Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Increasing Temperatures Enhance Hypoxic Encounters in the Amazon: Consequences for Air-Breathing Fish

  • Chapter
  • First Online:
The Future of Amazonian Aquatic Biota

Abstract

To cope with frequently hypoxic conditions in the Amazon, many fish refer to breathing air. In order to avoid a possible loss of oxygen taken up in the air-breathing organ to hypoxic water through the gills in many of these fish, gill surface area is reduced. Gills, however, are multifunctional organs, so that breathing air affects not only gas exchange, but also other physiological functions typically located at the gills, for example, ion regulation, acid-base regulation, or nitrogen excretion. Elevated temperatures cause an increase in metabolic activity, reduce oxygen solubility in water, and therefore are expected to stimulate air-breathing. This may potentially increase the risk of predation at the water surface. An increased reliance on aerial respiration may also stimulate progressive reduction of the gill surface area, which would affect other functions located at the gills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aaskov, M. L., Jensen, R. J., Skov, P. V., et al. (2022). Arapaima gigas maintains gas exchange separation in severe aquatic hypoxia but does not suffer branchial oxygen loss. The Journal of Experimental Biology, 225, jeb243672. https://doi.org/10.1242/jeb.243672

    Article  PubMed  Google Scholar 

  • Alton, L. A., Portugal, S. J., & White, C. R. (2013). Balancing the competing requirements of air-breathing and display behaviour during male–male interactions in Siamese fighting fish Betta splendens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 164, 363–367. https://doi.org/10.1016/j.cbpa.2012.11.012

    Article  CAS  Google Scholar 

  • Ar, A., & Zacks, D. (1989). Alterations in the bimodal gas exchange of the African catfish Clarias lazera. In Physiological function in special environments (pp. 172–190). Springer.

    Chapter  Google Scholar 

  • Atkinson, D., Leighton, G., & Berenbrink, M. (2022). Controversial roles of oxygen in organismal responses to climate warming. The Biological Bulletin, 243, 207–219.

    Article  PubMed  Google Scholar 

  • Ballantyne, J. S. (2001). Amino acid metabolism. In P. A. Wright & P. Anderson (Eds.), Fish physiology (Vol. 20, pp. 77–107). Elsevier.

    Google Scholar 

  • Barichivich, J., Gloor, E., Peylin, P., et al. (2018). Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, 4, eaat8785. https://doi.org/10.1126/sciadv.aat8785

    Article  PubMed  PubMed Central  Google Scholar 

  • Bayley, M., Damsgaard, C., Thomsen, M., et al. (2019). Learning to air-breathe: The first steps. Physiology, 34, 14–29. https://doi.org/10.1152/physiol.00028.2018

    Article  CAS  PubMed  Google Scholar 

  • Brauner, C. J., & Baker, D. W. (2009). Patterns of acid–base regulation during exposure to hypercarbia in fishes. In Cardio-respiratory control in vertebrates (pp. 43–63). Springer.

    Chapter  Google Scholar 

  • Brauner, C. J., Matey, V., Wilson, J. M., et al. (2004). Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon. The Journal of Experimental Biology, 207, 1433–1438.

    Article  CAS  PubMed  Google Scholar 

  • Brauner, C. J., Wang, T., Wang, Y., et al. (2004). Limited extracellular but complete intracellular acid-base regulation during short-term environmental hypercapnia in the armoured catfish, Liposarcus pardalis. The Journal of Experimental Biology, 207, 3381–3390. https://doi.org/10.1242/jeb.01144

    Article  CAS  PubMed  Google Scholar 

  • Burggren, W. (2018). Developmental phenotypic plasticity helps bridge stochastic weather events associated with climate change. The Journal of Experimental Biology, 221, jeb161984. https://doi.org/10.1242/jeb.161984

    Article  PubMed  Google Scholar 

  • Cameron, J. N., & Wood, C. M. (1978). Renal function and acid-base regulation in two Amazon erythrinid fishes: Hoplias malabaricus, a water breather, and Hoplerythrinus unitaeniatus, a facultative air breather. Canadian Journal of Zoology, 56, 917–930.

