Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

The Role of Salicylic Acid in Crops to Tolerate Abiotic Stresses

  • Chapter
  • First Online:
Salicylic Acid - A Versatile Plant Growth Regulator

Abstract

Abiotic pressures including drought, high temperature, flooding and salinity influence the development and productivity of plants. Also, global climate change will increase the incidence and magnitude of abiotic stress, indicating that a variety of growth with improved stress tolerance is crucial to future sustainable crop production. Salicylic acid (SA) is a phenolic compound formed by a varied variety of plant species to varying degrees and it considers a naturally occurring plant hormone that serves as an essential signaling agent that contributes to abiotic stress tolerance. This endogenous driver of plant growth engages in various physiological and metabolic reactions and picking up of ions and movement. Also, involved in endogenous signaling is salicylic acid which activates plant defense against abiotic stresses. SA helps plants react to abiotic stresses including heavy metal toxicity, temperature changing, UV light and osmotic force pressures. SA influence often depends on many variables, such as implementation style, concentration, environmental circumstances, plant species and organs. SA synthesis occurs through two pathways, isochorismate (IC) and the ammonia-lyase phenylalanine (PAL) pathway. It consists of genes that encode chaperones, heat shock proteins, antioxidants and secondary metabolite biosynthesis genes including sinapyl alcohol dehydrogenase, cinnamyl alcohol dehydrogenase and cytochrome. One significant and notable general belief is low concentrations of SA increase plant antioxidant capacity, but high of it induce cell death or abiotic stress susceptibility. This chapter presents an overview of the historical and background of the role of the SA, chemical composition, synthesis and metabolism of SA, transport of SA in plants, the response of plant stages to SA, the role of SA response in plants under abiotic stresses and the role of biotechnology for reducing the abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., ur Rehman, M. H., Khan, M. A., Hasanuzzaman, M., Fahad, S., & Boote, K. J. (2017). Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agricultural and Forest Meteorology, 247, 42–55.

    Google Scholar 

  • Abdel Latef, A. A., & Tran, L. S. P. (2016). Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in Plant Science, 7, 243.

    PubMed  PubMed Central  Google Scholar 

  • Abreu, M. E., & Munne-Bosch, S. (2009). Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany, 60, 1261–1271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-ur-Rehman, M., Irshad, M. K., & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22(11), 8148–8162.

    CAS  PubMed  Google Scholar 

  • Agami, R. A., Saad, A. M., El-Mageed, T. A. A., Abousekken, M. S., & Mohamed, H. (2019). Salicylic acid and proline enhance water use efficiency, antioxidant defense system and tissues’ anatomy of wheat plants under field deficit irrigation stress. Journal of Applied Botany and Food Quality, 92, 360–370.

    CAS  Google Scholar 

  • Ahmad, A., Hayat, S., Fariduddin, Q., & Ahmad, I. (2001). Photosynthetic efficiency of plants of Brassica juncea, treated with chlorosubstituted auxins. Photosynthetica, 39(4), 565–568.

    CAS  Google Scholar 

  • Ahmad, S., Nadeem, M., Abbas, G., Fatima, Z., Khan, R. J. Z., Ahmed, M., Ahmad, A., Rasul, G., & Khan, M. A. (2016). Quantification of the effects of climate warming and crop management on sugarcane phenology. Climate Research, 71(1), 47–61.

    Google Scholar 

  • Ahmad, S., Abbas, Q., Abbas, G., Fatima, Z., Naz, S., Younis, H., Khan, R. J., Nasim, W., & Habib ur Rehman, M., Ahmad, A., & Rasul, G. (2017). Quantification of climate warming and crop management impacts on cotton phenology. Plants, 6(1), 7.

    PubMed Central  Google Scholar 

  • Ainsworth, E. A., Rogers, A., Leakey, A. D., Heady, L. E., Gibon, Y., Stitt, M., & Schurr, U. (2007). Does elevated atmospheric [CO2] alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves? Journal of Experimental Botany, 58(3), 579–591.

    CAS  PubMed  Google Scholar 

  • Akpor, O. B., Ohiobor, G. O., & Olaolu, D. T. (2014). Heavy metal pollutants in wastewater effluents: Sources, effects and remediation. Advances in Bioscience and Bioengineering, 2(4), 37–43.

    Google Scholar 

  • Alavi, S. M. N., Arvin, M. J., & Kalantari, K. M. (2014). Salicylic acid and nitric oxide alleviate osmotic stress in wheat (Triticum aestivum L.) seedlings. Journal of Plant Interactions, 9, 683–688. https://doi.org/10.1080/17429145.2014.900120

    Article  CAS  Google Scholar 

  • Alonso-Ramírez, A., Rodríguez, D., Reyes, D., Jiménez, J. A., Nicolás, G., López-Climent, M., Gómez-Cadenas, A., & Nicolás, C. (2009). Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology, 150(3), 1335–1344.

    PubMed  PubMed Central  Google Scholar 

  • An, C., & Mou, Z. (2011). Salicylic acid and its function in plant immunity F. Journal of Integrative Plant Biology, 53(6), 412–428.

    CAS  PubMed  Google Scholar 

  • ANOSHEH, H. P., Ranjbar, G., Emam, Y., & Ashraf, M. (2014). Salicylic-acid-induced recovery ability in salt-stressed Hordeum vulgare plants. Turkish Journal of Botany, 38(1), 112–121.

    Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    CAS  PubMed  Google Scholar 

  • Arfan, M. (2009). Exogenous application of salicylic acid through rooting medium modulates ion accumulation and antioxidant activity in spring wheat under salt stress. International Journal of Agriculture and Biology, 11(4), 437–442.

    CAS  Google Scholar 

  • Aristeo-Cortes, P. (1998). Reguladores de crecimiento XIV: efectos del acido salicilico y dimetilsulfoxido en el crecimiento de zanahoria, betabel y rabano (Doctoral dissertation, Tesis de Licenciatura. Facultad de Ciencias UNAM, Mexico).

    Google Scholar 

  • Armstrong, W. (2002). Root growth and metabolism under oxygen deficiency. Plant roots: the hidden half, 729–761.

    Google Scholar 

  • Arshad, T., Maqbool, N., Javed, F., Wahid, A., & Arshad, M. U. (2017). Enhancing the defensive mechanism of lead affected barley (Hordeum vulgare L.) genotypes by exogenously applied salicylic acid. Journal of Agricultural Science, 9(2), 139–146.

    Google Scholar 

  • Asensi-Fabado, M. A., Oliván, A., & Munné-Bosch, S. (2013). A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environmental and Experimental Botany, 94, 57–65.

    CAS  Google Scholar 

  • Askari, E., & Ehsanzadeh, P. (2015). Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta physiologiae plantarum, 37(2), 4.

    Google Scholar 

  • Avnery, S., Mauzerall, D. L., Liu, J., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment, 45(13), 2284–2296.

    CAS  Google Scholar 

  • Bali, S., Gautam, V., Kaur, P., Khanna, K., Kaur, R., Vig, A. P., Ohri, P., & Bhardwaj, R. (2017). Interaction of salicylic acid with plant hormones in plants under abiotic stress. In Salicylic acid: A multifaceted hormone (pp. 201–219). Springer.

    Google Scholar 

  • Bandurska, H. (2013). Salicylic acid: An update on biosynthesis and action in plant response to water deficit and performance under drought. In Salicylic Acid (pp. 1–14). Springer.

    Google Scholar 

  • Bastam, N., Baninasab, B., & Ghobadi, C. (2013). Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regulation, 69(3), 275–284.

    CAS  Google Scholar 

  • Belt, K., Huang, S., Thatcher, L. F., Casarotto, H., Singh, K. B., Van Aken, O., & Millar, A. H. (2017). Salicylic acid-dependent plant stress signaling via mitochondrial succinate dehydrogenase. Plant Physiology, 173(4), 2029–2040.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany, 91(2), 179–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boatwright, J. L., & Pajerowska-Mukhtar, K. (2013). Salicylic acid: An old hormone up to new tricks. Molecular Plant Pathology, 14(6), 623–634.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Börner, A., Landjeva, S., Salem, K. F., & Lohwasser, U. (2010). Plant genetic resources-a prerequisite for drought tolerance breeding in cereals (pp. 11–13). Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs.

    Google Scholar 

  • Borsani, O., Valpuesta, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126(3), 1024–1030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F., & Dong, X. (1997). The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. The Plant Cell, 9(9), 1573–1584.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broomfield, R. (1996). A quasi-experimental research to investigate the retention of basic cardiopulmonary resuscitation skills and knowledge by qualified nurses following a course in professional development. Journal of Advanced Nursing, 23(5), 1016–1023.

    CAS  PubMed  Google Scholar 

  • Canales, F. J., Montilla-Bascón, G., Rispail, N., & Prats, E. (2019). Salicylic acid regulates polyamine biosynthesis during drought responses in oat. Plant Signaling & Behavior, 14(10), e1651183.

    Google Scholar 

  • Castagna, A., & Ranieri, A. (2009). Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment. Environmental Pollution, 157(5), 1461–1469.

    CAS  PubMed  Google Scholar 

  • Cattivelli, L. P., Baldi, C., Crosatti, N., et al. (2002). Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 48, 649–665.

    CAS  Google Scholar 

  • Chandra, A., & Bhatt, R. K. (1998). Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica, 35(2), 255–258.

    CAS  Google Scholar 

  • Chapagain, S., Park, Y. C., & Jang, C. S. (2017). Functional diversity of RING E3 ligases of major cereal crops in response to abiotic stresses. Journal of Crop Science and Biotechnology, 20(5), 351–357.

    Google Scholar 

  • Chen, H. J., & Kuc, J. (1999). Ca2+-dependent excretion of salicylic acid in tobacco cell suspension culture. Botanic Bul Acad Sinica 40, 267–273

    Google Scholar 

  • Chen, H. J., Hou, W. C., Kúc, J., & Lin, Y. H. (2001). Ca2+-dependent and Ca 2+−independent excretion modes of salicylic acid in tobacco cell suspension culture. Journal of Experimental Botany, 52(359), 1219–1226.

