Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advancements in Brain Lymphatic System and Its Involvement in Neurological Diseases

  • Chapter
  • First Online:
Advanced Targeting of the Lymphatic System

Abstract

Very recently it has been found that a proper brain lymphatic drainage network exists in human vertebrae for maintaining the tissue water and solute balance, homeostasis, metabolism, and immunity. The brain lymphatic system is also termed as glymphatic (glial-lymphatic) system due to glial-cells-dependent lymphatic transport. Physiologically, it is analogous to normal lymphatic system and helps in maintaining immune surveillance. Interestingly, this system works most effectively when the brain is fast asleep. Glymphatic clearance can be affected by a variety of factors including sleep deprivation, genetic disorders, aging, and even body postures. The scathing in glymphatic system could affect the proper brain functioning and can be involved in pathogenesis of various neurological diseases like Alzheimer’s, Parkinsonism, and stroke. In this chapter, all the aspects related to glymphatic system are covered including the glymphatic pathway, its components, and physiological functions. Special emphasis has been given to impairments and dysfunctions in the glymphatic drug delivery system and possible targets in lymphatic system for treating the major neurological disorders like neurovascular and neuroinflammatory diseases, brain injury, brain tumor, and HIV-associated neurological disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

AMD:

Age-related macular degeneration

ANI:

Asymptomatic neurocognitive impairment

APCs:

Antigen-presenting cells

ApoE:

Apolipoprotein E

AQP4:

Aquaporin-4

BBB:

Blood-brain barrier

BM:

Basement membrane

CAA:

Cerebral amyloid angiopathy

CBF:

Cerebral blood flow

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DA:

Dopaminergic

dCLNs:

Deep cervical lymph nodes

DCs:

Dendritic cells

ECS:

Extracellular space

HAD:

HIV-associated dementia

HAND:

HIV-associated neurological disorder

HD:

Huntington’s disease

HIV:

Human immunodeficiency virus-1

ICP:

Intracranial pressure

ISF:

Interstitial fluid

MHC:

Major histocompatibility complex

MLVs:

Meningeal lymphatic vessels

MND:

Mild neurocognitive disorder

NVS:

Neurovascular system

NVU:

Neurovascular unit

PD:

Parkinson’s disease

PVS:

Perivascular spaces

SAH:

Subarachnoid hemorrhage

SAS:

Subarachnoid space

SNPs:

Single-nucleotide polymorphisms

TBI:

Traumatic brain injury

VEGF:

Vascular endothelial growth factor

VRS:

Virchow-Robin spaces

VSMCs:

Vascular smooth muscle cells

References

  1. Newman T. How does your brain take out the trash? Medical News Today (2019). https://www.medicalnewstoday.com/articles/325493.

  2. Natale G, Limanaqi F, Busceti CL, Mastroiacovo F, Nicoletti F, Puglisi-Allegra S, Fornai F. Glymphatic system as a gateway to connect neurodegeneration from periphery to CNS. Front Neurosci. 2021;15:639140. https://doi.org/10.3389/fnins.2021.639140.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clapham R, O’Sullivan E, Weller RO, Carare RO. Cervical lymph nodes are found in direct relationship with the internal carotid artery: significance for the lymphatic drainage of the brain. Clin Anat. 2010;23(1):43–7. https://doi.org/10.1002/ca.20887.

    Article  CAS  PubMed  Google Scholar 

  4. Dissing-Olesen L, Hong S, Stevens B. New brain lymphatic vessels drain old concepts. EBioMedicine. 2015;2(8):776–7. https://doi.org/10.1016/j.ebiom.2015.08.019.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, Yuan H, Colvin RA, Yang XY. Lymphatic drainage system of the brain: a novel target for intervention of neurological diseases. Prog Neurobiol. 2018;163-164:118–43. https://doi.org/10.1016/j.pneurobio.2017.08.007.

    Article  PubMed  Google Scholar 

  6. Xu JQ, Liu QQ, Huang SY, et al. The lymphatic system: a therapeutic target for central nervous system disorders. Neural Regen Res. 2023;18(6):1249-1256. https://doi.org/10.4103/1673-5374.355741.

