Abstract
Very recently it has been found that a proper brain lymphatic drainage network exists in human vertebrae for maintaining the tissue water and solute balance, homeostasis, metabolism, and immunity. The brain lymphatic system is also termed as glymphatic (glial-lymphatic) system due to glial-cells-dependent lymphatic transport. Physiologically, it is analogous to normal lymphatic system and helps in maintaining immune surveillance. Interestingly, this system works most effectively when the brain is fast asleep. Glymphatic clearance can be affected by a variety of factors including sleep deprivation, genetic disorders, aging, and even body postures. The scathing in glymphatic system could affect the proper brain functioning and can be involved in pathogenesis of various neurological diseases like Alzheimer’s, Parkinsonism, and stroke. In this chapter, all the aspects related to glymphatic system are covered including the glymphatic pathway, its components, and physiological functions. Special emphasis has been given to impairments and dysfunctions in the glymphatic drug delivery system and possible targets in lymphatic system for treating the major neurological disorders like neurovascular and neuroinflammatory diseases, brain injury, brain tumor, and HIV-associated neurological disorder.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- AD:
-
Alzheimer’s disease
- ALS:
-
Amyotrophic lateral sclerosis
- AMD:
-
Age-related macular degeneration
- ANI:
-
Asymptomatic neurocognitive impairment
- APCs:
-
Antigen-presenting cells
- ApoE:
-
Apolipoprotein E
- AQP4:
-
Aquaporin-4
- BBB:
-
Blood-brain barrier
- BM:
-
Basement membrane
- CAA:
-
Cerebral amyloid angiopathy
- CBF:
-
Cerebral blood flow
- CNS:
-
Central nervous system
- CSF:
-
Cerebrospinal fluid
- DA:
-
Dopaminergic
- dCLNs:
-
Deep cervical lymph nodes
- DCs:
-
Dendritic cells
- ECS:
-
Extracellular space
- HAD:
-
HIV-associated dementia
- HAND:
-
HIV-associated neurological disorder
- HD:
-
Huntington’s disease
- HIV:
-
Human immunodeficiency virus-1
- ICP:
-
Intracranial pressure
- ISF:
-
Interstitial fluid
- MHC:
-
Major histocompatibility complex
- MLVs:
-
Meningeal lymphatic vessels
- MND:
-
Mild neurocognitive disorder
- NVS:
-
Neurovascular system
- NVU:
-
Neurovascular unit
- PD:
-
Parkinson’s disease
- PVS:
-
Perivascular spaces
- SAH:
-
Subarachnoid hemorrhage
- SAS:
-
Subarachnoid space
- SNPs:
-
Single-nucleotide polymorphisms
- TBI:
-
Traumatic brain injury
- VEGF:
-
Vascular endothelial growth factor
- VRS:
-
Virchow-Robin spaces
- VSMCs:
-
Vascular smooth muscle cells
References
Newman T. How does your brain take out the trash? Medical News Today (2019). https://www.medicalnewstoday.com/articles/325493.
Natale G, Limanaqi F, Busceti CL, Mastroiacovo F, Nicoletti F, Puglisi-Allegra S, Fornai F. Glymphatic system as a gateway to connect neurodegeneration from periphery to CNS. Front Neurosci. 2021;15:639140. https://doi.org/10.3389/fnins.2021.639140.
Clapham R, O’Sullivan E, Weller RO, Carare RO. Cervical lymph nodes are found in direct relationship with the internal carotid artery: significance for the lymphatic drainage of the brain. Clin Anat. 2010;23(1):43–7. https://doi.org/10.1002/ca.20887.
Dissing-Olesen L, Hong S, Stevens B. New brain lymphatic vessels drain old concepts. EBioMedicine. 2015;2(8):776–7. https://doi.org/10.1016/j.ebiom.2015.08.019.
Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, Yuan H, Colvin RA, Yang XY. Lymphatic drainage system of the brain: a novel target for intervention of neurological diseases. Prog Neurobiol. 2018;163-164:118–43. https://doi.org/10.1016/j.pneurobio.2017.08.007.
Xu JQ, Liu QQ, Huang SY, et al. The lymphatic system: a therapeutic target for central nervous system disorders. Neural Regen Res. 2023;18(6):1249-1256. https://doi.org/10.4103/1673-5374.355741.
Koh L, Nagra G, Johnston M. Properties of the lymphatic cerebrospinal fluid transport system in the rat: impact of elevated intracranial pressure. J Vasc Res. 2007;44(5):423–32. https://doi.org/10.1159/000104255.
Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583–99. https://doi.org/10.1007/s11064-015-1581-6.
Mosienko V, Teschemacher AG, Kasparov S. Is L-lactate a novel signaling molecule in the brain? J Cereb Blood Flow Metab. 2015;35(7):1069–75. https://doi.org/10.1038/jcbfm.2015.77.
Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol. 2017;157:188–211. https://doi.org/10.1016/j.pneurobio.2015.12.008.
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol. 2016;40:67–86. https://doi.org/10.1016/j.yfrne.2016.01.001.
Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, Grafe MR, Woltjer RL, Kaye J, Iliff JJ. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 2017;74(1):91–9. https://doi.org/10.1001/jamaneurol.2016.4370.
Silva I, Silva J, Ferreira R, Trigo D. Glymphatic system, AQP4, and their implications in Alzheimer’s disease. Neurol Res Pract. 2021;3(1):5. https://doi.org/10.1186/s42466-021-00102-7.
Jiang H, Wei H, Zhou Y, Xiao X, Zhou C, Ji X. Overview of the meningeal lymphatic vessels in aging and central nervous system disorders. Cell Biosci. 2022;12(1):202. https://doi.org/10.1186/s13578-022-00942-z.
Brouillard P, Boon L, Vikkula M. Genetics of lymphatic anomalies. J Clin Invest. 2014;124(3):898–904. https://doi.org/10.1172/JCI71614.
Patel AG, Nehete PN, Krivoshik SR, Pei X, Cho EL, Nehete BP, Ramani MD, Shao Y, Williams LE, Wisniewski T, Scholtzova H. Innate immunity stimulation via CpG oligodeoxynucleotides ameliorates Alzheimer’s disease pathology in aged squirrel monkeys. Brain. 2021;144(7):2146–65. https://doi.org/10.1093/brain/awab129.
Scholtzova H, Do E, Dhakal S, Sun Y, Liu S, Mehta PD, Wisniewski T. Innate immunity stimulation via toll-like receptor 9 ameliorates vascular amyloid pathology in Tg-SwDI mice with associated cognitive benefits. J Neurosci. 2017;37(4):936–59. https://doi.org/10.1523/JNEUROSCI.1967-16.2016.
Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO. Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol. 2013a;39(6):593–611. https://doi.org/10.1111/nan.12042.
Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE. Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol. 1998;153(3):725–33. https://doi.org/10.1016/s0002-9440(10)65616-7.
Carare RO, Teeling JL, Hawkes CA, Püntener U, Weller RO, Nicoll JA, Perry VH. Immune complex formation impairs the elimination of solutes from the brain: implications for immunotherapy in Alzheimer’s disease. Acta Neuropathol Commun. 2013b;1 https://doi.org/10.1186/2051-5960-1-48.
Louveau A, Da Mesquita S, Kipnis J. Lymphatics in neurological disorders: a neuro-lympho-vascular component of multiple sclerosis and Alzheimer’s disease? Neuron. 2016;91(5):957–73. https://doi.org/10.1016/j.neuron.2016.08.027.
Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, Viar KE, Powell RD, Baker W, Dabhi N, Bai R, Cao R, Hu S, Rich SS, Munson JM, Lopes MB, Overall CC, Acton ST, Kipnis J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185–91. https://doi.org/10.1038/s41586-018-0368-8.
Albayram MS, Smith G, Tufan F, Tuna IS, Bostancıklıoğlu M, Zile M, Albayram O. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun. 2022;13(1):203. https://doi.org/10.1038/s41467-021-27887-0.
Kuo PH, Stuehm C, Squire S, Johnson K. Meningeal lymphatic vessel flow runs countercurrent to venous flow in the superior sagittal sinus of the human brain. Tomography. 2018;4(3):99–104. https://doi.org/10.18383/j.tom.2018.00013.
Chen J, Leak RK, Yang GY. Perspective for stroke and brain injury research: mechanisms and potential therapeutic targets. CNS Neurosci Ther. 2015;21(4):301–3. https://doi.org/10.1111/cns.12392.
Sabirov A, Metzger DW. Intranasal vaccination of infant mice induces protective immunity in the absence of nasal-associated lymphoid tissue. Vaccine. 2008;26(12):1566–76. https://doi.org/10.1016/j.vaccine.2008.01.027.