    CAS  PubMed  Google Scholar 

  • Chen, F., D'Auria, J. C., Tholl, D., Ross, J. R., Gershenzon, J., Noel, J. P., & Pichersky, E. (2003). An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. The Plant Journal, 36(5), 577–588.

    CAS  PubMed  Google Scholar 

  • Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling & Behavior, 4(6), 493–496.

    CAS  Google Scholar 

  • Chen, S., Zimei, L., Cui, J., Jiangang, D., Xia, X., Liu, D., & Yu, J. (2011). Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings. Plant Growth Regulation, 65(1), 101–108.

    CAS  Google Scholar 

  • Chen, Y., Shen, H., Wang, M., Li, Q., & He, Z. (2013). Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3. 5 is a potential activator of plant immunity in Arabidopsis. Acta Biochimica et Biophysica Sinica, 45(10), 827–836.

    CAS  PubMed  Google Scholar 

  • Chong, J., Pierrel, M. A., Atanassova, R., Werck-Reichhart, D., Fritig, B., & Saindrenan, P. (2001). Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiology, 125(1), 318–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland, C. F., & Ajami, A. (1974). Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiology, 54(6), 904–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Connor, D. (2002). Climate change and global crop productivity. Crop Science, 42, 978.

    Google Scholar 

  • Csiszár, J., Horváth, E., Váry, Z., Gallé, Á., Bela, K., Brunner, S., & Tari, I. (2014). Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiology and Biochemistry, 78, 15–26.

    PubMed  Google Scholar 

  • Damalas, C. A. (2019). Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Scientia Horticulturae, 246, 360–365.

    CAS  Google Scholar 

  • Dat, J. F., Foyer, C. H., & Scott, I. M. (1998). Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiology, 118(4), 1455–1461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De las Mercedes Dana, M., Pintor-Toro, J. A., & Cubero, B. (2006). Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiology, 142, 722–730.

    CAS  PubMed  Google Scholar 

  • Dean, J. V., & Delaney, S. P. (2008). Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiologia Plantarum, 132(4), 417–425.

    CAS  PubMed  Google Scholar 

  • Dean, J. V., & Mills, J. D. (2004). Uptake of salicylic acid 2-O-β-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiologia Plantarum, 120(4), 603–612.

    CAS  PubMed  Google Scholar 

  • Dean, J. V., Mohammed, L. A., & Fitzpatrick, T. (2005). The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta, 221(2), 287–296.

    CAS  PubMed  Google Scholar 

  • Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., & Ryals, J. (1994). A central role of salicylic acid in plant disease resistance. Science, 266(5188), 1247–1250.

    CAS  PubMed  Google Scholar 

  • Dempsey, D. M. A., & Klessig, D. F. (2017). How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology, 15(1), 1–11.

    Google Scholar 

  • Dempsey, D. M. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis book/American Society of Plant Biologists, 9.

    Google Scholar 

  • Dezar, C. A., Giacomelli, J. I., Manavella, P. A., Ré, D. A., Alves-Ferreira, M., Baldwin, I. T., Bonaventure, G., & Chan, R. L. (2011). HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress. Journal of Experimental Botany, 62(3), 1061–1076.

    CAS  PubMed  Google Scholar 

  • Dihlmann, S., Siermann, A., & von Knebel Doeberitz, M. (2001). The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate β-catenin/TCF-4 signaling. Oncogene, 20(5), 645–653.

    CAS  PubMed  Google Scholar 

  • Ding, C. K., Wang, C., Gross, K. C., & Smith, D. L. (2002). Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 214(6), 895–901.

    CAS  PubMed  Google Scholar 

  • Ding, Y., Zhao, J., Nie, Y., Fan, B., Wu, S., Zhang, Y., Sheng, J., Shen, L., Zhao, R., & Tang, X. (2016). Salicylic-acid-induced chilling-and oxidative-stress tolerance in relation to gibberellin homeostasis, C-repeat/dehydration-responsive element binding factor pathway, and antioxidant enzyme systems in cold-stored tomato fruit. Journal of Agricultural and Food Chemistry, 64(43), 8200–8206.

    CAS  PubMed  Google Scholar 

  • Du, L., Ali, G. S., Simons, K. A., et al. (2009). Ca2+/calmodulin regulates salicylic-acidmediated plant immunity. Nature, 457, 1154–1158.

    CAS  PubMed  Google Scholar 

  • Duan, M., Feng, H. L., Wang, L. Y., Li, D., & Meng, Q. W. (2012). Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. Journal of Plant Physiology, 169(9), 867–877.

    CAS  PubMed  Google Scholar 

  • Duan, L., Liu, H., Li, X., Xiao, J., & Wang, S. (2014). Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiologia Plantarum, 152(3), 486–500.

    CAS  PubMed  Google Scholar 

  • El-Beltagi, H. S., Ahmed, S. H., Namich, A. A. M., & Abdel-Sattar, R. R. (2017). Effect of salicylic acid and potassium citrate on cotton plant under salt stress. Fresenius Environmental Bulletin, 26, 1091–1100.

    CAS  Google Scholar 

  • El-Esawi, M. A., Elansary, H. O., El-Shanhorey, N. A., Abdel-Hamid, A. M., Ali, H. M., & Elshikh, M. S. (2017). Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, 8, 716.

    PubMed  PubMed Central  Google Scholar 

  • Eltaher, S., Sallam, A., Belamkar, V., et al. (2018). Genetic diversity and population structure of F3:6 Nebraska winter wheat genotypes using genotyping-by-sequencing. Frontiers in Genetics, 9, 76. https://doi.org/10.3389/fgene.2018.00076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltaher, S., Baenziger, P. S., Belamkar, V., Emara, H. A., Nower, A. A., Salem, K. F., Alqudah, A. M., & Sallam, A. (2021). GWAS revealed effect of genotype× environment interactions for grain yield of Nebraska winter wheat. BMC Genomics, 22(1), 1–14.

    Google Scholar 

  • Eltaher, S., Sallam, A., Belamkar, V., et al., (2017). Genome-wide association mapping for drought tolerance traits at seedling stage using Nebraska winter wheat. International conference on productive crop design (genome to phenome), April 2017, USA.

    Google Scholar 

  • Eltayeb, A. E., Kawano, N., Badawi, G. H., et al. (2007). Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Planta 225, 1255–1264

    Google Scholar 

  • El-Tayeb, M. A., El-Enany, A. E., & Ahmed, N. L. (2006). Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regulation, 50(2), 191–199.

    CAS  Google Scholar 

  • Emilia, D. A., Luisa, D. A., Stefania, D. P., & Petronia, C. (2020). Use of biostimulants to improve salinity tolerance in agronomic crops. In M. Hasanuzzaman (Ed.), Agronomic crops (pp. 423–441). Springer. https://doi.org/10.1007/978-981-15-0025-1_21

    Chapter  Google Scholar 

  • Eraslan, F., Inal, A., Pilbeam, D. J., & Gunes, A. (2008). Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regulation, 55(3), 207–219.

    CAS  Google Scholar 

  • Ervin, E. H., Zhang, X., & Fike, J. H. (2004). Ultraviolet-B radiation damage on Kentucky Bluegrass II: Hormone supplement effects. HortScience, 39(6), 1471–1474.

    CAS  Google Scholar 

  • Eshghi, S., & Jamali, B. (2012). Using plant bioregulators to improve production and fruit quality of strawberry. In VII International Strawberry Symposium 1049, 395–400.

    Google Scholar 

  • Evans, N. H., Mcainsh, M. R., Hetherington, A. M., & Knight, M. R. (2005). ROS perception in Arabidopsis thaliana: The ozone-induced calcium response. The Plant Journal, 41(4), 615–626.

    CAS  PubMed  Google Scholar 

  • Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F. A., Khan, F., Chen, Y., Wu, C., & Tabassum, M. A. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environmental Science and Pollution Research, 22(7), 4907–4921.

    PubMed  Google Scholar 

  • Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., & Ihsan, M. Z. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147.

    PubMed  PubMed Central  Google Scholar 

  • Farag, K. F. M. S. (2004). The inheritance and molecular mapping of genes for post-anthesis drought tolerance (PADT) in wheat. Doctoral dissertation, Ph. D. Dissertation, Martin Luther University, Halle-Wittenberg, Germany.

    Google Scholar 

  • Faraz, A., Faizan, M., Sami, F., Siddiqui, H., & Hayat, S. (2020). Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. Journal of Plant Growth Regulation, 39(2), 641–655.

    CAS  Google Scholar 

  • Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, 41(2), 281–284.

    CAS  Google Scholar 

  • Fayez, K. A., & Bazaid, S. A. (2014). Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, 13(1), 45–55.

    Google Scholar 

  • Fischer, J., & Ganellin, C. R. (2010). Analogue-based drug discovery II. John Wiley & Sons.

    Google Scholar 

  • Fu, Z. Q., & Dong, X. (2013). Systemic acquired resistance: Turning local infection into global defense. Annual Review of Plant Biology, 64, 839–863.

    CAS  PubMed  Google Scholar 

  • Fung, R. W., Wang, C. Y., Smith, D. L., Gross, K. C., Tao, Y., & Tian, M. (2006). Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. Journal of Plant Physiology, 163(10), 1049–1060.

    CAS  PubMed  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., & Ryals, J. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261(5122), 754–756.

    CAS  PubMed  Google Scholar 

  • Galani, S., Hameed, S., & Ali, M. K. (2016). Exogenous application of salicylic acid: Inducing thermotolerance in cotton (Gossypium Hirsutum L.) seedlings. International Journal of Agricultural and Food Research, 5, 9–18.

    Google Scholar 

  • Ganesan, A., & Proudfoot, J. (2010). Analogue-based drug discovery. J. Fischer, C. R. Ganellin (Eds.). Mörlenbach, Germany: Wiley-VCH.

    Google Scholar 

  • Garcion, C., Lohmann, A., Lamodière, E., Catinot, J., Buchala, A., Doermann, P., & Métraux, J. P. (2008). Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiology, 147(3), 1279–1287.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghani, A., Khan, I., Ahmed, I., Mustafa, I., Abd-Ur-Rehman, & Muhammad, N. (2015). Amelioration of Lead toxicity in Pisum sativum (L.) by foliar application of salicylic acid. Journal of Environmental & Analytical Toxicology, 5(292), 2161–0525.