  7. Koh L, Nagra G, Johnston M. Properties of the lymphatic cerebrospinal fluid transport system in the rat: impact of elevated intracranial pressure. J Vasc Res. 2007;44(5):423–32. https://doi.org/10.1159/000104255.

    Article  PubMed  Google Scholar 

  8. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583–99. https://doi.org/10.1007/s11064-015-1581-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mosienko V, Teschemacher AG, Kasparov S. Is L-lactate a novel signaling molecule in the brain? J Cereb Blood Flow Metab. 2015;35(7):1069–75. https://doi.org/10.1038/jcbfm.2015.77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol. 2017;157:188–211. https://doi.org/10.1016/j.pneurobio.2015.12.008.

    Article  CAS  PubMed  Google Scholar 

  11. Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol. 2016;40:67–86. https://doi.org/10.1016/j.yfrne.2016.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, Grafe MR, Woltjer RL, Kaye J, Iliff JJ. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 2017;74(1):91–9. https://doi.org/10.1001/jamaneurol.2016.4370.

    Article  PubMed  Google Scholar 

  13. Silva I, Silva J, Ferreira R, Trigo D. Glymphatic system, AQP4, and their implications in Alzheimer’s disease. Neurol Res Pract. 2021;3(1):5. https://doi.org/10.1186/s42466-021-00102-7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jiang H, Wei H, Zhou Y, Xiao X, Zhou C, Ji X. Overview of the meningeal lymphatic vessels in aging and central nervous system disorders. Cell Biosci. 2022;12(1):202. https://doi.org/10.1186/s13578-022-00942-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brouillard P, Boon L, Vikkula M. Genetics of lymphatic anomalies. J Clin Invest. 2014;124(3):898–904. https://doi.org/10.1172/JCI71614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patel AG, Nehete PN, Krivoshik SR, Pei X, Cho EL, Nehete BP, Ramani MD, Shao Y, Williams LE, Wisniewski T, Scholtzova H. Innate immunity stimulation via CpG oligodeoxynucleotides ameliorates Alzheimer’s disease pathology in aged squirrel monkeys. Brain. 2021;144(7):2146–65. https://doi.org/10.1093/brain/awab129.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Scholtzova H, Do E, Dhakal S, Sun Y, Liu S, Mehta PD, Wisniewski T. Innate immunity stimulation via toll-like receptor 9 ameliorates vascular amyloid pathology in Tg-SwDI mice with associated cognitive benefits. J Neurosci. 2017;37(4):936–59. https://doi.org/10.1523/JNEUROSCI.1967-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO. Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol. 2013a;39(6):593–611. https://doi.org/10.1111/nan.12042.

    Article  CAS  PubMed  Google Scholar 

  19. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE. Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol. 1998;153(3):725–33. https://doi.org/10.1016/s0002-9440(10)65616-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carare RO, Teeling JL, Hawkes CA, Püntener U, Weller RO, Nicoll JA, Perry VH. Immune complex formation impairs the elimination of solutes from the brain: implications for immunotherapy in Alzheimer’s disease. Acta Neuropathol Commun. 2013b;1 https://doi.org/10.1186/2051-5960-1-48.

  21. Louveau A, Da Mesquita S, Kipnis J. Lymphatics in neurological disorders: a neuro-lympho-vascular component of multiple sclerosis and Alzheimer’s disease? Neuron. 2016;91(5):957–73. https://doi.org/10.1016/j.neuron.2016.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, Viar KE, Powell RD, Baker W, Dabhi N, Bai R, Cao R, Hu S, Rich SS, Munson JM, Lopes MB, Overall CC, Acton ST, Kipnis J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185–91. https://doi.org/10.1038/s41586-018-0368-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Albayram MS, Smith G, Tufan F, Tuna IS, Bostancıklıoğlu M, Zile M, Albayram O. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun. 2022;13(1):203. https://doi.org/10.1038/s41467-021-27887-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuo PH, Stuehm C, Squire S, Johnson K. Meningeal lymphatic vessel flow runs countercurrent to venous flow in the superior sagittal sinus of the human brain. Tomography. 2018;4(3):99–104. https://doi.org/10.18383/j.tom.2018.00013.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen J, Leak RK, Yang GY. Perspective for stroke and brain injury research: mechanisms and potential therapeutic targets. CNS Neurosci Ther. 2015;21(4):301–3. https://doi.org/10.1111/cns.12392.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sabirov A, Metzger DW. Intranasal vaccination of infant mice induces protective immunity in the absence of nasal-associated lymphoid tissue. Vaccine. 2008;26(12):1566–76. https://doi.org/10.1016/j.vaccine.2008.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thrane AS, Rangroo Thrane V, Nedergaard M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci. 2014;37(11):620–8. https://doi.org/10.1016/j.tins.2014.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R, Benveniste H, Iliff JJ, Nedergaard M. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med. 2013;1(11):107. https://doi.org/10.1186/1479-5876-11-107.