Thrane AS, Rangroo Thrane V, Nedergaard M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci. 2014;37(11):620–8. https://doi.org/10.1016/j.tins.2014.08.010.
Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R, Benveniste H, Iliff JJ, Nedergaard M. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med. 2013;1(11):107. https://doi.org/10.1186/1479-5876-11-107.
Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke. 2013;44(6 Suppl 1):S93–5. https://doi.org/10.1161/STROKEAHA.112.678698.
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. https://doi.org/10.1126/scitranslmed.3003748.
Horwitz B, Rowe JB. Functional biomarkers for neurodegenerative disorders based on the network paradigm. Prog Neurobiol. 2011;95(4):505–9. https://doi.org/10.1016/j.pneurobio.2011.07.005.
Trojanowski JQ, Hampel H. Neurodegenerative disease biomarkers: guideposts for disease prevention through early diagnosis and intervention. Prog Neurobiol. 2011;95(4):491–5. https://doi.org/10.1016/j.pneurobio.2011.07.004.
Laman JD, Weller RO. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol. 2013;8:840–56. https://doi.org/10.1007/s11481-013-9470-8.
Zhang ET, Richards HK, Kida S, Weller RO. Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol. 1992;83:233–9. https://doi.org/10.1007/bf00296784.
Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981;240:F329–36. https://doi.org/10.1152/ajprenal.1981.240.4.f329.
Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JAR, Perry VH, Weller RO. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34:131–44. https://doi.org/10.1111/j.1365-2990.2007.00926.x.
Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36:569–77. https://doi.org/10.1016/j.it.2015.08.006.
Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991–9. https://doi.org/10.1084/jem.20142290
Bower NI, Koltowska K, Pichol-Thievend C, Virshup I, Paterson S, Lagendijk AK, Wang W, Lindsey BW, Bent SJ, Baek S, Rondon-Galeano M, Hurley DG, Mochizuki N, Simons C, Francois M, Wells CA, Kaslin J, Hogan BM. Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nat Neurosci. 2017;20:774–83. https://doi.org/10.1038/nn.4558.
van Lessen M, Shibata-Germanos S, van Impel A, Hawkins TA, Rihel J, Schulte-Merker S. Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development. elife. 2017;6 https://doi.org/10.7554/elife.25932.
Kida S, Weller RO, Zhang E-T, Phillips MJ, Iannotti F. Anatomical pathways for lymphatic drainage of the brain and their pathological significance. Neuropathol Appl Neurobiol. 1995;21:181–4. https://doi.org/10.1111/j.1365-2990.1995.tb01048.x.
Matsumae M, Sato O, Hirayama A, Hayashi N, Takizawa K, Atsumi H, Sorimachi T. Research into the physiology of cerebrospinal fluid reaches a new horizon: intimate exchange between cerebrospinal fluid and interstitial fluid may contribute to maintenance of homeostasis in the central nervous system. Neurol Med Chir. 2016;56:416–41. https://doi.org/10.2176/nmc.ra.2016-0020.
Bakker ENTP, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AWJ, Weller RO, Carare RO. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:181–94. https://doi.org/10.1007/s10571-015-0273-8.
Engelhardt B, Carare RO, Bechmann I, Flügel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016;132:317–38. https://doi.org/10.1007/s00401-016-1606-5.
Cho Y, Do J, Jung S, Kwon O, Jeon JY. Effects of a physical therapy program combined with manual lymphatic drainage on shoulder function, quality of life, lymphedema incidence, and pain in breast cancer patients with axillary web syndrome following axillary dissection. Support Care Cancer. 2015;24:2047–57. https://doi.org/10.1007/s00520-015-3005-1.
Thomas SN, Rohner NA, Edwards EE. Implications of lymphatic transport to lymph nodes in immunity and immunotherapy. Annu Rev Biomed Eng. 2016;18:207–33. https://doi.org/10.1146/annurev-bioeng-101515-014413.
Kodama T, Hatakeyama Y, Kato S, Mori S. Visualization of fluid drainage pathways in lymphatic vessels and lymph nodes using a mouse model to test a lymphatic drug delivery system. Biomed Opt Express. 2014;6:124. https://doi.org/10.1364/boe.6.000124.
Bedussi B, van Lier MGJTB, Bartstra JW, de Vos J, Siebes M, VanBavel E, Bakker ENTP. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids Barriers CNS. 2015;12 https://doi.org/10.1186/s12987-015-0019-5.
Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45:545–52. https://doi.org/10.1016/j.neuint.2003.11.006.