    Google Scholar 

  • Ghazy, M. I., Salem, K. F., & Sallam, A. (2020). Utilization of genetic diversity and marker-trait to improve drought tolerance in rice (Oryza sativa L.). Molecular Biology Reports, 1–14.

    Google Scholar 

  • Ghilavizadeh, A., Hadidi Masouleh, E., Zakerin, H. R., Valadabadi, S. A. R., Sayfzadeh, S., & Yousefi, M. (2019). Influence of salicylic acid on growth, yield and macro-elements absorption of fennel (Foeniculum vulgare mill.) under water stress. Journal of Medicinal plants and By-product, 8(1), 67–75.

    Google Scholar 

  • Gill, S. S., Anjum, N. A., Gill, R., Jha, M., & Tuteja, N. (2015). DNA damage and repair in plants under ultraviolet and ionizing radiations. The Scientific World Journal, 2015.

    Google Scholar 

  • Gill, R. A., Zhang, N., Ali, B., Farooq, M. A., Xu, J., Gill, M. B., Mao, B., & Zhou, W. (2016). Role of exogenous salicylic acid in regulating physio-morphic and molecular changes under chromium toxicity in black-and yellow-seeded Brassica napus L. Environmental Science and Pollution Research, 23(20), 20483–20496.

    CAS  PubMed  Google Scholar 

  • Glazebrook, J., Chen, W., Estes, B., et al. (2003). Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. The Plant Journal, 34, 217–228.

    CAS  PubMed  Google Scholar 

  • Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K., Li, W., Ogawa, M., Yamauchi, Y., Preston, J., Aoki, K., & Kiba, T. (2008). The AtGenExpress hormone and chemical treatment data set: Experimental design, data evaluation, model data analysis and data access. The Plant Journal, 55(3), 526–542.

    CAS  PubMed  Google Scholar 

  • Goufo, P., Falco, V., Brites, C., Wessel, D. F., Kratz, S., Rosa, E. A., Carranca, C., & Trindade, H. (2014). Effect of elevated carbon dioxide concentration on rice quality: Nutritive value, color, milling, cooking, and eating qualities. Cereal Chemistry, 91(5), 513–521.

    CAS  Google Scholar 

  • Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64–77.

    CAS  PubMed  Google Scholar 

  • Guan, L., & Scandalios, J. G. (1995). Developmentally related responses of maize catalase genes to salicylic acid. Proceedings. National Academy of Sciences. United States of America, 92, 5930–5934.

    CAS  Google Scholar 

  • Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G., & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164(6), 728–736.

    CAS  PubMed  Google Scholar 

  • Gutiérrez-Coronado, M. A., Trejo-López, C., & Larqué-Saavedra, A. (1998). Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiology and Biochemistry, 36(8), 563–565.

    Google Scholar 

  • Hamada, A. M. (2001). Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostlinna Vyroba-UZPI (Czech Republic).

    Google Scholar 

  • Hameed, S., & Ali, M. K. (2016). Exogenous application of salicylic acid: inducing thermotolerance in cotton (Gossypium Hirsutum L.) seedlings. International Journal of Agricultural and Food Research, 5(4).

    Google Scholar 

  • Hanafy, M. S., El-Banna, A., Schumacher, H. M., Jacobsen, H. J., & Hassan, F. S. (2013). Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato. Plant Cell Reports, 32(5), 663–674.

    CAS  PubMed  Google Scholar 

  • Hara, M., Furukawa, J., Sato, A., Mizoguchi, T., & Miura, K. (2012). Abiotic stress and role of salicylic acid in plants. Abiotic stress responses in plants, 235–251.

    Google Scholar 

  • Harrison, A. J., Yu, M., Gårdenborg, T., Middleditch, M., Ramsay, R. J., Baker, E. N., & Lott, J. S. (2006). The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. Journal of Bacteriology, 188(17), 6081–6091.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman, M., Fardus, J., Md, H., & Parvin, K. (2019). Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobotanica, 72(2).

    Google Scholar 

  • Hashiguchi, A., Sakata, K., & Komatsu, S. (2009). Proteome analysis of early-stage soybean seedlings under flooding stress. Journal of Proteome Research, 8(4), 2058–2069.

    CAS  PubMed  Google Scholar 

  • Helgi-Öpik, S., Rolfe, S. A., & Willis, A. J. (2005). The physiology of flowering plants (p. 191). Cambridge University Press.

    Google Scholar 

  • Hemantaranjan, A., Nishant Bhanu, A., Singh, M. N., Yadav, D. K., Patel, P. K., Singh, R., & Katiyar, D. (2014). Heat stress responses and Thermotolerance. Advances in Plants and Agriculture Research, 1(3), 00012.

    Google Scholar 

  • Herrera Tuz, R. (2004). Reguladores de crecimiento XXI: efecto del ácido salicílico en la productividad de papaya maradol (Carica papaya L.).

    Google Scholar 

  • Hincha, D. K., & Zuther, E. (2014). Introduction: Plant cold acclimation and freezing tolerance. Plant Cold Acclimation, 1–6.

    Google Scholar 

  • Hong, J. K., & Hwang, B. K. (2005). Functional characterization of PR-1 protein, β-1, 3-glucanase and chitinase genes during defense response to biotic and abiotic stresses in Capsicum annuum. The Plant Pathology Journal, 21(3), 195–206.

    Google Scholar 

  • Hoque, T. S., Sohag, A. A. M., Burritt, D. J., & Hossain, M. A. (2020). Salicylic acid-mediated salt stress tolerance in plants. In Plant Phenolics in sustainable agriculture (pp. 1–38). Springer.

    Google Scholar 

  • Horváth, E., Janda, T., Szalai, G., & Páldi, E. (2002). In vitro salicylic acid inhibition of catalase activity in maize: Differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Science, 163(6), 1129–1135.

    Google Scholar 

  • Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26(3), 290–300.

    Google Scholar 

  • Hossain, Z., López-Climent, M. F., Arbona, V., Pérez-Clemente, R. M., & Gómez-Cadenas, A. (2009). Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. Journal of Plant Physiology, 166(13), 1391–1404.

    CAS  PubMed  Google Scholar 

  • Huang, B., DaCosta, M., & Jiang, Y. (2014). Research advances in mechanisms of turfgrass tolerance to abiotic stresses: From physiology to molecular biology. Critical Reviews in Plant Sciences, 33(2–3), 141–189.

    CAS  Google Scholar 

  • Huang, X. X., Zhu, G. Q., Liu, Q., Chen, L., Li, Y. J., & Hou, B. K. (2018). Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids. Plant Physiology, 176(4), 3103–3119.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, W., Wang, Y., Li, X., & Zhang, Y. (2020). Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant, 13(1), 31–41.

    CAS  PubMed  Google Scholar 

  • Huda, A. N., Swaraz, A. M., Reza, M. A., Haque, M. A., & Kabir, A. H. (2016). Remediation of chromium toxicity through exogenous salicylic acid in rice (Oryza sativa L.). Water, Air, & Soil Pollution, 227(8), 1–11.

    CAS  Google Scholar 

  • Ilyas, N., Gull, R., Mazhar, R., Saeed, M., Kanwal, S., Shabir, S., & Bibi, F. (2017). Influence of salicylic acid and jasmonic acid on wheat under drought stress. Communications in Soil Science and Plant Analysis, 48(22), 2715–2723.

    CAS  Google Scholar 

  • Iqbal, N., Nazir, N., Nauman, M., & Hayat, M. T. (2020). Agronomic crop responses and tolerance to metals/metalloids toxicity. In Agronomic crops (pp. 191–208). Springer.

    Google Scholar 

  • Ishikura, T., Nishida, H., Tanno, K., Miyachi, N., & Ozaki, A. (1968). Microbial production of salicylic acid from naphthalene: Part I. isolation of the high yield strain and the flask scale culture. Agricultural and Biological Chemistry, 32(1), 12–20.

    CAS  Google Scholar 

  • Islam, M., Ali, M., Choi, S. J., Park, Y. I., & Baek, K. H. (2020). Salicylic acid-producing endophytic Bacteria increase nicotine accumulation and resistance against wildfire disease in tobacco plants. Microorganisms, 8(1), 31.

    CAS  Google Scholar 

  • Jackson, M. B., & Colmer, T. D. (2005). Response and adaptation by plants to flooding stress. Annals of Botany, 96(4), 501–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain, S., Kumar, D., Jain, M., Chaudhary, P., Deswal, R., & Sarin, N. B. (2012). Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco. Plant Cell, Tissue and Organ Culture (PCTOC), 109(1), 19–31.

    CAS  Google Scholar 

  • Janda, T., Gondor, O. K., Yordanova, R., Szalai, G., & Pál, M. (2014). Salicylic acid and photosynthesis: Signalling and effects. Acta Physiologiae Plantarum, 36(10), 2537–2546.

    CAS  Google Scholar 

  • Janda, T., Pál, M., Darkó, É., & Szalai, G. (2017). Use of salicylic acid and related compounds to improve the abiotic stress tolerance of plants: Practical aspects. In Salicylic acid: A multifaceted hormone (pp. 35–46). Springer.

    Google Scholar 

  • Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 64(8), 2255–2268.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2015). Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 76(1), 25–40.

    CAS  Google Scholar 

  • Jini, D., & Joseph, B. (2017). Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science, 24(2), 97–108.

    Google Scholar 

  • Jin, J. B., Jin, Y. H., Lee, J., et al. (2008). The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. The Plant Journal Cellular and Molecular Biology, 53(3), 530–540. https://doi.org/10.1111/j.1365-313X.2007.03359.x

    Article  CAS  Google Scholar 

  • Kalaivani, K., Kalaiselvi, M. M., & Senthil-Nathan, S. (2016). Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Scientific Reports, 6(1), 1–11.

    Google Scholar 

  • Kamal, A. H. M., & Komatsu, S. (2016). Jasmonic acid induced protein response to biophoton emissions and flooding stress in soybean. Journal of Proteomics, 133, 33–47.

