Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Of Evolution, Systems and Complexity

  • Chapter
  • First Online:
Evolutionary Systems Biology
  • 1321 Accesses

  • 3 Citations

Abstract

The question of complexity in biological systems is recurrent in evolutionary biology and is central in complex systems science for obvious reasons. But this question is surprisingly overlooked by evolutionary systems biology. This comes unexpected given the roots of systems biology in complex systems science but also given that a proper understanding of the origin and evolution of complexity would provide clues for a better understanding of extant biological systems. In this chapter, we will explore the links between evolutionary systems biology and biological systems complexity, in terms of concepts, tools and results. In particular, we will show how complex models can be used to explore this question and show that complexity can spontaneously accumulate even in simple conditions owing to a “complexity ratchet” fuelled by sign epistasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    “[…] if we know of a long series of gradations in complexity, each good for its possessor, then, under changing conditions of life, there is no logical impossibility in the acquirement of any conceivable degree of perfection through natural selection” (Darwin, 1859, page 204, Chap. VI).

  2. 2.

    In Aevol, robustness and evolvability are estimated by Monte Carlo sampling. 10,000,000 offspring of a given individual are generated. Robustness is estimated by the fraction of neutral offspring, and evolvability is estimated by the mathematical expectation of fitness improvement on the forthcoming generation.

References

  • Adami, C. (2002). What is complexity? BioEssays, 24(12), 1085–1094.

    Article  PubMed  Google Scholar 

  • Adami, C. (2006). Digital genetics: Unravelling the genetic basis of evolution. Nature Reviews Genetics, 7(2), 109.

    Article  CAS  PubMed  Google Scholar 

  • Adami, C., Ofria, C., & Collier, T. C. (2000). Evolution of biological complexity. PNAS, 97(9), 4463–4468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albantakis, L., Hintze, A., Koch, C., Adami, C., & Tononi, G. (2014). Evolution of integrated causal structures in animats exposed to environments of increasing complexity. PLoS Computational Biology, 10(12), e1003966.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alberch, P. (1991). From genes to phenotype: Dynamical systems and evolvability. Genetica, 84(1), 5–11.

    Article  CAS  PubMed  Google Scholar 

  • Batut, B., Knibbe, C., Marais, G., & Daubin, V. (2014). Reductive genome evolution at both ends of the bacterial population size spectrum. Nature Reviews Microbiology, 12(12), 841.

    Article  CAS  PubMed  Google Scholar 

  • Beslon, G., Parsons, D. P., Sanchez-Dehesa, Y., Pena, J.-M., & Knibbe, C. (2010). Scaling laws in bacterial genomes: A side-effect of selection of mutational robustness? Biosystems, 102(1), 32–40.

    Article  CAS  PubMed  Google Scholar 

  • Clune, J., Mouret, J.-B., & Lipson, H. (2013). The evolutionary origins of modularity. Proceedings of the Royal Society B, 280(1755), 20122863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crombach, A., & Hogeweg, P. (2008). Evolution of evolvability in gene regulatory networks. PLoS Computational Biology, 4(7), e1000112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection. J. Murray.

    Google Scholar 

  • Dawkins, R. (1997). Human chauvinism. Evolution, 51(3), 1015–1020.

    Article  Google Scholar 

  • De Visser, J. A. G., Hermisson, J., Wagner, G. P., Meyers, L. A., Bagheri-Chaichian, H., Blanchard, J. L., et al. (2003). Perspective: Evolution and detection of genetic robustness. Evolution, 57(9), 1959–1972.

    PubMed  Google Scholar 

  • Elliott, T. A., & Gregory, T. R. (2015). What’s in a genome? the c-value enigma and the evolution of eukaryotic genome content. Philosophical Transactions of the Royal Society B, 370(1678), 20140331.

    Article  CAS  Google Scholar 

  • Espinosa-Soto, C., & Wagner, A. (2010). Specialization can drive the evolution of modularity. PLoS Computational Biology, 6(3), e1000719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gould, S. J. (1996). Full house: The spread of joy from plato to Darwin. Harmony Books.

    Book  Google Scholar 

  • Greene, C. S., Tan, J., Ung, M., Moore, J. H., & Cheng, C. (2014). Big data bioinformatics. Journal of Cellular Physiology, 229(12), 1896–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm, V. (1999). Ten years of individual-based modelling in ecology: What have we learned and what could we learn in the future? Ecological Modelling, 115(2–3), 129–148.

    Article  Google Scholar 

  • Hindré, T., Knibbe, C., Beslon, G., & Schneider, D. (2012). New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nature Reviews Microbiology, 10(5), 352.

    Article  PubMed  CAS  Google Scholar 

  • Kashtan, N., & Alon, U. (2005). Spontaneous evolution of modularity and network motifs. PNAS, 102(39), 13773–13778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knibbe, C., Coulon, A., Mazet, O., Fayard, J.-M., & Beslon, G. (2007). A long-term evolutionary pressure on the amount of noncoding DNA. Molecular Biology and Evolution, 24(10), 2344–2353.

