Abstract
To cope with frequently hypoxic conditions in the Amazon, many fish refer to breathing air. In order to avoid a possible loss of oxygen taken up in the air-breathing organ to hypoxic water through the gills in many of these fish, gill surface area is reduced. Gills, however, are multifunctional organs, so that breathing air affects not only gas exchange, but also other physiological functions typically located at the gills, for example, ion regulation, acid-base regulation, or nitrogen excretion. Elevated temperatures cause an increase in metabolic activity, reduce oxygen solubility in water, and therefore are expected to stimulate air-breathing. This may potentially increase the risk of predation at the water surface. An increased reliance on aerial respiration may also stimulate progressive reduction of the gill surface area, which would affect other functions located at the gills.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aaskov, M. L., Jensen, R. J., Skov, P. V., et al. (2022). Arapaima gigas maintains gas exchange separation in severe aquatic hypoxia but does not suffer branchial oxygen loss. The Journal of Experimental Biology, 225, jeb243672. https://doi.org/10.1242/jeb.243672
Alton, L. A., Portugal, S. J., & White, C. R. (2013). Balancing the competing requirements of air-breathing and display behaviour during male–male interactions in Siamese fighting fish Betta splendens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 164, 363–367. https://doi.org/10.1016/j.cbpa.2012.11.012
Ar, A., & Zacks, D. (1989). Alterations in the bimodal gas exchange of the African catfish Clarias lazera. In Physiological function in special environments (pp. 172–190). Springer.
Atkinson, D., Leighton, G., & Berenbrink, M. (2022). Controversial roles of oxygen in organismal responses to climate warming. The Biological Bulletin, 243, 207–219.
Ballantyne, J. S. (2001). Amino acid metabolism. In P. A. Wright & P. Anderson (Eds.), Fish physiology (Vol. 20, pp. 77–107). Elsevier.
Barichivich, J., Gloor, E., Peylin, P., et al. (2018). Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, 4, eaat8785. https://doi.org/10.1126/sciadv.aat8785
Bayley, M., Damsgaard, C., Thomsen, M., et al. (2019). Learning to air-breathe: The first steps. Physiology, 34, 14–29. https://doi.org/10.1152/physiol.00028.2018
Brauner, C. J., & Baker, D. W. (2009). Patterns of acid–base regulation during exposure to hypercarbia in fishes. In Cardio-respiratory control in vertebrates (pp. 43–63). Springer.
Brauner, C. J., Matey, V., Wilson, J. M., et al. (2004). Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon. The Journal of Experimental Biology, 207, 1433–1438.
Brauner, C. J., Wang, T., Wang, Y., et al. (2004). Limited extracellular but complete intracellular acid-base regulation during short-term environmental hypercapnia in the armoured catfish, Liposarcus pardalis. The Journal of Experimental Biology, 207, 3381–3390. https://doi.org/10.1242/jeb.01144
Burggren, W. (2018). Developmental phenotypic plasticity helps bridge stochastic weather events associated with climate change. The Journal of Experimental Biology, 221, jeb161984. https://doi.org/10.1242/jeb.161984
Cameron, J. N., & Wood, C. M. (1978). Renal function and acid-base regulation in two Amazon erythrinid fishes: Hoplias malabaricus, a water breather, and Hoplerythrinus unitaeniatus, a facultative air breather. Canadian Journal of Zoology, 56, 917–930.
Campbell, J. W. (1991). Excretory nitrogen metabolism. In C. L. Prosser (Ed.), Comparative animal physiology (Environmental and metabolic animal physiology) (pp. 277–324). Wiley.