Thiebaud N, Menetrier F, Belloir C, Minn A-L, Neiers F, Artur Y, Le Bon A-M, Heydel J-M. Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium. Neurosci Lett. 2011;505:180–5. https://doi.org/10.1016/j.neulet.2011.10.018.
Jiang Q, Zhang L, Ding G, Davoodi-Bojd E, Li Q, Li L, Sadry N, Nedergaard M, Chopp M, Zhang Z. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab. 2016;37:1326–37. https://doi.org/10.1177/0271678x16654702.
Kwee RM, Kwee TC. Virchow-Robin spaces at MR imaging. Radiographics. 2007;27:1071–86. https://doi.org/10.1148/rg.274065722.
Bedussi B, van der Wel NN, de Vos J, van Veen H, Siebes M, VanBavel E, Bakker EN. Paravascular channels, cisterns, and the subarachnoid space in the rat brain: a single compartment with preferential pathways. J Cereb Blood Flow Metab. 2016;37:1374–85. https://doi.org/10.1177/0271678x16655550.
Verkhratsky A, Steardo L, Parpura V, Montana V. Translational potential of astrocytes in brain disorders. Prog Neurobiol. 2016;144:188–205. https://doi.org/10.1016/j.pneurobio.2015.09.003.
Nagelhus EA, Ottersen OP. Physiological roles of Aquaporin-4 in brain. Physiol Rev. 2013;93:1543–62. https://doi.org/10.1152/physrev.00011.2013.
Asgari M, de Zélicourt D, Kurtcuoglu V. How astrocyte networks may contribute to cerebral metabolite clearance. Sci Rep. 2015;5 https://doi.org/10.1038/srep15024.
Szu JI, Binder DK. The role of Astrocytic Aquaporin-4 in synaptic plasticity and learning and memory. Front Integr Neurosci. 2016;10 https://doi.org/10.3389/fnint.2016.00008.
Raper D, Louveau A, Kipnis J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci. 2016;39:581–6. https://doi.org/10.1016/j.tins.2016.07.001.
Bradley WG. CSF flow in the brain in the context of normal pressure hydrocephalus. Am J Neuroradiol. 2014;36:831–8. https://doi.org/10.3174/ajnr.a4124.
Johanson C, Stopa E, Baird A, Sharma H. Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus–CSF nexus. J Neural Transm. 2010;118:115–33. https://doi.org/10.1007/s00702-010-0498-0.
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11:26. https://doi.org/10.1186/2045-8118-11-26.
Hawkes CA, Härtig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 2011;121:431–43. https://doi.org/10.1007/s00401-011-0801-7.
Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO. Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-β from the mouse brain. Aging Cell. 2013;12:224–36. https://doi.org/10.1111/acel.12045.
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol. 2015;131:21–64. https://doi.org/10.1016/j.pneurobio.2015.05.002.
Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76:845–61. https://doi.org/10.1002/ana.24271.
Smith DK, He M, Zhang C-L, Zheng JC. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders. Prog Neurobiol. 2017;157:212–29. https://doi.org/10.1016/j.pneurobio.2016.01.006.
Colonna M, Wang Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci. 2016;17:201–7. https://doi.org/10.1038/nrn.2016.7.
Heffernan AL, Chidgey C, Peng P, Masters CL, Roberts BR. The neurobiology and age-related prevalence of the ε4 Allele of Apolipoprotein E in Alzheimer’s disease cohorts. J Mol Neurosci. 2016;60:316–24. https://doi.org/10.1007/s12031-016-0804-x.
Burfeind KG, Murchison CF, Westaway SK, Simon MJ, Erten-Lyons D, Kaye JA, Quinn JF, Iliff JJ. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer’s disease. Alzheimer’s Dement. 2017;3:348–59. https://doi.org/10.1016/j.trci.2017.05.001.
Mendelsohn AR, Larrick JW. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res. 2013;16:518–23. https://doi.org/10.1089/rej.2013.1530.
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373–7. https://doi.org/10.1126/science.1241224.
Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, Deane R, Nedergaard M. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab. 2016;37:2112–24. https://doi.org/10.1177/0271678x16661202.
Berezuk C, Ramirez J, Gao F, Scott CJM, Huroy M, Swartz RH, Murray BJ, Black SE, Boulos MI. Virchow-Robin spaces: correlations with polysomnography-derived sleep parameters. Sleep. 2015; https://doi.org/10.5665/sleep.4726.
Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, Logan J, Nedergaard M, Benveniste H. The effect of body posture on brain glymphatic transport. J Neurosci. 2015;35:11034–44. https://doi.org/10.1523/jneurosci.1625-15.2015.
Andresen M, Hadi A, Petersen LG, Juhler M. Effect of postural changes on ICP in healthy and ill subjects. Acta Neurochir. 2014;157:109–13. https://doi.org/10.1007/s00701-014-2250-2.
Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34:16180–93. https://doi.org/10.1523/jneurosci.3020-14.2014.
Wang M, Ding F, Deng S, Guo X, Wang W, Iliff JJ, Nedergaard M. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J Neurosci. 2017;37:2870–7. https://doi.org/10.1523/jneurosci.2112-16.2017.
Weller RO, Djuanda E, Yow H-Y, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2008;117:1–14. https://doi.org/10.1007/s00401-008-0457-0.
Salehpour F, Khademi M, Bragin DE, DiDuro JO. Photobiomodulation therapy and the glymphatic system: promising applications for augmenting the brain lymphatic drainage system. Int J Mol Sci. 2022;23:2975. https://doi.org/10.3390/ijms23062975.
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17:1016–24. https://doi.org/10.1016/s1474-4422(18)30318-1.
Ahn JH, Cho H, Kim J-H, Kim SH, Ham J-S, Park I, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572:62–6. https://doi.org/10.1038/s41586-019-1419-5.
Ding X-B, Wang X-X, Xia D-H, Liu H, Tian H-Y, Fu Y, et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med. 2021;27:411–8. https://doi.org/10.1038/s41591-020-01198-1.
Zou W, Pu T, Feng W, Lu M, Zheng Y, Du R, et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl Neurodegener. 2019:8. https://doi.org/10.1186/s40035-019-0147-y.
Xin S-H, Lin T, Cao X, Yu J-T, Lan T. Clearance of amyloid Beta and Tau in Alzheimer’s disease: from mechanisms to therapy. Neurotox Res. 2018;34:733–48. https://doi.org/10.1007/s12640-018-9895-1.
Morris AWJ, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016;131:725–36. https://doi.org/10.1007/s00401-016-1555-z.
Tamura R, Yoshida K, Toda M. Current understanding of lymphatic vessels in the central nervous system. Neurosurg Rev. 2019;43:1055–64. https://doi.org/10.1007/s10143-019-01133-0.
Churchill MJ, du Bois H, Heim TA, Mudianto T, Steele MM, Nolz JC, et al. Infection-induced lymphatic zippering restricts fluid transport and viral dissemination from skin. J Exp Med. 2022:219. https://doi.org/10.1084/jem.20211830.
Yan J-H, Wang Y-J, Sun Y-R, Pei Y-H, Ma H-W, Mu Y-K, et al. The lymphatic drainage systems in the brain: a novel target for ischemic stroke? Neural Regen Res. 2023;18:485. https://doi.org/10.4103/1673-5374.346484.
Khan S, Abdulla E, Rahman MM. Lymphatic system in the brain. Ann Med Surg. 2022:79. https://doi.org/10.1016/j.amsu.2022.104082.
Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener. 2009;4(1) https://doi.org/10.1186/1750-1326-4-47.
Johnson NH, de Rivero Vaccari JP, Bramlett HM, Keane RW, Dietrich WD. Inflammasome activation in traumatic brain injury and Alzheimer’s disease. Transl Res. 2023;254:1–12. https://doi.org/10.1016/j.trsl.2022.08.014.
Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9.
Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2012;14:38–48. https://doi.org/10.1038/nrn3406.
Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009;65:S3–9. https://doi.org/10.1002/ana.21543.
Hu Y, Cao C, Qin X-Y, Yu Y, Yuan J, Zhao Y, et al. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Sci Rep. 2017:7. https://doi.org/10.1038/s41598-017-09097-1.
McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2017;25:24–34. https://doi.org/10.1111/ene.13413.
Ghosh R, Tabrizi SJ. Clinical features of Huntington’s disease. Polyglutamine Disorders 2018:1–28. https://doi.org/10.1007/978-3-319-71779-1_1
Britz G. An overview of neurovascular disease management. Methodist Debakey Cardiovasc J. 2014;10:212. https://doi.org/10.14797/mdcj-10-4-212.
Ahmad A, Patel V, Xiao J, Khan MM. The role of neurovascular system in neurodegenerative diseases. Mol Neurobiol. 2020;57:4373–93. https://doi.org/10.1007/s12035-020-02023-z.