    Article  CAS  Google Scholar 

  • Campbell, J. W. (1991). Excretory nitrogen metabolism. In C. L. Prosser (Ed.), Comparative animal physiology (Environmental and metabolic animal physiology) (pp. 277–324). Wiley.

    Google Scholar 

  • Campos, D. F., Braz-Mota, S., Val, A. L., & Almeida-Val, V. M. F. (2019). Predicting thermal sensitivity of three Amazon fishes exposed to climate change scenarios. Ecological Indicators, 101, 533–540. https://doi.org/10.1016/j.ecolind.2019.01.051

    Article  CAS  Google Scholar 

  • Campos, D. F., Jesus, T. F., Kochhann, D., et al. (2017). Metabolic rate and thermal tolerance in two congeneric Amazon fishes: Paracheirodon axelrodi Schultz, 1956 and Paracheirodon simulans Géry, 1963 (Characidae). Hydrobiologia, 789, 133–142. https://doi.org/10.1007/s10750-016-2649-2

    Article  Google Scholar 

  • Chapman, L. J., & Chapman, C. A. (1994). Observations on synchronous air breathing in Clarias liocephalus. Copeia, 1994, 246. https://doi.org/10.2307/1446696

    Article  Google Scholar 

  • Chew, S. F. (2003). Urea synthesis in the African lungfish Protopterus dolloi - Hepatic carbamoyl phosphate synthetase III and glutamine synthetase are upregulated by 6 days of aerial exposure. The Journal of Experimental Biology, 206, 3615–3624. https://doi.org/10.1242/jeb.00619

    Article  PubMed  Google Scholar 

  • Chew, S. F., Chan, N. K. Y., Loong, A. M., et al. (2004). Nitrogen metabolism in the African lungfish (Protopterus dolloi) aestivating in a mucus cocoon on land. The Journal of Experimental Biology, 207, 777–786. https://doi.org/10.1242/jeb.00813

    Article  CAS  PubMed  Google Scholar 

  • Chew, S. F., Hiong, K. C., Lam, S. P., et al. (2014). Functional roles of Na+/K+-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon schlosseri. Frontiers in Physiology, 5, 158. https://doi.org/10.3389/fphys.2014.00158

    Article  PubMed  PubMed Central  Google Scholar 

  • Chew, S. F., & Ip, Y. K. (2014). Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes. Journal of Fish Biology, 84, 603–638. https://doi.org/10.1111/jfb.12279

    Article  CAS  PubMed  Google Scholar 

  • Chew, S. F., Jin, Y., & Ip, Y. K. (2001). The Loach Misgurnus anguillicaudatus reduces amino acid catabolism and accumulates alanine and glutamine during aerial exposure. Physiological and Biochemical Zoology, 74, 226–237. https://doi.org/10.1086/319663

    Article  CAS  PubMed  Google Scholar 

  • Chew, S. F., Wilson, J. M., Ip, Y. K., & Randall, D. J. (2005). Nitrogen excretion and defense against ammonia toxicity. Fish Physiology, 21, 307–395.

    Article  Google Scholar 

  • Choe, H., Sackin, H., & Palmer, L. G. (2000). Permeation properties of inward-rectifier potassium channels and their molecular determinants. The Journal of General Physiology, 115, 391–404. https://doi.org/10.1085/jgp.115.4.391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damsgaard, C., Baliga, V. B., Bates, E., et al. (2020). Evolutionary and cardio-respiratory physiology of air-breathing and amphibious fishes. Acta Physiologica, 228, e13406. https://doi.org/10.1111/apha.13406

    Article  CAS  PubMed  Google Scholar 

  • Damsgaard, C., Gam, L. T. H., Dang, D. T., et al. (2015). High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus. The Journal of Experimental Biology, 218, 1290. https://doi.org/10.1242/jeb.117671

    Article  PubMed  Google Scholar 

  • De Boeck, G., Wood, C. M., Iftikar, F. I., et al. (2013). Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, Astronotus ocellatus (Agassiz). The Journal of Experimental Biology, 216(24), 4590–4600. https://doi.org/10.1242/jeb.082891

    Article  CAS  PubMed  Google Scholar 

  • Dejours, P. (1981). Principles of comparative respiratory physiology. Elsevier.