Campos, D. F., Braz-Mota, S., Val, A. L., & Almeida-Val, V. M. F. (2019). Predicting thermal sensitivity of three Amazon fishes exposed to climate change scenarios. Ecological Indicators, 101, 533–540. https://doi.org/10.1016/j.ecolind.2019.01.051
Campos, D. F., Jesus, T. F., Kochhann, D., et al. (2017). Metabolic rate and thermal tolerance in two congeneric Amazon fishes: Paracheirodon axelrodi Schultz, 1956 and Paracheirodon simulans Géry, 1963 (Characidae). Hydrobiologia, 789, 133–142. https://doi.org/10.1007/s10750-016-2649-2
Chapman, L. J., & Chapman, C. A. (1994). Observations on synchronous air breathing in Clarias liocephalus. Copeia, 1994, 246. https://doi.org/10.2307/1446696
Chew, S. F. (2003). Urea synthesis in the African lungfish Protopterus dolloi - Hepatic carbamoyl phosphate synthetase III and glutamine synthetase are upregulated by 6 days of aerial exposure. The Journal of Experimental Biology, 206, 3615–3624. https://doi.org/10.1242/jeb.00619
Chew, S. F., Chan, N. K. Y., Loong, A. M., et al. (2004). Nitrogen metabolism in the African lungfish (Protopterus dolloi) aestivating in a mucus cocoon on land. The Journal of Experimental Biology, 207, 777–786. https://doi.org/10.1242/jeb.00813
Chew, S. F., Hiong, K. C., Lam, S. P., et al. (2014). Functional roles of Na+/K+-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon schlosseri. Frontiers in Physiology, 5, 158. https://doi.org/10.3389/fphys.2014.00158
Chew, S. F., & Ip, Y. K. (2014). Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes. Journal of Fish Biology, 84, 603–638. https://doi.org/10.1111/jfb.12279
Chew, S. F., Jin, Y., & Ip, Y. K. (2001). The Loach Misgurnus anguillicaudatus reduces amino acid catabolism and accumulates alanine and glutamine during aerial exposure. Physiological and Biochemical Zoology, 74, 226–237. https://doi.org/10.1086/319663
Chew, S. F., Wilson, J. M., Ip, Y. K., & Randall, D. J. (2005). Nitrogen excretion and defense against ammonia toxicity. Fish Physiology, 21, 307–395.
Choe, H., Sackin, H., & Palmer, L. G. (2000). Permeation properties of inward-rectifier potassium channels and their molecular determinants. The Journal of General Physiology, 115, 391–404. https://doi.org/10.1085/jgp.115.4.391
Damsgaard, C., Baliga, V. B., Bates, E., et al. (2020). Evolutionary and cardio-respiratory physiology of air-breathing and amphibious fishes. Acta Physiologica, 228, e13406. https://doi.org/10.1111/apha.13406
Damsgaard, C., Gam, L. T. H., Dang, D. T., et al. (2015). High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus. The Journal of Experimental Biology, 218, 1290. https://doi.org/10.1242/jeb.117671
De Boeck, G., Wood, C. M., Iftikar, F. I., et al. (2013). Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, Astronotus ocellatus (Agassiz). The Journal of Experimental Biology, 216(24), 4590–4600. https://doi.org/10.1242/jeb.082891
Dejours, P. (1981). Principles of comparative respiratory physiology. Elsevier.
Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste? Physiological Reviews, 85, 97–177. https://doi.org/10.1152/physrev.00050.2003
Ficke, A. D., Myrick, C. A., & Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17, 581–613. https://doi.org/10.1007/s11160-007-9059-5
Frick, N. T., & Wright, P. A. (2002). Nitrogen metabolism and excretion in the mangrove killifish Rivulus marmoratus II. Significant ammonia volatilization in a teleost during air-exposure. The Journal of Experimental Biology, 205, 91–100. https://doi.org/10.1242/jeb.205.1.91
Frommel, A. Y., Kwan, G. T., Prime, K. J., et al. (2021). Changes in gill and air-breathing organ characteristics during the transition from water- to air-breathing in juvenile Arapaima gigas. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335, 801–813. https://doi.org/10.1002/jez.2456
Furch, K., & Junk, W. J. (1997). Physicochemical conditions in the floodplains. Ecology Studies, 12(6), 69–108.
Geirinhas, J. L., Trigo, R. M., Libonati, R., et al. (2018). Climatic and synoptic characterization of heat waves in Brazil. International Journal of Climatology, 38, 1760–1776. https://doi.org/10.1002/joc.5294
Giacomin, M., Onukwufor, J. O., Schulte, P. M., & Wood, C. M. (2020). Ionoregulatory aspects of the hypoxia-induced osmorespiratory compromise in the euryhaline Atlantic killifish (Fundulus heteroclitus): The effects of salinity. The Journal of Experimental Biology, 223, jeb216309. https://doi.org/10.1242/jeb.216309
Godin, J. G. J. (1986). Antipredator function of shoaling in teleost fishes: A selective review. Naturalist canadien (Review of Ecology, and Systematics), 113, 241–250.