Tian Y, Zhao M, Chen Y, Yang M, Wang Y. The underlying role of the glymphatic system and meningeal lymphatic vessels in cerebral small vessel disease. Biomol Ther. 2022;12:748. https://doi.org/10.3390/biom12060748.
Boluijt J, Meijers JC, Rinkel GJ, Vergouwen MD. Hemostasis and fibrinolysis in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a systematic review. J Cereb Blood Flow Metab. 2015;35:724–33. https://doi.org/10.1038/jcbfm.2015.13.
Lu H-B, Cao Y, Hu J-Z, Xu J-Q, Liu Q-Q, Huang S-Y, et al. The lymphatic system: a therapeutic target for central nervous system disorders. Neural Regen Res. 2023;18:1249. https://doi.org/10.4103/1673-5374.355741.
DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139:136–53. https://doi.org/10.1111/jnc.13607.
Lu H, Wu P-F, Zhang W, Liao X. Circulating interleukins and risk of multiple sclerosis: a Mendelian randomization study. Front Immunol. 2021:12. https://doi.org/10.3389/fimmu.2021.647588.
Ramanathan S, Al-Diwani A, Waters P, Irani SR. The autoantibody-mediated encephalitides: from clinical observations to molecular pathogenesis. J Neurol. 2019;268:1689–707. https://doi.org/10.1007/s00415-019-09590-9.
Khan AW, Farooq M, Hwang M-J, Haseeb M, Choi S. Autoimmune neuroinflammatory diseases: role of interleukins. Int J Mol Sci. 2023;24:7960. https://doi.org/10.3390/ijms24097960.
Agoston DV, Shutes-David A, Peskind ER. Biofluid biomarkers of traumatic brain injury. Brain Inj. 2017;31:1195–203. https://doi.org/10.1080/02699052.2017.1357836.
Ling H, Hardy J, Zetterberg H. Neurological consequences of traumatic brain injuries in sports. Mol Cell Neurosci. 2015;66:114–22. https://doi.org/10.1016/j.mcn.2015.03.012.
Nortje J, Menon DK. Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol. 2004;17:711–8. https://doi.org/10.1097/00019052-200412000-00011.
Newcombe VFJ, Correia MM, Ledig C, Abate MG, Outtrim JG, Chatfield D, et al. Dynamic changes in white matter abnormalities correlate with late improvement and deterioration following TBI. Neurorehabil Neural Repair. 2015;30:49–62. https://doi.org/10.1177/1545968315584004.
Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun. 2020:11. https://doi.org/10.1038/s41467-020-18113-4.
Desland FA, Hormigo A. The CNS and the brain tumor microenvironment: implications for glioblastoma immunotherapy. Int J Mol Sci. 2020;21:7358. https://doi.org/10.3390/ijms21197358.
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, et al. Chapter One - pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. In: Bryukhovetskiy I, et al., editors. International review of neurobiology. Academic Press; 2020. p. 1–66.
Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229–43. https://doi.org/10.1038/s41422-020-0287-8.
Shayan R. Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis. 2006;27:1729–38. https://doi.org/10.1093/carcin/bgl031.
Podgrabinska S, Skobe M. Role of lymphatic vasculature in regional and distant metastases. Microvasc Res. 2014;95:46–52. https://doi.org/10.1016/j.mvr.2014.07.004.
Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature. 2020;577:689–94. https://doi.org/10.1038/s41586-019-1912-x.
Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL. HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol. 2010;5:294–309. https://doi.org/10.1007/s11481-010-9205-z.
Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69:1789–99. https://doi.org/10.1212/01.wnl.0000287431.88658.8b.
Letendre S. Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top Antivir Med. 2011;19(4):137–42.
Sanmarti M, Ibáñez L, Huertas S, Badenes D, Dalmau D, Slevin M, et al. HIV-associated neurocognitive disorders. J Mol Psychiatry. 2014;2:2. https://doi.org/10.1186/2049-9256-2-2.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bari, D., Das, U., Shevalkar, G., Kapadia, R., Singhai, V., Pardeshi, C. (2024). Advancements in Brain Lymphatic System and Its Involvement in Neurological Diseases. In: Dhas, N., Patel, J.K., Pathak, Y.V. (eds) Advanced Targeting of the Lymphatic System. Springer, Cham. https://doi.org/10.1007/978-3-031-64828-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-64828-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64827-4
Online ISBN: 978-3-031-64828-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)