    Article  CAS  Google Scholar 

  29. Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke. 2013;44(6 Suppl 1):S93–5. https://doi.org/10.1161/STROKEAHA.112.678698.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. https://doi.org/10.1126/scitranslmed.3003748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Horwitz B, Rowe JB. Functional biomarkers for neurodegenerative disorders based on the network paradigm. Prog Neurobiol. 2011;95(4):505–9. https://doi.org/10.1016/j.pneurobio.2011.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trojanowski JQ, Hampel H. Neurodegenerative disease biomarkers: guideposts for disease prevention through early diagnosis and intervention. Prog Neurobiol. 2011;95(4):491–5. https://doi.org/10.1016/j.pneurobio.2011.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Laman JD, Weller RO. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol. 2013;8:840–56. https://doi.org/10.1007/s11481-013-9470-8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang ET, Richards HK, Kida S, Weller RO. Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol. 1992;83:233–9. https://doi.org/10.1007/bf00296784.

    Article  CAS  PubMed  Google Scholar 

  35. Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981;240:F329–36. https://doi.org/10.1152/ajprenal.1981.240.4.f329.

    Article  CAS  PubMed  Google Scholar 

  36. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JAR, Perry VH, Weller RO. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34:131–44. https://doi.org/10.1111/j.1365-2990.2007.00926.x.

    Article  CAS  PubMed  Google Scholar 

  37. Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36:569–77. https://doi.org/10.1016/j.it.2015.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991–9. https://doi.org/10.1084/jem.20142290

  39. Bower NI, Koltowska K, Pichol-Thievend C, Virshup I, Paterson S, Lagendijk AK, Wang W, Lindsey BW, Bent SJ, Baek S, Rondon-Galeano M, Hurley DG, Mochizuki N, Simons C, Francois M, Wells CA, Kaslin J, Hogan BM. Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nat Neurosci. 2017;20:774–83. https://doi.org/10.1038/nn.4558.

    Article  CAS  PubMed  Google Scholar 

  40. van Lessen M, Shibata-Germanos S, van Impel A, Hawkins TA, Rihel J, Schulte-Merker S. Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development. elife. 2017;6 https://doi.org/10.7554/elife.25932.

  41. Kida S, Weller RO, Zhang E-T, Phillips MJ, Iannotti F. Anatomical pathways for lymphatic drainage of the brain and their pathological significance. Neuropathol Appl Neurobiol. 1995;21:181–4. https://doi.org/10.1111/j.1365-2990.1995.tb01048.x.

    Article  CAS  PubMed  Google Scholar 

  42. Matsumae M, Sato O, Hirayama A, Hayashi N, Takizawa K, Atsumi H, Sorimachi T. Research into the physiology of cerebrospinal fluid reaches a new horizon: intimate exchange between cerebrospinal fluid and interstitial fluid may contribute to maintenance of homeostasis in the central nervous system. Neurol Med Chir. 2016;56:416–41. https://doi.org/10.2176/nmc.ra.2016-0020.

    Article  Google Scholar 

  43. Bakker ENTP, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AWJ, Weller RO, Carare RO. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:181–94. https://doi.org/10.1007/s10571-015-0273-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Engelhardt B, Carare RO, Bechmann I, Flügel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016;132:317–38. https://doi.org/10.1007/s00401-016-1606-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cho Y, Do J, Jung S, Kwon O, Jeon JY. Effects of a physical therapy program combined with manual lymphatic drainage on shoulder function, quality of life, lymphedema incidence, and pain in breast cancer patients with axillary web syndrome following axillary dissection. Support Care Cancer. 2015;24:2047–57. https://doi.org/10.1007/s00520-015-3005-1.

    Article  PubMed  Google Scholar 

  46. Thomas SN, Rohner NA, Edwards EE. Implications of lymphatic transport to lymph nodes in immunity and immunotherapy. Annu Rev Biomed Eng. 2016;18:207–33. https://doi.org/10.1146/annurev-bioeng-101515-014413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kodama T, Hatakeyama Y, Kato S, Mori S. Visualization of fluid drainage pathways in lymphatic vessels and lymph nodes using a mouse model to test a lymphatic drug delivery system. Biomed Opt Express. 2014;6:124. https://doi.org/10.1364/boe.6.000124.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bedussi B, van Lier MGJTB, Bartstra JW, de Vos J, Siebes M, VanBavel E, Bakker ENTP. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids Barriers CNS. 2015;12 https://doi.org/10.1186/s12987-015-0019-5.

  49. Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45:545–52. https://doi.org/10.1016/j.neuint.2003.11.006.

    Article  CAS  PubMed  Google Scholar 

  50. Thiebaud N, Menetrier F, Belloir C, Minn A-L, Neiers F, Artur Y, Le Bon A-M, Heydel J-M. Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium. Neurosci Lett. 2011;505:180–5. https://doi.org/10.1016/j.neulet.2011.10.018.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang Q, Zhang L, Ding G, Davoodi-Bojd E, Li Q, Li L, Sadry N, Nedergaard M, Chopp M, Zhang Z. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab. 2016;37:1326–37. https://doi.org/10.1177/0271678x16654702.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kwee RM, Kwee TC. Virchow-Robin spaces at MR imaging. Radiographics. 2007;27:1071–86. https://doi.org/10.1148/rg.274065722.

    Article  PubMed  Google Scholar 

  53. Bedussi B, van der Wel NN, de Vos J, van Veen H, Siebes M, VanBavel E, Bakker EN. Paravascular channels, cisterns, and the subarachnoid space in the rat brain: a single compartment with preferential pathways. J Cereb Blood Flow Metab. 2016;37:1374–85. https://doi.org/10.1177/0271678x16655550.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Verkhratsky A, Steardo L, Parpura V, Montana V. Translational potential of astrocytes in brain disorders. Prog Neurobiol. 2016;144:188–205. https://doi.org/10.1016/j.pneurobio.2015.09.003.

    Article  CAS  PubMed  Google Scholar 

  55. Nagelhus EA, Ottersen OP. Physiological roles of Aquaporin-4 in brain. Physiol Rev. 2013;93:1543–62. https://doi.org/10.1152/physrev.00011.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Asgari M, de Zélicourt D, Kurtcuoglu V. How astrocyte networks may contribute to cerebral metabolite clearance. Sci Rep. 2015;5 https://doi.org/10.1038/srep15024.

  57. Szu JI, Binder DK. The role of Astrocytic Aquaporin-4 in synaptic plasticity and learning and memory. Front Integr Neurosci. 2016;10 https://doi.org/10.3389/fnint.2016.00008.

  58. Raper D, Louveau A, Kipnis J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci. 2016;39:581–6. https://doi.org/10.1016/j.tins.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bradley WG. CSF flow in the brain in the context of normal pressure hydrocephalus. Am J Neuroradiol. 2014;36:831–8. https://doi.org/10.3174/ajnr.a4124.

    Article  PubMed  Google Scholar 

  60. Johanson C, Stopa E, Baird A, Sharma H. Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus–CSF nexus. J Neural Transm. 2010;118:115–33. https://doi.org/10.1007/s00702-010-0498-0.

    Article  CAS  PubMed  Google Scholar 

  61. Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11:26. https://doi.org/10.1186/2045-8118-11-26.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hawkes CA, Härtig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 2011;121:431–43. https://doi.org/10.1007/s00401-011-0801-7.

    Article  PubMed  Google Scholar 

  63. Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO. Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-β from the mouse brain. Aging Cell. 2013;12:224–36. https://doi.org/10.1111/acel.12045.

    Article  CAS  PubMed  Google Scholar 

  64. Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol. 2015;131:21–64. https://doi.org/10.1016/j.pneurobio.2015.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76:845–61. https://doi.org/10.1002/ana.24271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith DK, He M, Zhang C-L, Zheng JC. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders. Prog Neurobiol. 2017;157:212–29. https://doi.org/10.1016/j.pneurobio.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  67. Colonna M, Wang Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci. 2016;17:201–7. https://doi.org/10.1038/nrn.2016.7.

    Article  CAS  PubMed  Google Scholar 

  68. Heffernan AL, Chidgey C, Peng P, Masters CL, Roberts BR. The neurobiology and age-related prevalence of the ε4 Allele of Apolipoprotein E in Alzheimer’s disease cohorts. J Mol Neurosci. 2016;60:316–24. https://doi.org/10.1007/s12031-016-0804-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Burfeind KG, Murchison CF, Westaway SK, Simon MJ, Erten-Lyons D, Kaye JA, Quinn JF, Iliff JJ. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer’s disease. Alzheimer’s Dement. 2017;3:348–59. https://doi.org/10.1016/j.trci.2017.05.001.

    Article  Google Scholar 

  70. Mendelsohn AR, Larrick JW. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res. 2013;16:518–23. https://doi.org/10.1089/rej.2013.1530.

    Article  CAS  PubMed  Google Scholar 

  71. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373–7. https://doi.org/10.1126/science.1241224.

    Article  CAS  PubMed  Google Scholar 

  72. Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, Deane R, Nedergaard M. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab. 2016;37:2112–24. https://doi.org/10.1177/0271678x16661202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Berezuk C, Ramirez J, Gao F, Scott CJM, Huroy M, Swartz RH, Murray BJ, Black SE, Boulos MI. Virchow-Robin spaces: correlations with polysomnography-derived sleep parameters. Sleep. 2015; https://doi.org/10.5665/sleep.4726.

  74. Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, Logan J, Nedergaard M, Benveniste H. The effect of body posture on brain glymphatic transport. J Neurosci. 2015;35:11034–44. https://doi.org/10.1523/jneurosci.1625-15.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Andresen M, Hadi A, Petersen LG, Juhler M. Effect of postural changes on ICP in healthy and ill subjects. Acta Neurochir. 2014;157:109–13. https://doi.org/10.1007/s00701-014-2250-2.

    Article  PubMed  Google Scholar 

  76. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34:16180–93. https://doi.org/10.1523/jneurosci.3020-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang M, Ding F, Deng S, Guo X, Wang W, Iliff JJ, Nedergaard M. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J Neurosci. 2017;37:2870–7. https://doi.org/10.1523/jneurosci.2112-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weller RO, Djuanda E, Yow H-Y, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2008;117:1–14. https://doi.org/10.1007/s00401-008-0457-0.

  79. Salehpour F, Khademi M, Bragin DE, DiDuro JO. Photobiomodulation therapy and the glymphatic system: promising applications for augmenting the brain lymphatic drainage system. Int J Mol Sci. 2022;23:2975. https://doi.org/10.3390/ijms23062975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17:1016–24. https://doi.org/10.1016/s1474-4422(18)30318-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ahn JH, Cho H, Kim J-H, Kim SH, Ham J-S, Park I, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572:62–6. https://doi.org/10.1038/s41586-019-1419-5.

    Article  CAS  PubMed  Google Scholar 

  82. Ding X-B, Wang X-X, Xia D-H, Liu H, Tian H-Y, Fu Y, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med. 2021;27:411–8. https://doi.org/10.1038/s41591-020-01198-1.

    Article  CAS  PubMed  Google Scholar 

  83. Zou W, Pu T, Feng W, Lu M, Zheng Y, Du R, et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl Neurodegener. 2019:8. https://doi.org/10.1186/s40035-019-0147-y.