Gonzalez, R. J., Brauner, C. J., Wang, Y. X., et al. (2010). Impact of ontogenetic changes in branchial morphology on gill function in Arapaima gigas. Physiological and Biochemical Zoology, 83, 322–332. https://doi.org/10.1086/648568
Gonzalez, R. J., Wilson, R. W., & Wood, C. M. (2005). Ionoregulation in tropical fishes from ion-poor, acidic blackwaters. Fish Physiology, 21, 397–442.
Graham, J. B. (1997). Air-breathing fishes. Evolutions, diversity, and adaptation. Academic Press.
Graham, J. B. (2011a). Air-breathing fishes | The biology, diversity, and natural history of air-breathing fishes: An introduction. In Encyclopedia of fish physiology (pp. 1850–1860). Elsevier.
Graham, J. B. (2011b). Air-breathing fishes | Respiratory adaptations for air-breathing fishes. In Encyclopedia of fish physiology (pp. 1861–1874). Elsevier.
Heisler, N. (1982). Intracellular and extracellular acid-base regulation in the tropical fresh-water teleost fish Synbranchus marmoratus in response to the transition from water breathing to air breathing. The Journal of Experimental Biology, 99, 9–28.
Hulbert, W. C., Moon, T. W., & Hochachka, P. W. (1978). The erythrinid gill: Correlations of structure, function, and metabolism. Canadian Journal of Zoology, 56, 814–819.
Hung, C. Y. C., Galvez, F., Ip, Y. K., & Wood, C. M. (2009). Increased gene expression of a facilitated diffusion urea transporter in the skin of the African lungfish (Protopterus annectens) during massively elevated post-terrestrialization urea excretion. The Journal of Experimental Biology, 212, 1202–1211. https://doi.org/10.1242/jeb.025239
Ip, Y. K., & Chew, S. F. (2018). Air-breathing and excretory nitrogen metabolism in fishes. Acta Histochemica, 120, 680–690. https://doi.org/10.1016/j.acthis.2018.08.013
Ip, A., Chew, S., & Ip, Y. (2010). Ammonia production, excretion, toxicity, and defense in fish: A review. Frontiers in Physiology, 1, 134. https://doi.org/10.3389/fphys.2010.00134
Ip, Y. K., Chew, S. F., & Randall, D. J. (2001). Ammonia toxicity, tolerance, and excretion. Fish Physiology, 20, 109–148.
Ip, Y. K., Chew, S. F., & Randall, D. J. (2004). Five tropical air-breathing fishes, six different strategies to defend against ammonia toxicity on land. Physiological and Biochemical Zoology, 77, 768–782. https://doi.org/10.1086/422057
Ip, Y. K., Hou, Z., Chen, X. L., et al. (2013). High brain ammonia tolerance and down-regulation of Na+:K+:2Cl− cotransporter 1b mRNA and protein expression in the brain of the swamp eel, Monopterus albus, exposed to environmental ammonia or terrestrial conditions. PLoS One, 8, e69512. https://doi.org/10.1371/journal.pone.0069512
Ip, Y. K., Loong, A. M., Kuah, J. S., et al. (2012). Roles of three branchial Na+-K+-ATPase α-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 303, R112–R125. https://doi.org/10.1152/ajpregu.00618.2011
Ip, Y. K., Randall, D. J., Kok, T. K. T., et al. (2004). The giant mudskipper Periophthalmodon schlosseri facilitates active NH4+ excretion by increasing acid excretion and decreasing NH3 permeability in the skin. The Journal of Experimental Biology, 207, 787–801. https://doi.org/10.1242/jeb.00788
Ip, Y. K., Wilson, J. M., Loong, A. M., et al. (2012). Cystic fibrosis transmembrane conductance regulator in the gills of the climbing perch, Anabas testudineus, is involved in both hypoosmotic regulation during seawater acclimation and active ammonia excretion during ammonia exposure. Journal of Comparative Physiology B, 182, 793–812. https://doi.org/10.1007/s00360-012-0664-9
Ip, Y. K., Yeo, P. J., Loong, A. M., et al. (2005). The interplay of increased urea synthesis and reduced ammonia production in the African lungfish Protopterus aethiopicus during 46 days of aestivation in a mucus cocoon. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303A, 1054–1065. https://doi.org/10.1002/jez.a.237
IPCC. (2014). Impacts, adaptation, and vulnerability, Part. B: Regional aspects, climate change 2014. Cambridge University Press.