    CAS  PubMed  Google Scholar 

  • Kang, H. G., & Singh, K. B. (2000). Characterization of salicylic acid-responsive, Arabidopsis Dof domain proteins: Overexpression of OBP3 leads to growth defects. The Plant Journal, 21(4), 329–339.

    CAS  PubMed  Google Scholar 

  • Kang, G., Li, G., Xu, W., Peng, X., Han, Q., Zhu, Y., & Guo, T. (2012). Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. Journal of Proteome Research, 11(12), 6066–6079.

    CAS  PubMed  Google Scholar 

  • Kang, G. Z., Li, G. Z., Liu, G. Q., Xu, W., Peng, X. Q., Wang, C. Y., Zhu, Y. J., & Guo, T. C. (2013). Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biologia Plantarum, 57(4), 718–724.

    CAS  Google Scholar 

  • Kang, G., Li, G., & Guo, T. (2014). Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiologiae Plantarum, 36(9), 2287–2297.

    CAS  Google Scholar 

  • Kannaujia, D., & Vajpeyi, M. (2018). Influence of plant growth regulators on some physico-chemical constituents of seeds of mustard grown under water stress. Indian Journal of Agricultural Biochemistry, 31(1), 82–85.

    CAS  Google Scholar 

  • Kapulnik, Y., Yalpani, N., & Raskin, I. (1992). Salicylic acid induces cyanide-resistant respiration in tobacco cell-suspension cultures. Plant Physiology, 100(4), 1921–1926.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karafylidis, E., & Turner, J. (2002). Constitutive activation of jasmonate signalling in an Arabidopsis mutant correlates with enhanced resistance to Erisiphe cichoracearum, Pseudomona syringae and Mysus persicae. Molecular Plant-Microbe Interactions, 15, 1025–1030.

    Google Scholar 

  • Kaur, P., Ghai, N., & Sangha, M. K. (2009). Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species. African Journal of Biotechnology, 8(4).

    Google Scholar 

  • Kawano, T., Furuichi, T., & Muto, S. (2004). Controlled salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnology, 21(5), 319–335.

    CAS  Google Scholar 

  • Kazemi-Shahandashti, S. S., Maali-Amiri, R., Zeinali, H., Khazaei, M., Talei, A., & Ramezanpour, S. S. (2014). Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. Journal of Plant Physiology, 171(13), 1106–1116.

    CAS  PubMed  Google Scholar 

  • Kerbarh, O., Ciulli, A., Howard, N. I., & Abell, C. (2005). Salicylate biosynthesis: Overexpression, purification, and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. Journal of Bacteriology, 187(15), 5061–5066.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalifa, G. S., Abdelrassoul, M., Hegazi, A. M., & Elsherif, M. H. (2016). Attenuation of negative effects of saline stress in two lettuce cultivars by salicylic acid and glycine betaine. Gesunde Pflanzen, 68(4), 177–189.

    CAS  Google Scholar 

  • Khan, M. I. R., & Khan, N. A. (2014). Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma, 251(5), 1007–1019.

    CAS  PubMed  Google Scholar 

  • Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160(5), 485–492.

    CAS  PubMed  Google Scholar 

  • Khan, N., Syeed, S., Masood, A., Nazar, R., & Iqbal, N. (2010). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 1(1), e1–e1.

    Google Scholar 

  • Khan, M. I. R., Iqbal, N., Masood, A., & Khan, N. A. (2012a). Variation in salt tolerance of wheat cultivars: Role of glycinebetaine and ethylene. Pedosphere, 22(6), 746–754.

    CAS  Google Scholar 

  • Khan, M. I. R., Syeed, S., Nazar, R., & Anjum, N. A. (2012b). An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. Phytohormones and Abiotic Stress Tolerance in Plants, 277–300.

    Google Scholar 

  • Khan, N. A., Nazar, R., Iqbal, N., & Anjum, N. A. (2012c). Phytohormones and abiotic stress tolerance in plants. Springer. https://doi.org/10.1007/978-3-642-25829-9

    Book  Google Scholar 

  • Khan, M. I. R., Asgher, M., & Khan, N. A. (2013a). Rising temperature in the changing environment: A serious threat to plants. Climate Change and Environmental Sustainability, 1, 25–36.

    Google Scholar 

  • Khan, M. I. R., Iqbal, N., Masood, A., Per, T. S., & Khan, N. A. (2013b). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior, 8(11), e26374.

    Google Scholar 

  • Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67–74.

    CAS  PubMed  Google Scholar 

  • Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 462.

    PubMed  PubMed Central  Google Scholar 

  • Khan, A., Kamran, M., Imran, M., Al-Harrasi, A., Al-Rawahi, A., Al-Amri, I., Lee, I. J., & Khan, A. L. (2019). Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Scientific Reports, 9(1), 1–16.

    Google Scholar 

  • Khan, N., Bano, A., Ali, S., & Babar, M. A. (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation, 90(2), 189–203.

    CAS  Google Scholar 

  • Khandaker, L., Akond, A. M., & Oba, S. (2011). Foliar application of salicylic acid improved the growth, yield and leaf's bioactive compounds in red amaranth (Amaranthus tricolor l.). Journal of Fruit and Ornamental Plant Research, 74(1), 77–86.

    Google Scholar 

  • Khurana, J. P., & Cleland, C. F. (1992). Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6. Plant Physiology, 100(3), 1541–1546.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koo, Y. M., Heo, A. Y., & Choi, H. W. (2020). Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36(1), 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosová, K., Prášil, I. T., Vítámvás, P., Dobrev, P., Motyka, V., Floková, K., Novák, O., Turečková, V., Rolčik, J., Pešek, B., & Trávničková, A. (2012). Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. Journal of Plant Physiology, 169(6), 567–576.

    PubMed  Google Scholar 

  • Kováčik, J., & Bačkor, M. (2007). Changes of phenolic metabolism and oxidative status in nitrogen-deficient Matricaria chamomilla plants. Plant and Soil, 297(1), 255–265.

    Google Scholar 

  • Kovacik, J., Gruz, J., Backor, M., et al. (2009). Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports, 28, 135–143.

    CAS  PubMed  Google Scholar 

  • Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165(9), 920–931.

    CAS  PubMed  Google Scholar 

  • Kumar, D. (2014). Salicylic acid signaling in disease resistance. Plant Science, 228, 127–134.

    CAS  PubMed  Google Scholar 

  • Kumar, A., Usmani, Z., Ahirwal, J., & Rani, P. (2019). Phytomanagement of chromium contaminated brown fields. In Phytomanagement of polluted sites (pp. 447–469). Elsevier.

    Google Scholar 

  • Kurepin, L. V., Dahal, K. P., Zaman, M., & Pharis, R. P. (2013). Interplay between environmental signals and endogenous salicylic acid concentration. Salicylic Acid, 61–82.

    Google Scholar 

  • Kwon, Y., Kim, S. H., Jung, M. S., Kim, M. S., Oh, J. E., Ju, H. W., Kim, K. I., Vierling, E., Lee, H., & Hong, S. W. (2007). Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. The Plant Journal, 49(2), 184–193.

    CAS  PubMed  Google Scholar 

  • Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 26.

    PubMed  PubMed Central  Google Scholar 

  • Larkindale, J., & Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 161(4), 405–413.

    CAS  PubMed  Google Scholar 

  • Larqué-Saavedra, A., & Martin-Mex, R. (2007). Effects of salicylic acid on the bioproductivity of plants. In S. Hayat & A. Ahmad (Eds.), Salicylic acid: A plant hormone. Springer. https://doi.org/10.1007/1-4020-5184-0_2

    Chapter  Google Scholar 

  • Laurie, D. A., Pratchett, N., Bezant, J. H., & Snape, J. W. (1994). Genetic analysis of a photoperiod response gene on the short arm of chromosome 2 (2H) of Hordeum vulgare (barley). Heredity, 72, 619–627.

    CAS  Google Scholar 

  • Lebeis, S. L., Paredes, S. H., Lundberg, D. S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Del Rio, T. G., Jones, C. D., Tringe, S. G., & Dangl, J. L. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 349(6250), 860–864.

    CAS  PubMed  Google Scholar 

  • Lee, T. T., & Skoog, F. (1965). Effects of substituted phenols on bud formation and growth of tobacco tissue cultures. Physiologia Plantarum, 18(2), 386–402.

    CAS  Google Scholar 

  • Lee, H. I., León, J., & Raskin, I. (1995). Biosynthesis and metabolism of salicylic acid. Proceedings of the National Academy of Sciences, 92(10), 4076–4079.

    CAS  Google Scholar 

  • Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188(2), 626–637.

    CAS  PubMed  Google Scholar 

  • Lefevere, H., Bauters, L., & Gheysen, G. (2020). Salicylic acid biosynthesis in plants. Frontiers in Plant Science, 11.

    Google Scholar 

  • Lei, T., Feng, H., Sun, X., Dai, Q. L., Zhang, F., Liang, H. G., & Lin, H. H. (2010). The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regulation, 60(1), 35–42.

    CAS  Google Scholar 

  • Li, X. M., Zhang, L. H., Ma, L. J., & Li, Y. Y. (2011). Elevated carbon dioxide and/or ozone concentrations induce hormonal changes in Pinus tabulaeformis. Journal of Chemical Ecology, 37(7), 779–784.

    CAS  PubMed  Google Scholar 

  • Li, G., Peng, X., Wei, L., & Kang, G. (2013). Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene, 529(2), 321–325.

    CAS  PubMed  Google Scholar 

  • Li, T., Hu, Y., Du, X., Tang, H., Shen, C., & Wu, J. (2014). Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLOS one, 9(10), e109492.

    PubMed  PubMed Central  Google Scholar 

  • Liechti, R., & Farmer, E. (2002). The jasmonate pathway. Science, 296, 1649–1650.

    CAS  PubMed  Google Scholar 

  • Lim, E. K., Doucet, C. J., Li, Y., Elias, L., Worrall, D., Spencer, S. P., Ross, J., & Bowles, D. J. (2002). The activity of Arabidopsisglycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. Journal of Biological Chemistry, 277(1), 586–592.

    CAS  PubMed  Google Scholar 

  • Liu, J. J., Ekramoddoullah, A. K., Hawkins, B., & Shah, S. (2013). Overexpression of a western white pine PR10 protein enhances cold tolerance in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture (PCTOC), 114(2), 217–223.