  84. Xin S-H, Lin T, Cao X, Yu J-T, Lan T. Clearance of amyloid Beta and Tau in Alzheimer’s disease: from mechanisms to therapy. Neurotox Res. 2018;34:733–48. https://doi.org/10.1007/s12640-018-9895-1.

    Article  CAS  PubMed  Google Scholar 

  85. Morris AWJ, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016;131:725–36. https://doi.org/10.1007/s00401-016-1555-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tamura R, Yoshida K, Toda M. Current understanding of lymphatic vessels in the central nervous system. Neurosurg Rev. 2019;43:1055–64. https://doi.org/10.1007/s10143-019-01133-0.

    Article  PubMed  Google Scholar 

  87. Churchill MJ, du Bois H, Heim TA, Mudianto T, Steele MM, Nolz JC, et al. Infection-induced lymphatic zippering restricts fluid transport and viral dissemination from skin. J Exp Med. 2022:219. https://doi.org/10.1084/jem.20211830.

  88. Yan J-H, Wang Y-J, Sun Y-R, Pei Y-H, Ma H-W, Mu Y-K, et al. The lymphatic drainage systems in the brain: a novel target for ischemic stroke? Neural Regen Res. 2023;18:485. https://doi.org/10.4103/1673-5374.346484.

    Article  CAS  PubMed  Google Scholar 

  89. Khan S, Abdulla E, Rahman MM. Lymphatic system in the brain. Ann Med Surg. 2022:79. https://doi.org/10.1016/j.amsu.2022.104082.

  90. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener. 2009;4(1) https://doi.org/10.1186/1750-1326-4-47.

  91. Johnson NH, de Rivero Vaccari JP, Bramlett HM, Keane RW, Dietrich WD. Inflammasome activation in traumatic brain injury and Alzheimer’s disease. Transl Res. 2023;254:1–12. https://doi.org/10.1016/j.trsl.2022.08.014.

    Article  CAS  PubMed  Google Scholar 

  92. Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9.

    Article  PubMed  Google Scholar 

  93. Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2012;14:38–48. https://doi.org/10.1038/nrn3406.

    Article  CAS  Google Scholar 

  94. Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009;65:S3–9. https://doi.org/10.1002/ana.21543.

    Article  CAS  PubMed  Google Scholar 

  95. Hu Y, Cao C, Qin X-Y, Yu Y, Yuan J, Zhao Y, et al. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Sci Rep. 2017:7. https://doi.org/10.1038/s41598-017-09097-1.

  96. McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2017;25:24–34. https://doi.org/10.1111/ene.13413.

    Article  PubMed  Google Scholar 

  97. Ghosh R, Tabrizi SJ. Clinical features of Huntington’s disease. Polyglutamine Disorders 2018:1–28. https://doi.org/10.1007/978-3-319-71779-1_1

  98. Britz G. An overview of neurovascular disease management. Methodist Debakey Cardiovasc J. 2014;10:212. https://doi.org/10.14797/mdcj-10-4-212.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ahmad A, Patel V, Xiao J, Khan MM. The role of neurovascular system in neurodegenerative diseases. Mol Neurobiol. 2020;57:4373–93. https://doi.org/10.1007/s12035-020-02023-z.

    Article  CAS  PubMed  Google Scholar 

  100. Tian Y, Zhao M, Chen Y, Yang M, Wang Y. The underlying role of the glymphatic system and meningeal lymphatic vessels in cerebral small vessel disease. Biomol Ther. 2022;12:748. https://doi.org/10.3390/biom12060748.

    Article  CAS  Google Scholar 

  101. Boluijt J, Meijers JC, Rinkel GJ, Vergouwen MD. Hemostasis and fibrinolysis in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a systematic review. J Cereb Blood Flow Metab. 2015;35:724–33. https://doi.org/10.1038/jcbfm.2015.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lu H-B, Cao Y, Hu J-Z, Xu J-Q, Liu Q-Q, Huang S-Y, et al. The lymphatic system: a therapeutic target for central nervous system disorders. Neural Regen Res. 2023;18:1249. https://doi.org/10.4103/1673-5374.355741.