Ishimatsu, A. (2012). Evolution of the cardiorespiratory system in air-breathing fishes. Aqua-BioScience Monographs, 5, 1–28.
Jézéquel, C., Tedesco, P. A., Darwall, W., et al. (2020). Freshwater fish diversity hotspots for conservation priorities in the Amazon Basin. Conservation Biology, 34, 956–965. https://doi.org/10.1111/cobi.13466
Johansen, K., Hanson, D., & Lenfant, C. (1970). Respiration in a primitive air breather, Amia calva. Respiration Physiology, 9, 162–174.
Jung, E. H., Brix, K. V., Richards, J. G., et al. (2020). Reduced hypoxia tolerance and survival at elevated temperatures may limit the ability of Amazonian fishes to survive in a warming world. Science of the Total Environment, 748, 141349. https://doi.org/10.1016/j.scitotenv.2020.141349
Kramer, D. L., & Graham, J. B. (1976). Synchronous air breathing, a social component of respiration in fishes. Copeia, 1976, 689–697.
Kramer, D. L., & Mehegan, J. P. (1981). Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces, Poecilidae). Environmental Biology of Fishes, 6, 299–313.
Laurent, P., & Perry, S. F. (1991). Environmental effects on fish gill morphology. Physiological Zoology, 64, 4–25.
Lefevre, S., Bayley, M., Mckenzie, D. J., & Craig, J. F. (2014). Air-breathing fishes. Journal of Fish Biology, 84, 547–553. https://doi.org/10.1111/jfb.12349
Lefevre, S., Wang, T., Huong, D. T. T., et al. (2013). Partitioning of oxygen uptake and cost of surfacing during swimming in the air-breathing catfish Pangasianodon hypophthalmus. Journal of Comparative Physiology B, 183, 215–221. https://doi.org/10.1007/s00360-012-0701-8
Lima Filho, J. A., Martins, J., Arruda, R., & Carvalho, L. N. (2012). Air-breathing behavior of the jeju fish Hoplerythrinus unitaeniatus in amazonian streams. Biotropica, 44, 512–520. https://doi.org/10.1111/j.1744-7429.2011.00839.x
Lin, H. C., & Sung, W. T. (2003). The distribution of mitochondria-rich cells in the gills of air-breathing fishes. Physiological and Biochemical Zoology, 76, 215–228.
Loong, A. M., Chew, S. F., Wong, W. P., et al. (2012). Both seawater acclimation and environmental ammonia exposure lead to increases in mRNA expression and protein abundance of Na+:K+:2Cl− cotransporter in the gills of the climbing perch, Anabas testudineus. Journal of Comparative Physiology. B, 182, 491–506. https://doi.org/10.1007/s00360-011-0634-7
Loong, A. M., Hiong, K. C., Lee, S. M. L., et al. (2005). Ornithine-urea cycle and urea synthesis in African lungfishes, Protopterus aethiopicus and Protopterus annectens, exposed to terrestrial conditions for six days. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303A, 354–365. https://doi.org/10.1002/jez.a.147
Loong, A. M., Pang, C. Y. M., Hiong, K. C., et al. (2008). Increased urea synthesis and/or suppressed ammonia production in the African lungfish, Protopterus annectens, during aestivation in air or mud. Journal of Comparative Physiology B, 178, 351–363. https://doi.org/10.1007/s00360-007-0228-6
McDonald, M. D., Smith, C. P., & Walsh, P. J. (2006). The physiology and evolution of urea transport in fishes. The Journal of Membrane Biology, 212, 93–107. https://doi.org/10.1007/s00232-006-0869-5
McKenzie, D. J., & Randall, D. J. (1990). Does Amia calva aestivate? Fish Physiology and Biochemistry, 8, 147–158. https://doi.org/10.1007/BF00004442
Musa-Aziz, R., Chen, L.-M., Pelletier, M. F., & Boron, W. F. (2009). Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proceedings of the National Academy of Sciences, 106, 5406–5411. https://doi.org/10.1073/pnas.0813231106
Nakhoul, N. L., Hering-Smith, K. S., Abdulnour-Nakhoul, S. M., & Hamm, L. L. (2001). Transport of NH3 /NH4+ in oocytes expressing aquaporin-1. American Journal of Physiology-Renal Physiology, 281, F255–F263. https://doi.org/10.1152/ajprenal.2001.281.2.F255