    Article  CAS  PubMed  Google Scholar 

  • Lenski, R. E., Ofria, C., Pennock, R. T., & Adami, C. (2003). The evolutionary origin of complex features. Nature, 423(6936), 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Liard, V., Parsons, D., Rouzaud-Cornabas, J., & Beslon, G. (2018). The complexity ratchet: Stronger than selection, weaker than robustness. In T. Ikegami, N. Virgo, O. Witkowski, M. Oka, R. Suzuki & H. Iizuka (Eds.), Artificial life conference proceedings (pp. 250–257). MIT Press.

    Google Scholar 

  • Liard, V., Parsons, D. P., Rouzaud-Cornabas, J., & Beslon, G. (2020). The complexity ratchet: Stronger than selection, stronger than evolvability, weaker than robustness. Artificial Life, 26, 38–57.

    Article  PubMed  Google Scholar 

  • Loewe, L. (2016). Systems in evolutionary systems biology. Encyclopedia of Evolutionary Biology, 4, 297–318.

    Article  Google Scholar 

  • Lukeš, J., Archibald, J. M., Keeling, P. J., Doolittle, W. F., & Gray, M. W. (2011). How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life, 63(7), 528–537.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. (2007). The frailty of adaptive hypotheses for the origins of organismal complexity. PNAS, 104(suppl 1), 8597–8604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslov, S., Krishna, S., Pang, T. Y., & Sneppen, K. (2009). Toolbox model of evolution of prokaryotic metabolic networks and their regulation. PNAS, 106(24), 9743–9748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard Smith, J., & Szathmary, E. (1997). The major transitions in evolution. Oxford University Press.

    Book  Google Scholar 

  • Mayr, E. (1961). Cause and effect in biology. Science, 134(3489), 1501–1506.

    Article  CAS  PubMed  Google Scholar 

  • McShea, D. W. (1996). Metazoan complexity and evolution: Is there a trend? Evolution, 50(2), 477–492.

    PubMed  Google Scholar 

  • McShea, D. W., & Brandon, R. N. (2010). Biology’s first law: The tendency for diversity and complexity to increase in evolutionary systems. University of Chicago Press.

    Book  Google Scholar 

  • Moran, N. A. (2007). Symbiosis as an adaptive process and source of phenotypic complexity. PNAS, 104(suppl 1), 8627–8633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nghe, P., Kogenaru, M., & Tans, S. J. (2018). Sign epistasis caused by hierarchy within signalling cascades. Nature Communications, 9(1), 1–9.

    Article  CAS  Google Scholar 

  • O’Neill, B. (2003). Digital evolution. PLoS Biology, 1(1), e18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavlicev, M., & Wagner, G. P. (2012). A model of developmental evolution: Selection, pleiotropy and compensation. TREE, 27(6), 316–322.

    PubMed  Google Scholar 

  • Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews Genetics, 9(1), 75.

    Article  CAS  PubMed  Google Scholar 

  • Pigliucci, M. (2009). The end of theory in science? EMBO Reports, 10(6), 534–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, T. S. (1991). An approach to the synthesis of life. Artificial Life II 371–408.

    Google Scholar 

  • Rutten, J. P., Hogeweg, P., & Beslon, G. (2019). Adapting the engine to the fuel: Mutator populations can reduce the mutational load by reorganizing their genome structure. BMC Evolutionary Biology, 19(1), 191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467–482.

    Google Scholar 

  • Soyer, O. S., & Bonhoeffer, S. (2006). Evolution of complexity in signaling pathways. PNAS, 103(44), 16337–16342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soyer, O. S., & O’Malley, M. A. (2013). Evolutionary systems biology: What it is and why it matters. BioEssays, 35(8), 696–705.

    Article  PubMed  Google Scholar 

  • Thomas Jr., C. A. (1971). The genetic organization of chromosomes. Annual Review of Genetics, 5(1), 237–256.

    Article  CAS  PubMed  Google Scholar 

  • Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E., & Adami, C. (2001). Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature, 412(6844), 331.

    Article  CAS  PubMed  Google Scholar 

  • Woods, R. J., Barrick, J. E., Cooper, T. F., Shrestha, U., Kauth, M. R., & Lenski, R. E. (2011). Second-order selection for evolvability in a large Escherichia coli population. Science, 331(6023), 1433–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. In Proceedings of the Sixth International Congress of Genetics (pp. 356–366, Vol. 1).

    Google Scholar 

  • Zaman, L., Meyer, J. R., Devangam, S., Bryson, D. M., Lenski, R. E., & Ofria, C. (2014). Coevolution drives the emergence of complex traits and promotes evolvability. PLoS Biology, 12(12), e1002023.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Beslon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beslon, G., Liard, V., Parsons, D.P., Rouzaud-Cornabas, J. (2021). Of Evolution, Systems and Complexity. In: Crombach, A. (eds) Evolutionary Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-71737-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71737-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71736-0

  • Online ISBN: 978-3-030-71737-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics