Abstract
Cystic fibrosis (CF) is an autosomal recessive condition, caused by mutation in the cystic fibrosis transmembrane regulator (CFTR) gene located on the long arm of chromosome 7 (Knowlton et al. Nature 318:380–2, 1985). This mutation can result in absent, abnormal, or reduced function of the CFTR protein which is a cAMP-regulated ion channel that controls transport of chloride, sodium, and bicarbonate across various cell membranes. Defective CFTR protein leads to abnormal electrolyte transport across cell membranes which, in turn, affects the secretions in these cells. The disease can involve various organs including lungs, pancreas, intestines, hepatobiliary system, and the reproductive system (O’Sullivan and Freedman Lancet 373:1891–904, 2009). Lung disease is a major cause of mortality and morbidity in patients with CF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Knowlton RG, Cohen-Haguenauer O, Van Cong N. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature. 1985;318(6044):380–2.
O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373(9678):1891–904. https://doi.org/10.1016/S0140-6736(09)60327-5. Epub 2009 May 4
Cystic Fibrosis Foundation. Cystic Fibrosis Foundation patient registry, annual data report. Bethesda.
Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 2003;168(8):918–51.
Castellani C, Cuppens H, Macek M Jr, Cassiman JJ, Kerem E, et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros. 2008;7(3):179–96.
Verkman AS, Song Y, Thiagarajah JR. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am J Physiol Cell Physiol. 2003;284(1):C2–15.
Gabriel SE, Clarke LL, Boucher RC, Stutts MJ. CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature. 1993;363(6426):263–8.
Bachhuber T, König J, Voelcker T, Mürle B, Schreiber R, Kunzelmann K. Cl- interference with the epithelial Na+ channel ENaC. J Biol Chem. 2005;280(36):31587–94. Epub 2005 Jul 18
Mehta A. CFTR: more than just a chloride channel. Pediatr Pulmonol. 2005;39:292–8.
Knowles M, Gatzy J, Boucher R, Clin J. Relative ion permeability of normal and cystic fibrosis nasal epithelium. Invest. 1983;71(5):1410–7.
Schechter M. Nongenetic influences on cystic fibrosis outcomes. Curr Opin Pulm Med. 2011;17(6):448–54.
Kristidis P, Bozon D, Corey M, Markiewicz D, Rommens J. Et.al. Genetic determination of exocrine pancreatic function in cystic fibrosis. Am J Hum Genet. 1992;50(6):1178–84.
Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993;73(7):1251–4.
Marson FAL, Bertuzzo CS, Ribeiro JD. Classification of CFTR mutation classes. Lancet Respir Med. 2016;4(8):e37–8.
Haardt M, Benharouga M, Lechardeur D, Kartner‖ N, Lukacs GL. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class mutation. J Biol Chem. 1999;274:21873–7.
Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med. 2005;352(19):1992–2001.
Lebecque P, Leal T, De Boeck C, Jaspers M, Cuppens H, et al. Mutations of the cystic fibrosis gene and intermediate sweat chloride levels in children. Am J Respir Crit Care Med. 2002;165(6):757–61.
Matsui H, Wagner VE, Hill DB, Schwab UE, Rogers TD, et al. A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A. 2006;103(48):18131–6.
Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995;151(4):1075–82.
Imundo L, Barasch J, Prince A, Al-Awqati Q. Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc Natl Acad Sci U S A. 1995;92(7):3019–23.
Campodónico VL, Gadjeva M, Paradis-Bleau C, Uluer A, Pier GB. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol Med. 2008;14(3):120–33.
Elizur A, Cannon CL, Ferkol TW. Airway inflammation in cystic fibrosis. Chest. 2008;133(2):489–95. https://doi.org/10.1378/chest.07-1631.
Faro A, Michelson PH, Ferkol TW. Pulmonary disease in cystic fibrosis. Kendig and Chernig’s disorders of the respirator tract in children 8th edition; p. 770–80.
Raman V, Clary R, Siegrist KL, Zehnbauer B, Chatila TA. Increased prevalence of mutations in the cystic fibrosis transmembrane conductance regulator in children with chronic rhinosinusitis. Pediatrics. 2002;109(1):E13.
Wang X, Kim J, McWilliams R, Cutting GR. Increased prevalence of chronic rhinosinusitis in carriers of a cystic fibrosis mutation. Arch Otolaryngol Head Neck Surg. 2005;131(3):237–40.
Kopelman H, Corey M, Gaskin K, Durie P, Weizman Z, et al. Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the cystic fibrosis pancreas. Gastroenterology. 1988;95(2):349–55.
Fakhoury K, Durie PR, Levison H, Canny GJ. Meconium ileus in the absence of cystic fibrosis. Arch Dis Child. 1992;67(10 Spec No):1204–6.
Kopelman H, Corey M, Gaskin K, Durie P, Weizman Z, et al. Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the cystic fibrosis pancreas. Gastroenterology. 1988;95(2):349–55.
Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med. 1998;339(10):653–8.
Lippe BM, Sperling MA, Dooley RR. Pancreatic alpha and beta cell functions in cystic fibrosis. J Pediatr. 1977;90(5):751–5.
O’Riordan SM, Dattani MT, Hindmarsh PC. Cystic fibrosis-related diabetes in childhood. Horm Res Paediatr. 2010;1(73):15–24.
Roy CC, Weber AM, Morin CL, Combes JC, Nusslé D, Mégevand A, et al. Abnormal biliary lipid composition in cystic fibrosis. Effect of pancreatic enzymes. N Engl J Med. 1977;297(24):1301–5.
Oppenheimer EH, Esterly JR. Hepatic changes in young infants with cystic fibrosis: possible relation to focal biliary cirrhosis. J Pediatr. 1975;86(5):683–9.
Debray D, Kelly D, Houwen R, Strandvik B, Colombo C. Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J Cyst Fibros. 2011;10(Suppl 2):S29–36. https://doi.org/10.1016/S1569-1993(11)60006-4.
Kaplan E, Shwachman H, Perlmutter AD, Rule A, Khaw KT, Holsclaw DS. Reproductive failure in males with cystic fibrosis. N Engl J Med. 1968;279(2):65–9.
Anguiano A, Oates RD, Amos JA, Dean M, Gerrard B. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA. 1992;267(13):1794–7.
Oppenheimer EA, Case AL, Esterly JR, Rothberg RM. Cervical mucus in cystic fibrosis: a possible cause of infertility. Am J Obstet Gynecol. 1970;108(4):673–4.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sathyaprasad, A. (2020). CFTR Physiology. In: Lewis, MD, FAAFP, D. (eds) Cystic Fibrosis in Primary Care . Springer, Cham. https://doi.org/10.1007/978-3-030-25909-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-25909-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-25908-2
Online ISBN: 978-3-030-25909-9
eBook Packages: MedicineMedicine (R0)