Nawata, C. M., Wood, C. M., & O’Donnell, M. J. (2010). Functional characterization of Rhesus glycoproteins from an ammoniotelic teleost, the rainbow trout, using oocyte expression and SIET analysis. The Journal of Experimental Biology, 213, 1049–1059. https://doi.org/10.1242/jeb.038752
Nelson, J. A. (2014). Breaking wind to survive: Fishes that breathe air with their gut. Journal of Fish Biology, 84, 554–576. https://doi.org/10.1111/jfb.12323
Nilsson, G. E., Dymowska, A., & Stecyk, J. A. W. (2012). New insights into the plasticity of gill structure. Respiratory Physiology & Neurobiology, 184, 214–222. https://doi.org/10.1016/j.resp.2012.07.012
Ong, K. J., Stevens, E. D., & Wright, P. A. (2007). Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure. The Journal of Experimental Biology, 210, 1109–1115. https://doi.org/10.1242/jeb.002238
Partridge, B. L. (1982). The structure and function of fish schools. Scientific American, 246, 114–123. https://doi.org/10.1038/scientificamerican0682-114
Pelster, B. (2009). Buoyancy control in aquatic vertebrates. In M. L. Glass & S. C. Wood (Eds.), Cardio-respiratory control in vertebrates (pp. 65–98). Springer Verlag.
Pelster, B. (2021). Using the swimbladder as a respiratory organ and/or a buoyancy structure—Benefits and consequences. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335, 831–842. https://doi.org/10.1002/jez.2460
Pelster, B., Bridges, C. R., & Grieshaber, M. K. (1988). Physiological adaptations of the intertidal rockpool teleost Blennius pholis L., to aerial exposure. Respiration Physiology, 71, 355–373. https://doi.org/10.1016/0034-5687(88)90028-X
Pelster, B., & Burggren, W. W. (2018). Responses to environmental stressors in developing animals: Costs and benefits of phenotypic plasticity. In Development and environment (pp. 97–113). Springer.
Pelster, B., Giacomin, M., Wood, C. M., & Val, A. L. (2016). Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira. Journal of Comparative Physiology. B, 186, 615–624.
Pelster, B., & Wood, C. M. (2018). Ionoregulatory and oxidative stress issues associated with the evolution of air-breathing. Acta Histochemica, 120, 667–679. https://doi.org/10.1016/j.acthis.2018.08.012
Pelster, B., Wood, C. M., Braz-Mota, S., & Val, A. L. (2020). Gills and air-breathing organ in O2 uptake, CO2 excretion, N-waste excretion, and ionoregulation in small and large pirarucu (Arapaima gigas). Journal of Comparative Physiology B, 190, 569–583. https://doi.org/10.1007/s00360-020-01286-1
Pelster, B., Wood, C. M., Speers-Roesch, B., et al. (2015). Gut transport characteristics in herbivorous and carnivorous serrasalmid fish from ion-poor Rio Negro water. Journal of Comparative Physiology B, 185, 225–241. https://doi.org/10.1007/s00360-014-0879-z
Perry, S. F., & Gilmour, K. M. (2002). Sensing and transfer of respiratory gases at the fish gill. The Journal of Experimental Zoology, 293, 249–263. https://doi.org/10.1002/jez.10129
Pratt, K. L., & Franklin, C. E. (2009). Predator or prey? The dive response to aerial and aquatic predators of Arafura filesnakes. Australian Journal of Zoology, 57, 423. https://doi.org/10.1071/ZO09080
Ramos, C. A., Fernandes, M. N., da Costa, O. T. F., & Duncan, W. P. (2013). Implications for osmorespiratory compromise by anatomical remodeling in the gills of Arapaima gigas. The Anatomical Record, 296, 1664–1675. https://doi.org/10.1002/ar.22758
Randall, D. J., Cameron, J. N., Daxboeck, C., & Smatresk, N. (1981). Aspects of bimodal gas exchange in the bowfin. Respiration Physiology, 43, 339–348. https://doi.org/10.1016/0034-5687(81)90114-6
Randall, D. J., Farrell, A. P., & Haswell, M. S. (1978). Carbon dioxide excretion in the pirarucu (Arapaima gigas), an obligate air-breathing fish. Canadian Journal of Zoology, 56, 977–982. https://doi.org/10.1139/z78-136
Randall, D. J., & Ip, Y. K. (2006). Ammonia as a respiratory gas in water and air-breathing fishes. Respiratory Physiology & Neurobiology, 154, 216–225.
