, Blumwald E, Gaxiola R, Payton P, Zhang H (2014) Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Rep 33:167–177

    Google Scholar 

  • Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    CAS  PubMed  Google Scholar 

  • Strizhov N, Keller M, Mathur J, Koncz-Kálmán Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C, Zilberstein A (1996) A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci 93:15012–15017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926

    CAS  PubMed  Google Scholar 

  • Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk KJ, Dougan G, Maliga P (2003) Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucl Acids Res 31:1174–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tregoning JS, Clare S, Bowe F, Edwards L, Fairweather N, Qazi O, Nixon PJ, Maliga P, Dougan G, Hussell T (2005) Protection against tetanus toxin using a plant-based vaccine. Eur J Immunol 35:1320–1326

    CAS  PubMed  Google Scholar 

  • Twyford AD, Ness RW (2017) Strategies for complete plastid genome sequencing. Mol Ecol Resour 17:858–868

    PubMed  Google Scholar 

  • Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnology (NY) 5:263–266

    CAS  Google Scholar 

  • Wang YP, Wei ZY, Zhang YY, Lin CJ, Zhong XF, Wang YL, Ma JY, Ma J, Xing SC (2015) Chloroplast-expressed MSI-99 in tobacco improves disease resistance and displays inhibitory effect against rice blast fungus. Int J Mol Sci 16:4628–4641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A 84:9054–9058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Liu F, Yang D-G, Li W, Zhou X-J, Pei X-Y, Liu Y-G, He K-L, Zhang W-S, Ren Z-Y, Zhou K-H, Ma X-F, Li Z-H (2018) Comparative chloroplast genomics of gossypium species: insights into repeat sequence variations and phylogeny. Front Plant Sci 9:376–376

    PubMed  PubMed Central  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    CAS  PubMed  Google Scholar 

  • Xu Q, Xiong G, Li P, He F, Huang Y, Wang K, Li Z, Hua J (2012) Analysis of complete nucleotide sequences of 12 Gossypium chloroplast genomes: origin and evolution of allotetraploids. PLoS One 7:e37128–e37128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    CAS  PubMed  Google Scholar 

  • Zhang J, Khan SA, Heckel DG, Bock R (2015) Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347(6225):991–994

    CAS  PubMed  Google Scholar 

  • Zhang K, Song J, Chen X, Yin T, Liu C, Li K, Zhang J (2016) Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field. Euphytica 211:231–244

    CAS  Google Scholar 

  • Zhang Z, Ge X, Luo X, Wang P, Fan Q, Hu G, Xiao J, Li F, Wu J (2018) Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in Allotetraploid Upland cotton. Front Plant Sci 9:842

    PubMed  PubMed Central  Google Scholar 

  • Zhao FY, Li YF, Xu P (2006) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L. cv. Zhongmian 35) using glyphosate as a selectable marker. Biotechnol Lett 28:1199–1207

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Higher Education Commission (HEC) and Punjab Agricultural Research Board (PARB) for funding their work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, N., Wei, Z., Khan, M.S., Nielsen, B.L. (2021). Chloroplast Genomics for Sustainable Cotton Production. In: Rahman, Mu., Zafar, Y., Zhang, T. (eds) Cotton Precision Breeding. Springer, Cham. https://doi.org/10.1007/978-3-030-64504-5_3

Download citation

Keywords

Publish with us

Policies and ethics