    CAS  Google Scholar 

  • Liu, S., Dong, Y., Xu, L., & Kong, J. (2014a). Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulation, 73(1), 67–78.

    CAS  Google Scholar 

  • Liu, T., Song, T., Zhang, X., Yuan, H., Su, L., Li, W., Xu, J., Liu, S., Chen, L., Chen, T., & Zhang, M. (2014b). Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nature Communications, 5(1), 1–10.

    Google Scholar 

  • Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160, 1686–1697.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lone, R., Shuab, R., & Kamili, A. N. (Eds.). (2020). Plant Phenolics in sustainable agriculture. Springer.

    Google Scholar 

  • López-Delgado, H., Mora-Herrera, M. E., Zavaleta-Mancera, H. A., Cadena-Hinojosa, M., & Scott, I. M. (2004). Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research, 81(3), 171–176.

    Google Scholar 

  • Lovelock, D. A., Šola, I., Marschollek, S., Donald, C. E., Rusak, G., van Pée, K. H., Ludwig-Müller, J., & Cahill, D. M. (2016). Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease. Molecular Plant Pathology, 17(8), 1237–1251.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lubovská, Z., Dobrá, J., Štorchová, H., Wilhelmová, N., & Vanková, R. (2014). Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. Journal of Plant Physiology, 171(17), 1625–1633.

    PubMed  Google Scholar 

  • Mackelprang, R., Okrent, R. A., & Wildermuth, M. C. (2017). Preference of Arabidopsis thaliana GH3. 5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate. Phytochemistry, 143, 19–28.

    CAS  PubMed  Google Scholar 

  • Mahdavian, K., Ghorbanli, M., & Kalantari, K. M. (2008). Role of salicylic acid in regulating ultraviolet radiation-induced oxidative stress in pepper leaves. Russian Journal of Plant Physiology, 55(4), 560–563.

    CAS  Google Scholar 

  • Maibam, A., Nisar, S., Zargar, S. M., & Mahajan, R. (2020). High-temperature response and tolerance in agronomic crops. In Agronomic Crops (pp. 173–190). Springer.

    Google Scholar 

  • Malamy, J., Carr, J. P., Klessig, D. F., & Raskin, I. (1990). Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250(4983), 1002–1004.

    CAS  PubMed  Google Scholar 

  • Martínez, C., Pons, E., Prats, G., & León, J. (2004). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37(2), 209–217.

    PubMed  Google Scholar 

  • Martin-Mex, R., & Larqué-Saavedra, A. (2001). Effect of Salicyclic acid in Clitoria (Clitoria Ternatae) bioproductivity in Yucatan Mexico. In Proceedings-plant growth regulation society of America-annual meeting- (Vol. 28, pp. 97–99).

    Google Scholar 

  • Martin-Mex, R., Nexticapan-Garces, A., & Larque-Saavedra, A. (2005). Effect of salicylic acid in sex expression in Carica papaya L. In 10th international symposium on plant Biorregulators in fruit production (p. 113). Saltillo Coahuila.

    Google Scholar 

  • Maruri-López, I., Aviles-Baltazar, N. Y., Buchala, A., & Serrano, M. (2019). Intra and extracellular journey of the phytohormone salicylic acid. Frontiers in Plant Science, 10, 423.

    PubMed  PubMed Central  Google Scholar 

  • Mateo, A., Mühlenbock, P., Rustérucci, C., Chang, C. C. C., Miszalski, Z., Karpinska, B., Parker, J. E., Mullineaux, P. M., & Karpinski, S. (2004). LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiology, 136(1), 2818–2830.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matros, A., Amme, S., Kettig, B., Buck-Sorlin, G. H., Sonnewald, U. W. E., & Mock, H. P. (2006). Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. And to increased resistance against infection with potato virus Y. Plant, Cell & Environment Samsun NN, 29(1), 126–137.

    CAS  Google Scholar 

  • Mauzerall, D. L., & Wang, X. (2001). Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United States, Europe, and Asia. Annual Review of Energy and the Environment, 26(1), 237–268.

    Google Scholar 

  • Maxwell, D. P., Wang, Y., & McIntosh, L. (1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proceedings of the National Academy of Sciences, 96(14), 8271–8276.

    CAS  Google Scholar 

  • Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S. Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell, 126(5), 969–980.

    CAS  PubMed  Google Scholar 

  • Mercado-Blanco, J., van der Drift, K. M., Olsson, P. E., Thomas-Oates, J. E., van Loon, L. C., & Bakker, P. A. (2001). Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescensWCS374. Journal of Bacteriology, 183(6), 1909–1920.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Métraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., & Inverardi, B. (1990). Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 250(4983), 1004–1006.

    PubMed  Google Scholar 

  • Minhas, P. S., Rane, J., & Pasala, R. K. (2017). Abiotic stresses in agriculture: An overview. Abiotic Stress Management for Resilient Agriculture, 3–8.

    Google Scholar 

  • Mir, M. A., John, R., Alyemeni, M. N., Alam, P., & Ahmad, P. (2018). Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings. Scientific Reports, 8(1), 1–13.

    Google Scholar 

  • Misra, V., Mall, A. K., & Pathak, A. D. (2020). Sugar beet: A sustainable crop for saline environment. In Agronomic Crops (pp. 49–61). Springer.

    Google Scholar 

  • Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5, 4.

    PubMed  PubMed Central  Google Scholar 

  • Miura, K., Okamoto, H., Okuma, E., Shiba, H., Kamada, H., Hasegawa, P. M., & Murata, Y. (2013). SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. The Plant Journal, 73(1), 91–104.

    CAS  PubMed  Google Scholar 

  • Mohammed, A. R., & Tarpley, L. (2011). Morphological and physiological responses of nine southern US rice cultivars differing in their tolerance to enhanced ultraviolet-B radiation. Environmental and Experimental Botany, 70(2–3), 174–184.

    Google Scholar 

  • Mohammed, A. R., & Tarpley, L. (2013). Effects of enhanced ultraviolet-B (UV-B) radiation and antioxidative-type plant growth regulators on Rice (Oryza sativa L.) leaf photosynthetic rate, photochemistry and physiology. Journal of Agricultural Science (Toronto), 5(5), 115–128.

    Google Scholar 

  • Moharekar, S. T., Lokhande, S. D., Hara, T., Tanaka, R., Tanaka, A., & Chavan, P. D. (2003). Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica, 41(2), 315–317.

    CAS  Google Scholar 

  • Mohsenian, Y., & Roosta, H. R. (2015). Effects of grafting on alkali stress in tomato plants: Datura rootstock improve alkalinity tolerance of tomato plants. Journal of Plant Nutrition, 38(1), 51–72.

    CAS  Google Scholar 

  • Moore, A. L., Albury, M. S., Crichton, P. G., & Affourtit, C. (2002). Function of the alternative oxidase: Is it still a scavenger? Trends in Plant Science, 7(11), 478–481.

    CAS  PubMed  Google Scholar 

  • Moravcová, Š., Tůma, J., Dučaiová, Z. K., Waligórski, P., Kula, M., Saja, D., Słomka, A., Bąba, W., & Libik-& Konieczny, M. (2018). Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress. Plant Physiology and Biochemistry, 122, 19–30.

    PubMed  Google Scholar 

  • Mou, Z., Fan, W., & Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113(7), 935–944.

    CAS  PubMed  Google Scholar 

  • Mourad, A. M., Alomari, D. Z., Alqudah, A. M., Sallam, A., & Salem, K. F. (2019). Recent advances in wheat (Triticum spp.) breeding. Advances in plant breeding strategies: Cereals, 559–593.

    Google Scholar 

  • Mouradov, A., Cremer, F., & Coupland, G. (2002). Control of flowering time: Interacting pathways as a basis for diversity. The Plant Cell, 14(suppl 1), S111–S130.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munir, M., Amjad, M., Ziaf, K., & Ahmad, A. (2016). Improving okra productivity by mitigating drought through foliar application of salicylic acid. Pakistan Journal of Agricultural Sciences, 53(4).

    Google Scholar 

  • Mustafa, N. R., Kim, H. K., Choi, Y. H., Erkelens, C., Lefeber, A. W., Spijksma, G., van der Heijden, R., & Verpoorte, R. (2009). Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry, 70(4), 532–539.

    CAS  PubMed  Google Scholar 

  • Muthulakshmi, S., & Lingakumar, K. (2017). Role of salicylic acid (SA) in plants—A review. International Journal of Applied Research, 3(3), 33–37.

    Google Scholar 

  • Mutlu, S., Karadağoğlu, Ö., Atici, Ö., & Nalbantoğlu, B. (2013). Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biologia Plantarum, 57(3), 507–513.

    CAS  Google Scholar 

  • Nagatoshi, Y., Mitsuda, N., Hayashi, M., Inoue, S. I., Okuma, E., Kubo, A., Murata, Y., Seo, M., Saji, H., Kinoshita, T., & Ohme-Takagi, M. (2016). GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement. Proceedings of the National Academy of Sciences, 113(15), 4218–4223.

    CAS  Google Scholar 

  • Nakashima, N., & Yamaguchi-Shinosaki, K. (2005). Improvement in stress tolerance in crop plants by regulon biotechnology. Japan Agricultural Research Quarterly, 39, 221–229.

    CAS  Google Scholar 

  • Nawara, H. M., Mattar, M. Z., Salem, K. F. M., & Eissa, O. A. (2017). Diallel study on some in vitro callus traits of bread wheat (Triticum aestivum L.) under salt stress. International Journal of Agriculture and Environmental Research, 3(1), 1988–2006.

    Google Scholar 

  • Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168(8), 807–815.

    CAS  PubMed  Google Scholar 

  • Nazar, R., Umar, S., & Khan, N. A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior, 10(3), e1003751.

    Google Scholar 

  • Nazar, R., Iqbal, N., & Umar, S. (2017). Heat stress tolerance in plants: Action of salicylic acid. Salicylic acid: A multifaceted hormone, 145–161.

    Google Scholar 

  • Norman, C., Howell, K. A., Millar, A. H., Whelan, J. M., & Day, D. A. (2004). Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiology, 134(1), 492–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norn, S., Permin, H., Kruse, P. R., & Kruse, E. (2009). From willow bark to acetylsalicylic acid. Dansk medicinhistorisk arbog, 37, 79–98.

    PubMed  Google Scholar 

  • Noutoshi, Y., Okazaki, M., Kida, T., Nishina, Y., Morishita, Y., Ogawa, T., Suzuki, H., Shibata, D., Jikumaru, Y., Hanada, A., & Shirasu, K. (2012). Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis. The Plant Cell, 2.

    Google Scholar 

  • Omae, H., Kumar, A., & Shono, M. (2012). Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. Journal of Botany, 2012.

    Google Scholar 

  • Overmyer, K., Brosché, M., Pellinen, R., Kuittinen, T., Tuominen, H., Ahlfors, R., Keinänen, M., Saarma, M., Scheel, D., & Kangasjärvi, J. (2005). Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiology, 137(3), 1092–1104.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pajerowska-Mukhtar, K. M., Emerine, D. K., & Mukhtar, M. S. (2013). Tell me more: Roles of NPRs in plant immunity. Trends in Plant Science, 18(7), 402–411.

    CAS  PubMed  Google Scholar 

  • Pál, M., Szalai, G., Kovács, V., Gondor, O. K., & Janda, T. (2013). Salicylic acid-mediated abiotic stress tolerance. In Salicylic acid (pp. 183–247). Springer.

    Google Scholar 

  • Pál, M., Janda, T., Majláth, I., & Szalai, G. (2020). Involvement of salicylic acid and other phenolic compounds in light-dependent cold acclimation in maize. International Journal of Molecular Sciences, 21(6), 1942.

    PubMed Central  Google Scholar 

  • Palma, F., Lopez-Gomez, M., Tejera, N. A., et al. (2013). Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Science, 208, 75–82. https://doi.org/10.1016/j.plantsci.2013.03.015

  • Pancheva, T. V., & Popova, L. P. (1998). Effect of salicylic acid on the synthesis of ribulose-1, 5-bisphosphate carboxylase/oxygenase in barley leaves. Journal of Plant Physiology, 152(4–5), 381–386.

    CAS  Google Scholar 

  • Pancheva, T. V., Popova, L. P., & Uzunova, A. N. (1996). Effects of salicylic acid on growth and photosynthesis in barley plants. Journal of Plant Physiology, 149(1–2), 57–63.

    CAS  Google Scholar 

  • Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(5847), 113–116.

    CAS  PubMed  Google Scholar 

  • Pedersen, O., Rich, S. M., & Colmer, T. D. (2009). Surviving floods: Leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. The Plant Journal, 58(1), 147–156.

    CAS  PubMed  Google Scholar 

  • Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3), 290–295.

    CAS  PubMed  Google Scholar 

  • Pelludat, C., Brem, D., & Heesemann, J. (2003). Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica, is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin. Journal of Bacteriology, 185(18), 5648–5653.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penna, S., & Nikalje, G. C. (2018). Coping with metal toxicity–cues from halophytes. Frontiers in Plant Science, 9, 777.

    Google Scholar 

  • Per, T. S., Fatma, M., Asgher, M., Javied, S., & Khan, N. A. (2017). Salicylic acid and nutrients interplay in abiotic stress tolerance. In Salicylic acid: A multifaceted hormone (pp. 221–237). Springer.

    Google Scholar 

  • Pérez, M. G. F., Rocha-Guzmán, N. E., Mercado-Silva, E., Loarca-Piña, G., & Reynoso-Camacho, R. (2014). Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions. Food Chemistry, 156, 273–278.

    Google Scholar 

  • Petrek, J., Havel, L., Petrlova, J., Adam, V., Potesil, D., Babula, P., & Kizek, R. (2007). Analysis of salicylic acid in willow barks and branches by an electrochemical method. Russian Journal of Plant Physiology, 54(4), 553–558.

    CAS  Google Scholar 

  • Piatek, A. A., Lenaghan, S. C., & Stewart, C. N., Jr. (2018). Advanced editing of the nuclear and plastid genomes in plants. Plant Science, 273, 42–49.

    CAS  PubMed  Google Scholar 

  • Piattelli, M., De Nicola, M. G., & Castrogiovanni, V. (1969). Photocontrol of amaranthin synthesis in Amaranthus tricolor. Phytochemistry, 8(4), 731–736.

    CAS  Google Scholar 

  • Pieterse, C. M., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521.

    CAS  PubMed  Google Scholar 

  • Pinto, A. P., De Varennes, A., Fonseca, R., & Teixeira, D. M. (2015). Phytoremediation of soils contaminated with heavy metals: Techniques and strategies. In Phytoremediation (pp. 133–155). Springer.

    Google Scholar 

  • Pirasteh-Anosheh, H., Emam, Y., & Sepaskhah, A. R. (2015). Improving barley performance by proper foliar applied salicylic-acid under saline conditions. International Journal of Plant Production, 9(3), 467–486.

    Google Scholar 

  • Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y., & Lopez-Molina, L. (2008). The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. The Plant Cell, 20(10), 2729–2745.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popova, L. P., Maslenkova, L. T., Ivanova, A., & Stoinova, Z. (2012). Role of salicylic acid in alleviating heavy metal stress. In Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 447–466). Springer.

    Google Scholar 

  • Quarrie, S. A., Steed, A., Lebreton, C., et al. (1994). QTL analysis of ABA production in wheat and maize and associated physiological traits. Russian Journal of Plant Physiology, 41, 565–571.

    Google Scholar 

  • Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., & Job, D. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141(3), 910–923.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramzani, P. M. A., Iqbal, M., Kausar, S., Ali, S., Rizwan, M., & Virk, Z. A. (2016). Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil. Environmental Science and Pollution Research, 23(18), 18585–18595.

    CAS  PubMed  Google Scholar 

  • Rančelienė, V., & VyŠniauskienė, R. (2012). Modification of UV-B radiation effect on Crepis capillaris by antioxidant and environmental conditions. Emirates Journal of Food & Agriculture (EJFA), 24(6).

    Google Scholar 

  • Rao, M. V., & Davis, K. R. (1999). Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: The role of salicylic acid. The Plant Journal, 17(6), 603–614.

    CAS  PubMed  Google Scholar 

  • Rao, M. V., & Davis, K. R. (2001). The physiology of ozone induced cell death. Planta, 213(5), 682–690.

    CAS  PubMed  Google Scholar 

  • Rao, M. V., Paliyath, G., Ormrod, D. P., Murr, D. P., & Watkins, C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2). Plant Physiology, 115(1), 137–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, M. V., Lee, H., Creelman, R. A., Mullet, J. E., & Davis, K. R. (2000). Jasmonic acid sig nal ing mod u lates ozone-in duced hy per sen si tive cell death. Plant Cell, 12, 1633–1646.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. (1990). Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 66, 369–373.

    CAS  Google Scholar 

  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Biology, 43(1), 439–463.

    CAS  Google Scholar 

  • Raskin, I. (1992a). Role of salicylic acid in plants. Annual Review of Plant Biology, 43(1), 439–463.

    CAS  Google Scholar 

  • Raskin, I. (1992b). Salicylate, a new plant hormone. Plant Physiology, 99(3), 799.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen, S., Barah, P., Suarez-Rodriguez, M. C., Bressendorff, S., Friis, P., Costantino, P., Bones, A. M., Nielsen, H. B., & Mundy, J. (2013). Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiology, 161(4), 1783–1794.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rate, D. N., & Greenberg, J. T. (2001). The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. The Plant Journal, 27(3), 203–211.

    CAS  PubMed  Google Scholar 

  • Rate, D. N., Cuenca, J. V., Bowman, G. R., Guttman, D. S., & Greenberg, J. T. (1999). The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. The Plant Cell, 11(9), 1695–1708.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raza, S. H., & Shafiq, F. (2013). Exploring the role of salicylic acid to attenuate cadmium accumulation in radish (Raphanus sativus). International Journal of Agriculture and Biology, 15(3).

    Google Scholar 

  • Rehman, H., Iqbal, H., Basra, S. M., Afzal, I., Farooq, M., Wakeel, A., & Ning, W. A. N. G. (2015). Seed priming improves early seedling vigor, growth and productivity of spring maize. Journal of Integrative Agriculture, 14(9), 1745–1754.

    Google Scholar 

  • Rhoads, D. M., & McIntosh, L. (1992). Salicylic acid regulation of respiration in higher plants: Alternative oxidase expression. The Plant Cell, 4(9), 1131–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-san, M. M. V., & Plasencia, J. (2011). Salicylic acid beyond defense: its role in plant growth and development. Journal of Experimental Botany, 3321–3338.

    Google Scholar 

  • Rocher, F., Chollet, J. F., Legros, S., Jousse, C., Lemoine, R., Faucher, M., Bush, D. R., & Bonnemain, J. L. (2009). Salicylic acid transport in Ricinus communis involves a pH-dependent carrier system in addition to diffusion. Plant Physiology, 150(4), 2081–2091.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodas-Junco, B. A., Nic-Can, G. I., Muñoz-Sánchez, A., & Hernández-Sotomayor, S. M. (2020). Phospholipid signaling is a component of the salicylic acid response in plant cell suspension cultures. International Journal of Molecular Sciences, 21(15), 5285.

    CAS  PubMed Central  Google Scholar 

  • Rüschoff, J., Wallinger, S., Dietmaier, W., Bocker, T., Brockhoff, G., Hofstädter, F., & Fishel, R. (1998). Aspirin suppresses the mutator phenotype associated with hereditary nonpolyposis colorectal cancer by genetic selection. Proceedings of the National Academy of Sciences, 95(19), 11301–11306.

    Google Scholar 

  • Ryals, J., Uknes, S., & Ward, E. (1994). Systemic acquired resistance. Plant Physiology, 104(4), 1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabagh, A. E., Hossain, A., Barutçular, C., Islam, M. S., Ahmad, Z., Wasaya, A., Meena, R. S., Fahad, S., Oksana, S., Hafez, Y. M., & Najeeb, U. (2020). Adverse effect of drought on quality of major cereal crops: Implications and their possible mitigation strategies. In Agronomic Crops (pp. 635–658). Springer.