Randall, D. J., Ip, Y. K., Chew, S. F., & Wilson, J. M. (2004). Air breathing and ammonia excretion in the giant mudskipper, Periophthalmodon schlosseri. Physiological and Biochemical Zoology, 77, 783–788. https://doi.org/10.1086/423745
Randall, D. J., Wilson, J. M., Peng, K. W., et al. (1999). The mudskipper, Periophthalmodon schlosseri, actively transports NH4+ against a concentration gradient. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 277, R1562–R1567. https://doi.org/10.1152/ajpregu.1999.277.6.R1562
Robertson, L. M., Val, A. L., Almeida-Val, V. F., & Wood, C. M. (2015). Ionoregulatory aspects of the osmorespiratory compromise during acute environmental hypoxia in 12 tropical and temperate Teleosts. Physiological and Biochemical Zoology, 88, 357–370. https://doi.org/10.1086/681265
Sayer, M. D. J. (2005). Adaptations of amphibious fish for surviving life out of water. Fish and Fisheries, 6, 186–211. https://doi.org/10.1111/j.1467-2979.2005.00193.x
Scadeng, M., McKenzie, C., He, W., et al. (2020). Morphology of the Amazonian Teleost genus Arapaima using advanced 3D imaging. Frontiers in Physiology, 11, 260. https://doi.org/10.3389/fphys.2020.00260
Schöngart, J., & Junk, W. J. (2020). Clime e hidrologia nas várzeas da Amazonia Central. In W. J. Junkj, M. Piedale, F. Wittmann, & J. Schöngart (Eds.), Desafios para um Manejo Sustentavel (pp. 44–65).
Scott, G. R., Matey, V., Mendoza, J. A., et al. (2017). Air breathing and aquatic gas exchange during hypoxia in armoured catfish. Journal of Comparative Physiology. B, 187, 117–133.
Shartau, R. B., Baker, D. W., Crossley, D. A., & Brauner, C. J. (2016). Preferential intracellular pH regulation: Hypotheses and perspectives. The Journal of Experimental Biology, 219, 2235–2244. https://doi.org/10.1242/jeb.126631
Shartau, R. B., Baker, D. W., Harter, T. S., et al. (2020). Preferential intracellular pH regulation is a common trait amongst fishes exposed to high environmental CO2. The Journal of Experimental Biology, 223, jeb.208868. https://doi.org/10.1242/jeb.208868
Shartau, R. B., & Brauner, C. J. (2014). Acid-base and ion balance in fishes with bimodal respiration. Journal of Fish Biology, 84, 682–704.
Shelton, G., Jones, D. R., & Milsom, W. K. (1986). Control of breathing in ectothermic vertebrates. In Comprehensive physiology (pp. 857–909). Wiley.