    Article  CAS  PubMed  Google Scholar 

  103. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139:136–53. https://doi.org/10.1111/jnc.13607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lu H, Wu P-F, Zhang W, Liao X. Circulating interleukins and risk of multiple sclerosis: a Mendelian randomization study. Front Immunol. 2021:12. https://doi.org/10.3389/fimmu.2021.647588.

  105. Ramanathan S, Al-Diwani A, Waters P, Irani SR. The autoantibody-mediated encephalitides: from clinical observations to molecular pathogenesis. J Neurol. 2019;268:1689–707. https://doi.org/10.1007/s00415-019-09590-9.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Khan AW, Farooq M, Hwang M-J, Haseeb M, Choi S. Autoimmune neuroinflammatory diseases: role of interleukins. Int J Mol Sci. 2023;24:7960. https://doi.org/10.3390/ijms24097960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Agoston DV, Shutes-David A, Peskind ER. Biofluid biomarkers of traumatic brain injury. Brain Inj. 2017;31:1195–203. https://doi.org/10.1080/02699052.2017.1357836.

    Article  PubMed  Google Scholar 

  108. Ling H, Hardy J, Zetterberg H. Neurological consequences of traumatic brain injuries in sports. Mol Cell Neurosci. 2015;66:114–22. https://doi.org/10.1016/j.mcn.2015.03.012.

    Article  CAS  PubMed  Google Scholar 

  109. Nortje J, Menon DK. Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol. 2004;17:711–8. https://doi.org/10.1097/00019052-200412000-00011.

    Article  PubMed  Google Scholar 

  110. Newcombe VFJ, Correia MM, Ledig C, Abate MG, Outtrim JG, Chatfield D, et al. Dynamic changes in white matter abnormalities correlate with late improvement and deterioration following TBI. Neurorehabil Neural Repair. 2015;30:49–62. https://doi.org/10.1177/1545968315584004.

    Article  PubMed  Google Scholar 

  111. Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun. 2020:11. https://doi.org/10.1038/s41467-020-18113-4.

  112. Desland FA, Hormigo A. The CNS and the brain tumor microenvironment: implications for glioblastoma immunotherapy. Int J Mol Sci. 2020;21:7358. https://doi.org/10.3390/ijms21197358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, et al. Chapter One - pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. In: Bryukhovetskiy I, et al., editors. International review of neurobiology. Academic Press; 2020. p. 1–66.

    Google Scholar 

  114. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229–43. https://doi.org/10.1038/s41422-020-0287-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shayan R. Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis. 2006;27:1729–38. https://doi.org/10.1093/carcin/bgl031.

    Article  CAS  PubMed  Google Scholar 

  116. Podgrabinska S, Skobe M. Role of lymphatic vasculature in regional and distant metastases. Microvasc Res. 2014;95:46–52. https://doi.org/10.1016/j.mvr.2014.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature. 2020;577:689–94. https://doi.org/10.1038/s41586-019-1912-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL. HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol. 2010;5:294–309. https://doi.org/10.1007/s11481-010-9205-z.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69:1789–99. https://doi.org/10.1212/01.wnl.0000287431.88658.8b.

    Article  CAS  PubMed  Google Scholar 

  120. Letendre S. Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top Antivir Med. 2011;19(4):137–42.

    PubMed  Google Scholar 

  121. Sanmarti M, Ibáñez L, Huertas S, Badenes D, Dalmau D, Slevin M, et al. HIV-associated neurocognitive disorders. J Mol Psychiatry. 2014;2:2. https://doi.org/10.1186/2049-9256-2-2.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bari, D., Das, U., Shevalkar, G., Kapadia, R., Singhai, V., Pardeshi, C. (2024). Advancements in Brain Lymphatic System and Its Involvement in Neurological Diseases. In: Dhas, N., Patel, J.K., Pathak, Y.V. (eds) Advanced Targeting of the Lymphatic System. Springer, Cham. https://doi.org/10.1007/978-3-031-64828-1_2

Download citation

Keywords

Publish with us

Policies and ethics