    Google Scholar 

  • Saidi, I., Yousfi, N., & Borgi, M. A. (2017). Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. Journal of Plant Nutrition, 40(16), 2326–2335.

    CAS  Google Scholar 

  • Saleh, M. M., Ali, W. A., Alwan, M. H., Suliman, Z. A., Kenaan, R., Daiub, H., & Salem, K. F. (2020). Multi-environmental evaluation of wheat tetraploid genotypes for agronomic traits under rainfed conditions in Syria. Journal of Arid land Agriculture, 6, 01–05.

    Google Scholar 

  • Salem, K. F. M. (2004). The inheritance and molecular mapping of genes for post-anthesis drought tolerance (PADT) in wheat (124 pp). Martin-Luther-University.

    Google Scholar 

  • Salem, K. F., & Mattar, M. Z. (2014). Identification of microsatellite alleles for salt tolerance at seedling stage in wheat (Triticum aestivum L.). Life Science Journal, 11(12), 1064–1073.

    Google Scholar 

  • Salem, K. F. M., Röder, M. S., & Börner, A. (2007). Identification and mapping quantitative trait loci for stem reserve mobilisation in wheat (Triticum aestivum L.). Cereal Research Communications, 35(3), 1367–1374.

    Google Scholar 

  • Salem, K. F., Elabsawy, E. A., Aldahak, L., & Elshamy, H. (2021). Evaluation of stem reserve mobilization in Egyptian bread wheat (Triticum aestivum L.) genotypes and F1 hybrids under post-anthesis chemical desiccation stress. Journal of Genetic and Environmental Resources Conservation, 9(1), 176–182.

    Google Scholar 

  • Sánchez-Martín, J., Heald, J. I. M., Kingston-Smith, A., Winters, A. N. A., Rubiales, D., Sanz, M., Rubiales, D., Sanz, M., Mur, L. A., & Prats, E. (2015). A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant, Cell & Environment, 38(7), 1434–1452.

    Google Scholar 

  • Sandoval-Yapiz MR (2004) Reguladores de crecimiento XXIII: efecto del acido salicilico en la biomasa del cempazuchitl (Tagetes erecta). Tesis de Licenciatura. Instituto Tecnologico Agropecuario, Conkal, Yucatan, Mexico.

    Google Scholar 

  • Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459(7250), 1071–1078.

    CAS  PubMed  Google Scholar 

  • Santner, A., & Estelle, M. (2010). The ubiquitin-proteasome system regulates plant hormone signaling. The Plant Journal, 61(6), 1029–1040.

    CAS  PubMed  Google Scholar 

  • Santner, A., Calderon-Villalobos, L. I. A., & Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology, 5(5), 301–307.

    CAS  PubMed  Google Scholar 

  • Sarowar, S., Kim, Y. J., Kim, E. N., et al. (2005). Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Reports, 24, 216–224.

    CAS  PubMed  Google Scholar 

  • Sasheva, P., Yordanova, R., Janda, T., Szalai, G., & Maslenkova, L. (2013). Study of primary photosynthetic reactions in winter wheat cultivars after cold hardening and freezing. Effect of salicylic acid. Bulgarian Journal of Agricultural Science, 19(2), 45–48.

    Google Scholar 

  • Senaratna, T., Touchell, D., Bunn, E., & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30(2), 157–161.

    CAS  Google Scholar 

  • Seo, P. J., Lee, A. K., Xiang, F., & Park, C. M. (2008). Molecular and functional profiling of Arabidopsis pathogenesis-related genes: Insights into their roles in salt response of seed germination. Plant and Cell Physiology, 49(3), 334–344.

    CAS  PubMed  Google Scholar 

  • Serino, L., Reimmann, C., Baur, H., Beyeler, M., Visca, P., & Haas, D. (1995). Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Molecular and General Genetics MGG, 249(2), 217–228.

    CAS  PubMed  Google Scholar 

  • Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164(3), 317–322.

    CAS  Google Scholar 

  • Sharma, Y. K., León, J., Raskin, I., & Davis, K. R. (1996). Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proceedings of the National Academy of Sciences, 93(10), 5099–5104.

    CAS  Google Scholar 

  • Sharp, R. E. (2002). Interaction with ethylene changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant, Cell & Environment, 25, 211–222.

    CAS  Google Scholar 

  • Shi, Q., Bao, Z., Zhu, Z., Ying, Q., & Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation, 48(2), 127–135.

    CAS  Google Scholar 

  • Siboza, X. I., Bertling, I., & Odindo, A. O. (2014). Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). Journal of Plant Physiology, 171(18), 1722–1731.

    CAS  PubMed  Google Scholar 

  • Sidhu, G. P. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2017). Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicology and Environmental Safety, 135, 209–215.

    CAS  PubMed  Google Scholar 

  • Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J. P., & Raskin, I. (1995). Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiology, 108(2), 633–639.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sita, K., Sehgal, A., HanumanthaRao, B., Nair, R. M., Vara Prasad, P. V., Kumar, S., Gaur, P. M., Farooq, M., Siddique, K. H., Varshney, R. K., & Nayyar, H. (2017). Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science, 8, 1658.

    PubMed  PubMed Central  Google Scholar 

  • Slaymaker, D. H., Navarre, D. A., Clark, D., del Pozo, O., Martin, G. B., & Klessig, D. F. (2002). The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences, 99(18), 11640–11645.

    CAS  Google Scholar 

  • Snape, J. W., Quarrie, S. A., & Laurie, D. A. (1996). Comparative mapping and its use for the genetic analysis of agronomic characters in wheat. Euphytica, 89, 27–31.

    CAS  Google Scholar 

  • Snape, J. W., Semikhodskii, A., Fish, L., et al. (1997). Mapping frost tolerance loci in wheat and comparative mapping with other cereals. Acta Agronomica Hungarica, 45, 265–270.

    Google Scholar 

  • Sneader, W. (2000). The discovery of aspirin: A reappraisal. BMJ, 321(7276), 1591–1594.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snyman, M., & Cronjé, M. J. (2008). Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. Journal of Experimental Botany, 59, 2125–2132.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J. T. (2006). Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Molecules & Cells (Springer Science & Business Media BV), 22(2).

    Google Scholar 

  • Song, L., Yue, L., Zhao, H., & Hou, M. (2013). Protection effect of nitric oxide on photosynthesis in rice under heat stress. Acta Physiologiae Plantarum, 35(12), 3323–3333.

    CAS  Google Scholar 

  • Song, W. Y., Yang, H. C., Shao, H. B., Zheng, A. Z., & Brestic, M. (2014). The alleviative effects of salicylic acid on the activities of catalase and superoxide dismutase in malting barley (Hordeum uhulgare L.) seedling leaves stressed by heavy metals. CLEAN–Soil, Air, Water, 42(1), 88–97.

    CAS  Google Scholar 

  • Spoel, S. H., Mou, Z., Tada, Y., Spivey, N. W., Genschik, P., & Dong, X. (2009). Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell, 137(5), 860–872.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava, S., Pathak, A. D., Gupta, P. S., Shrivastava, A. K., & Srivastava, A. K. (2012). Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. Journal of Environmental Biology, 33(3), 657.

    CAS  PubMed  Google Scholar 

  • Stevens, J., Senaratna, T., & Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regulation, 49(1), 77–83.

    CAS  Google Scholar 

  • Sticher, L., Mauch-Mani, B., & Metraux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology, 35, 235–270.

    CAS  PubMed  Google Scholar 

  • Sultana, S., Khew, C. Y., Morshed, M. M., Namasivayam, P., Napis, S., & Ho, C. L. (2012). Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. Journal of Plant Physiology, 169, 311–318.

    CAS  PubMed  Google Scholar 

  • Szalai, G., Horgosi, S., Soós, V., Majláth, I., Balázs, E., & Janda, T. (2011). Salicylic acid treatment of pea seeds induces its de novo synthesis. Journal of Plant Physiology, 168(3), 213–219.

    Google Scholar 

  • Szalai, G., Pál, M., Árendás, T., & Janda, T. (2016). Priming seed with salicylic acid increases grain yield and modifies polyamine levels in maize. Cereal Research Communications, 44(4), 537–548.

    CAS  Google Scholar 

  • Szepesi, Á. (2011). Interaction between salicylic acid and polyamines and their possible roles in tomato hardening processes. Acta Biologica Szegediensis, 55(1), 165–166.

    Google Scholar 

  • Takatsuji, H., & Jiang, C. J. (2014). Plant hormone crosstalks under biotic stresses. In L. S. Tran & S. Pal (Eds.), Phytohormones: A window to metabolism, signaling and biotechnological applications (pp. 323–350). Springer. https://doi.org/10.1007/978-1-4939-0491-4_11

    Chapter  Google Scholar 

  • Tamaoki, M. (2008). The role of phytohormone signaling in ozone-induced cell death in plants. Plant Signaling & Behavior, 3(3), 166–174.

    Google Scholar 

  • Tanaka, S., Han, X., & Kahmann, R. (2015). Microbial effectors target multiple steps in the salicylic acid production and signaling pathway. Frontiers in Plant Science, 6, 349.

    PubMed  PubMed Central  Google Scholar 

  • Tariq, M., Ahmad, S., Fahad, S., Abbas, G., Hussain, S., Fatima, Z., Nasim, W., Mubeen, M., Rehman, M. H., Khan, M. A., & Adnan, M. (2018). The impact of climate warming and crop management on phenology of sunflower-based cropping systems in Punjab, Pakistan. Agricultural and Forest Meteorology, 256, 270–282.

    Google Scholar 

  • Tocho, E., Lohwasser, U., Börner, A., et al. (2014). Mapping and candidate gene identification of loci induced by phytohormones in barley (Hordeum vulgare L.). Euphytica, 195, 397–407. https://doi.org/10.1007/s10681-013-1003-2

    Article  CAS  Google Scholar 

  • Tosti, N., Pasqualini, S., Borgogni, A., Ederli, L., Falistocco, E., Crispi, S., & Paolocci, F. (2006). Gene expression profiles of O3-treated Arabidopsis plants. Plant, Cell & Environment, 29(9), 1686–1702.