Shingles, A., McKenzie, D. J., Claireaux, G., & Domenici, P. (2005). Reflex cardioventilatory responses to hypoxia in the flathead gray mullet (Mugil cephalus) and their behavioral modulation by perceived threat of predation and water turbidity. Physiological and Biochemical Zoology, 78, 744–755. https://doi.org/10.1086/432143
Sloman, K. A., Sloman, R. D., De Boeck, G., et al. (2009). The role of size in synchronous air breathing of Hoplosternum littorale. Physiological and Biochemical Zoology, 82, 625–634. https://doi.org/10.1086/605936
Sloman, K. A., Wood, C. M., Scott, G. R., et al. (2006). Tribute to R. G. Boutilier: The effect of size on the physiological and behavioural responses of oscar, Astronotus ocellatus, to hypoxia. The Journal of Experimental Biology, 209, 1197–1205. https://doi.org/10.1242/jeb.02090
Smatresk, N. J. (1986). Ventilatory and cardiac reflex responses to hypoxia and NaCN in Lepisosteus osseus, an air-breathing fish. Physiological Zoology, 59, 385–397. https://doi.org/10.1086/physzool.59.4.30158592
Smatresk, N. J., & Cameron, J. N. (1982). Respiration and acid-base physiology of the spotted gar, a bimodal breather: II. Responses to temperature change and hypercapnia. The Journal of Experimental Biology, 96, 281–293. https://doi.org/10.1242/jeb.96.1.281
Sollid, J., De Angelis, P., Gundersen, K., & Nilsson, G. E. (2003). Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. The Journal of Experimental Biology, 206, 3667–3673. https://doi.org/10.1242/jeb.00594
Tay, Y. L., Loong, A. M., Hiong, K. C., et al. (2006). Active ammonia transport and excretory nitrogen metabolism in the climbing perch, Anabas testudineus, during 4 days of emersion or 10 minutes of forced exercise on land. The Journal of Experimental Biology, 209, 4475–4489. https://doi.org/10.1242/jeb.02557
Tencatt, L. F. C., Muriel-Cunha, J., Zuanon, J., et al. (2020). A journey through the Amazon Middle Earth reveals Aspidoras azaghal (Siluriformes: Callichthyidae), a new species of armoured catfish from the rio Xingu basin, Brazil. Journal of Fish Biology, 97, 1072–1086. https://doi.org/10.1111/jfb.14467
Thinh, P. V., Huong, D. T. T., Gam, L. T. H., et al. (2019). Renal acid excretion contributes to acid-base regulation during hypercapnia in air-exposed swamp eel (Monopterus albus). The Journal of Experimental Biology, 222, jeb.198259. https://doi.org/10.1242/jeb.198259
Thurman, E. (1985). Geochemistry of natural waters. Martinus Nijhof/Dr. W Junk Publishers.
Tng, Y. Y. M., Chew, S. F., Wee, N. L. J., et al. (2009). Acute ammonia toxicity and the protective effects of methionine sulfoximine on the swamp eel, Monopterus albus. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311A, 676–688. https://doi.org/10.1002/jez.555
Tsui, T. K. N., Randall, D. J., Chew, S. F., et al. (2002). Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus. The Journal of Experimental Biology, 205, 651–659. https://doi.org/10.1242/jeb.205.5.651
Turko, A. J., Rossi, G. S., & Wright, P. A. (2021). More than breathing air: Evolutionary drivers and physiological implications of an amphibious lifestyle in fishes. Physiology, 36, 307–314. https://doi.org/10.1152/physiol.00012.2021
Ultsch, G. R. (1987). The potential role of hypercarbia in the transition from water-breathing to air-breathing in vertebrates. Evolution, 41, 442–445. https://doi.org/10.1111/j.1558-5646.1987.tb05811.x
Ultsch, G. R. (1996). Gas exchange, hypercarbia and acid-base balance, paleoecology, and the evolutionary transition from water-breathing to air-breathing among vertebrates. Palaeogeography Palaeoclimatology Palaeoecology, 123, 1–27. https://doi.org/10.1016/0031-0182(96)00121-6
Val, A. L., & Almeida-Val, V. M. F. (1995). Fishes of the Amazon and their environment zoophysiology (Vol. 32). Springer verlag.
Val, A. L., Almeida-Val, V. M. F., & Randall, D. J. (2006). Tropical environment. In A. L. Val, V. M. F. Almeida-Val, & D. J. Randall (Eds.), Fish physiology (Vol. 21, pp. 1–45). Elsevier B.V.
Val, A., & Wood, C. M. (2022). Global change and physiological challenges for fish of the Amazon today and in the near future. The Journal of Experimental Biology, 225, jeb.216440. https://doi.org/10.1242/jeb.216440
Wang, T., & Jackson, D. C. (2016). How and why pH changes with body temperature: The α-stat hypothesis. The Journal of Experimental Biology, 219, 1090–1092.
Weihrauch, D., Wilkie, M. P., & Walsh, P. J. (2009). Ammonia and urea transporters in gills of fish and aquatic crustaceans. The Journal of Experimental Biology, 212, 1716–1730. https://doi.org/10.1242/jeb.024851
Westneat, D. F., Potts, L. J., Sasser, K. L., & Shaffer, J. D. (2019). Causes and consequences of phenotypic plasticity in complex environments. Trends in Ecology & Evolution, 34, 555–568. https://doi.org/10.1016/j.tree.2019.02.010
Wilkie, M. P. (2002). Ammonia excretion and urea handling by fish gills: Present understanding and future research challenges. The Journal of Experimental Zoology, 293, 284–301.
Wood, C. M. (1993). Ammonia and urea metabolism and excretion. In D. H. Evans (Ed.), The physiology of fishes (pp. 379–425). CRC Press.
Wood, C. M. (1996). Is there a relationship between urea production and acid-base balance in fish? In A. L. Val & D. J. Randall (Eds.), Physiology and biochemistry of the fishes of the Amazon (pp. 339–357). INPA.
Wood, C. M. (2001). The influence of feeding, exercise, and temperature on nitrogen metabolism and excretion. In P. A. Anderson & P. A. Wright (Eds.), Fish physiology (Vol. 20, pp. 201–238). Academic Press.
Wood, C. M., de Souza Netto, J. G., Wilson, J. M., Duarte, R. M., & Val, A. L. (2017). Nitrogen metabolism in tambaqui (Colossoma macropomum), a neotropical model teleost: Hypoxia, temperature, exercise, feeding, fasting, and high environmental ammonia. Journal of Comparative Physiology B, 187, 135–151.
Wood, C. M., Iftikar, F. I., Scott, G. R., et al. (2009). Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (Astronotus ocellatus): New angles to the osmorespiratory compromise. The Journal of Experimental Biology, 212, 1949–1964. https://doi.org/10.1242/jeb.028464
Wood, C. M., Kajimura, M., Sloman, K. A., et al. (2007). Rapid regulation of Na+ fluxes and ammonia excretion in response to acute environmental hypoxia in the Amazonian oscar, Astronotus ocellatus. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292, R2048–R2058. https://doi.org/10.1152/ajpregu.00640.2006
Wood, C. M., Pelster, B., Braz-Mota, S., & Val, A. L. (2020). Gills versus kidney for ionoregulation in the obligate air-breathing Arapaima gigas, a fish with a kidney in its air-breathing organ. The Journal of Experimental Biology, 223, jeb232694. https://doi.org/10.1242/jeb.232694
Wood, C. M., Pelster, B., Giacomin, M., et al. (2016). The transition from water-breathing to air-breathing is associated with a shift in ion uptake from gills to gut: A study of two closely related erythrinid teleosts, Hoplerythrinus unitaeniatus and Hoplias malabaricus. Journal of Comparative Physiology. B, 186, 431–445. https://doi.org/10.1007/s00360-016-0965-5
Wood, C. M., Ruhr, I. M., Schauer, K. L., et al. (2019). The osmorespiratory compromise in the euryhaline killifish: Water regulation during hypoxia. The Journal of Experimental Biology, 222, jeb204818. https://doi.org/10.1242/jeb.204818
Wood, C. M., Walsh, P. J., Chew, S. F., & Ip, Y. K. (2005). Greatly elevated urea excretion after air-exposure appears to be carrier-mediated in the slender lungfish (Protopterus dolloi). Physiological and Biochemical Zoology, 78, 893–907.
Wood, S. C., Weber, R. E., & Davis, B. J. (1979). Effects of air-breathing on acid-base balance in the catfish, Hypostomus sp. Comparative Biochemistry and Physiology Part A: Physiology, 62, 185–187. https://doi.org/10.1016/0300-9629(79)90753-9
Wright, P. A. (2021). Cutaneous respiration and osmoregulation in amphibious fishes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 253, 110866. https://doi.org/10.1016/j.cbpa.2020.110866
Wright, P. A., & Wood, C. M. (2009). A new paradigm for ammonia excretion in aquatic animals: Role of Rhesus(Rh) glycoproteins. The Journal of Experimental Biology, 212, 2303–2312. https://doi.org/10.1242/jeb.023085
Wright, P. A., & Wood, C. M. (2012). Seven things fish know about ammonia and we don’t. Respiratory Physiology & Neurobiology, 184, 231–240. https://doi.org/10.1016/j.resp.2012.07.003
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Pelster, B., Wood, C.M. (2024). Increasing Temperatures Enhance Hypoxic Encounters in the Amazon: Consequences for Air-Breathing Fish. In: de Souza, S.S., Braz-Mota, S., Val, A.L. (eds) The Future of Amazonian Aquatic Biota. Springer, Cham. https://doi.org/10.1007/978-3-031-66822-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-66822-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66821-0
Online ISBN: 978-3-031-66822-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)