    CAS  Google Scholar 

  • Traw, M. B., & Bergelson, J. (2003). Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology, 133(3), 1367–1375.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trischuk, R. G., Schilling, B. S., Low, N. H., Gray, G. R., & Gusta, L. V. (2014). Cold acclimation, de-acclimation and re-acclimation of spring canola, winter canola and winter wheat: The role of carbohydrates, cold-induced stress proteins and vernalization. Environmental and Experimental Botany, 106, 156–163.

    CAS  Google Scholar 

  • Tucuch-Haas, C. J., Pérez-Balam, J. V., Díaz-Magaña, K. B., et al. (2017). Role of salicylic acid in the control of general plant growth, development, and productivity. In R. Nazar, N. Iqbal, & N. Khan (Eds.), Salicylic acid: A multifaceted hormone. Springer. https://doi.org/10.1007/978-981-10-6068-7_1

    Chapter  Google Scholar 

  • Tufail, A., Arfan, M., Gurmani, A. R., Khan, A., & Bano, A. (2013). Salicylic acid induced salinity tolerance in maize (Zea mays). Pakistan Journal of Botany, 45(S1), 75–82.

    CAS  Google Scholar 

  • Uzunova, A. N., & Popova, L. P. (2000). Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica, 38(2), 243–250.

    CAS  Google Scholar 

  • van Butselaar, T., & Van den Ackerveken, G. (2020). Salicylic acid steers the growth–immunity tradeoff. Trends in Plant Science, 25(6), 566–576.

    PubMed  Google Scholar 

  • Verberne, M. C., Muljono, R. A. B., & Verpoorte, R. (1999). Salicylic acid biosynthesis. In P. P. J. Hooykaas, M. A. Hall, & K. R. Libbenga (Eds.), Biochemistry and molecular biology of plant hormones (pp. 295–314). Elsevier Science BV.

    Google Scholar 

  • Verma, K., & Agrawal, S. B. (2017). Salicylic acid-mediated defence signalling in respect to its perception, alteration and transduction. In R. Nazar, N. Iqbal, & N. Khan (Eds.), Salicylic acid: A multifaceted hormone (pp. 97–122). Springer. https://doi.org/10.1007/978-981-10-6068-7_6

    Chapter  Google Scholar 

  • Vervuren, P. J. A., Blom, C. W. P. M., & De Kroon, H. (2003). Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. Journal of Ecology, 91(1), 135–146.

    Google Scholar 

  • Vierstra, R. D. (2009). The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology, 10(6), 385–397.

    CAS  PubMed  Google Scholar 

  • Vlot, A. C., Dempsey, D. M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206.

    CAS  PubMed  Google Scholar 

  • Wada, K. C., & Takeno, K. (2010). Stress-induced flowering. Plant Signaling and Behavior, 5, 944–947.

    PubMed  PubMed Central  Google Scholar 

  • Wada, K. C., Yamada, M., Shiraya, T., & Takeno, K. (2010). Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil. Journal of Plant Physiology, 167(6), 447–452.

    CAS  PubMed  Google Scholar 

  • Wang, L. J., & Li, S. H. (2006). Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Science, 170(4), 685–694.

    CAS  Google Scholar 

  • Wang, L., Chen, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41(3), 244–251.

    Google Scholar 

  • Wang, X., Manning, W., Feng, Z., & Zhu, Y. (2007). Ground-level ozone in China: Distribution and effects on crop yields. Environmental Pollution, 147(2), 394–400.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Hu, J., Qin, G., Cui, H., & Wang, Q. (2012). Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds. Botany, 90(9), 845–855.

    CAS  Google Scholar 

  • Wang, W., Wang, X., Huang, M., Cai, J., Zhou, Q., Dai, T., Cao, W., & Jiang, D. (2018). Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Frontiers in Plant Science, 9, 1137.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Stevanato, P., Lv, C., Li, R., & Geng, G. (2019). Comparative physiological and proteomic analysis of two sugar beet genotypes with contrasting salt tolerance. Journal of Agricultural and Food Chemistry, 67(21), 6056–6073.

    CAS  PubMed  Google Scholar 

  • Wang, J., Song, L., Gong, X., Xu, J., & Li, M. (2020). Functions of jasmonic acid in plant regulation and response to abiotic stress. International Journal of Molecular Sciences, 21(4), 1446.

    CAS  PubMed Central  Google Scholar 

  • Wani, S. H., Kumar, V., Shriram, V., & Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4(3), 162–176.

    Google Scholar 

  • Wani, A. B., Chadar, H., Wani, A. H., Singh, S., & Upadhyay, N. (2017). Salicylic acid to decrease plant stress. Environmental Chemistry Letters, 15(1), 101–123.

    CAS  Google Scholar 

  • White, R. F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99(2), 410–412.

    CAS  PubMed  Google Scholar 

  • Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562–565.

    CAS  PubMed  Google Scholar 

  • Wolters, H., & Jürgens, G. (2009). Survival of the flexible: Hormonal growth control and adaptation in plant development. Nature Reviews. Genetics, 10, 305–317.

    CAS  PubMed  Google Scholar 

  • Worland, A. J., & Snape, W. J. (2001). Genetic basis of worldwide adaptability of wheat varietal improvement. In W. J. Angus & A. Bonjeau (Eds.), The world wheat book: A history of wheat breeding (pp. 59–100). Lavoisier Publishing.

    Google Scholar 

  • Xie, Z., & Chen, Z. (1999). Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiology, 120(1), 217–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Z., Zhang, Z. L., Hanzlik, S., Cook, E., & Shen, Q. J. (2007). Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Molecular Biology, 64(3), 293–303.

    CAS  PubMed  Google Scholar 

  • Yadav, S. K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2), 167–179.

    CAS  Google Scholar 

  • Yalpani, N., Silverman, P., Wilson, T. M., Kleier, D. A., & Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. The Plant Cell, 3(8), 809–818.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yalpani, N., León, J., Lawton, M. A., & Raskin, I. (1993). Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiology, 103(2), 315–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinosaki, K., & Shinosaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57, 781–803.

    Google Scholar 

  • Yang, C. W., Wang, P., Li, C. Y., Shi, D. C., & Wang, D. L. (2008). Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica, 46(1), 107–114.

    CAS  Google Scholar 

  • Yang, Z., Cao, S., Zheng, Y., & Jiang, Y. (2012). Combined salicyclic acid and ultrasound treatments for reducing the chilling injury on peach fruit. Journal of Agricultural and Food Chemistry, 60(5), 1209–1212.

    CAS  PubMed  Google Scholar 

  • Yang, N., Guo, X., Wu, Y., Hu, X., Ma, Y., Zhang, Y., & Wang, H.& Tang, Z. (2018). The inhibited seed germination by ABA and MeJA is associated with the disturbance of reserve utilizations in Astragalus membranaceus. Journal of Plant Interactions, 13(1), 388–397.

    CAS  Google Scholar 

  • Yoshida, S., Tamaoki, M., Ioki, M., Ogawa, D., Sato, Y., Aono, M., Kubo, A., Saji, S., Saji, H., Satoh, S., & Nakajima, N. (2009). Ethylene and salicylic acid control glutathione biosynthesis in ozone-exposed Arabidopsis thaliana. Physiologia Plantarum, 136(3), 284–298.

    CAS  PubMed  Google Scholar 

  • Yuan, S., & Lin, H. H. (2008). Minireview: Role of salicylic acid in plant abiotic stress. Zeitschrift für Naturforschung C, 63(5–6), 313–320.

    CAS  Google Scholar 

  • Yusuf, M., Fariduddin, Q., Varshney, P., & Ahmad, A. (2012). Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environmental Science and Pollution Research, 19(1), 8–18.

    CAS  PubMed  Google Scholar 

  • Zaid, A., Mohammad, F., Wani, S. H., & Siddique, K. M. (2019). Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicology and Environmental Safety, 180, 575–587.

    CAS  PubMed  Google Scholar 

  • Zengin, F. (2015). Effects of exogenous salicylic acid on growth characteristics and biochemical content of wheat seeds under arsenic stress. Journal of Environmental Biology, 36(1), 249.

    PubMed  Google Scholar 

  • Zentella, R., Zhang, Z. L., Park, M., Thomas, S. G., Endo, A., Murase, K., Fleet, C. M., Jikumaru, Y., Nambara, E., Kamiya, Y., & Sun, T. P. (2007). Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. The Plant Cell, 19(10), 3037–3057.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., & Li, X. (2012). Exogenous treatment with salicylic acid attenuates ultraviolet-B radiation stress in soybean seedlings. In Information technology and agricultural engineering (pp. 889–894). Springer.

    Google Scholar 

  • Zhang, Y., & Li, X. (2019). Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29–36.

    CAS  PubMed  Google Scholar 

  • Zhang, Z., Zhang, Q., Wu, J., Zheng, X., Zheng, S., Sun, X., Qiu, Q., & Lu, T. (2013a). Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One, 8(2), e57472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, K., Halitschke, R., Yin, C., Liu, C. J., & Gan, S. S. (2013b). Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proceedings of the National Academy of Sciences, 110(36), 14807–14812.

    CAS  Google Scholar 

  • Zhang, Y., Xu, S., Yang, S., & Chen, Y. (2015). Salicylic acid alleviates cadmium induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumismelo L.). Protoplasma, 252, 911–924. https://doi.org/10.1007/s00709-014-0732-y

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhao, L., Zhao, J., Li, Y., Wang, J., Guo, R., Gan, S., Liu, C. J., & Zhang, K. (2017). S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiology, 175(3), 1082–1093.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, T. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled F. M. Salem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salem, K.F.M., Saleh, M.M., Abu-Ellail, F.F.B., Aldahak, L., Alkuddsi, Y.A. (2021). The Role of Salicylic Acid in Crops to Tolerate Abiotic Stresses. In: Hayat, S., Siddiqui, H., Damalas, C.A. (eds) Salicylic Acid - A Versatile Plant Growth Regulator. Springer, Cham. https://doi.org/10.1007/978-3-030-79229-9_7

Download citation

Keywords

Publish with us

Policies and ethics