    Google Scholar 

  • Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste? Physiological Reviews, 85, 97–177. https://doi.org/10.1152/physrev.00050.2003

    Article  CAS  PubMed  Google Scholar 

  • Ficke, A. D., Myrick, C. A., & Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17, 581–613. https://doi.org/10.1007/s11160-007-9059-5

    Article  Google Scholar 

  • Frick, N. T., & Wright, P. A. (2002). Nitrogen metabolism and excretion in the mangrove killifish Rivulus marmoratus II. Significant ammonia volatilization in a teleost during air-exposure. The Journal of Experimental Biology, 205, 91–100. https://doi.org/10.1242/jeb.205.1.91

    Article  CAS  PubMed  Google Scholar 

  • Frommel, A. Y., Kwan, G. T., Prime, K. J., et al. (2021). Changes in gill and air-breathing organ characteristics during the transition from water- to air-breathing in juvenile Arapaima gigas. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335, 801–813. https://doi.org/10.1002/jez.2456

    Article  CAS  PubMed  Google Scholar 

  • Furch, K., & Junk, W. J. (1997). Physicochemical conditions in the floodplains. Ecology Studies, 12(6), 69–108.

    Article  Google Scholar 

  • Geirinhas, J. L., Trigo, R. M., Libonati, R., et al. (2018). Climatic and synoptic characterization of heat waves in Brazil. International Journal of Climatology, 38, 1760–1776. https://doi.org/10.1002/joc.5294

    Article  Google Scholar 

  • Giacomin, M., Onukwufor, J. O., Schulte, P. M., & Wood, C. M. (2020). Ionoregulatory aspects of the hypoxia-induced osmorespiratory compromise in the euryhaline Atlantic killifish (Fundulus heteroclitus): The effects of salinity. The Journal of Experimental Biology, 223, jeb216309. https://doi.org/10.1242/jeb.216309

    Article  PubMed  Google Scholar 

  • Godin, J. G. J. (1986). Antipredator function of shoaling in teleost fishes: A selective review. Naturalist canadien (Review of Ecology, and Systematics), 113, 241–250.

    Google Scholar 

  • Gonzalez, R. J., Brauner, C. J., Wang, Y. X., et al. (2010). Impact of ontogenetic changes in branchial morphology on gill function in Arapaima gigas. Physiological and Biochemical Zoology, 83, 322–332. https://doi.org/10.1086/648568

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, R. J., Wilson, R. W., & Wood, C. M. (2005). Ionoregulation in tropical fishes from ion-poor, acidic blackwaters. Fish Physiology, 21, 397–442.

    Article  Google Scholar 

  • Graham, J. B. (1997). Air-breathing fishes. Evolutions, diversity, and adaptation. Academic Press.

    Google Scholar 

  • Graham, J. B. (2011a). Air-breathing fishes | The biology, diversity, and natural history of air-breathing fishes: An introduction. In Encyclopedia of fish physiology (pp. 1850–1860). Elsevier.

    Chapter  Google Scholar 

  • Graham, J. B. (2011b). Air-breathing fishes | Respiratory adaptations for air-breathing fishes. In Encyclopedia of fish physiology (pp. 1861–1874). Elsevier.

    Chapter  Google Scholar 

  • Heisler, N. (1982). Intracellular and extracellular acid-base regulation in the tropical fresh-water teleost fish Synbranchus marmoratus in response to the transition from water breathing to air breathing. The Journal of Experimental Biology, 99, 9–28.

    Article  CAS  PubMed  Google Scholar 

  • Hulbert, W. C., Moon, T. W., & Hochachka, P. W. (1978). The erythrinid gill: Correlations of structure, function, and metabolism. Canadian Journal of Zoology, 56, 814–819.

    Article  CAS  Google Scholar 

  • Hung, C. Y. C., Galvez, F., Ip, Y. K., & Wood, C. M. (2009). Increased gene expression of a facilitated diffusion urea transporter in the skin of the African lungfish (Protopterus annectens) during massively elevated post-terrestrialization urea excretion. The Journal of Experimental Biology, 212, 1202–1211. https://doi.org/10.1242/jeb.025239

    Article  CAS  PubMed  Google Scholar 

  • Ip, Y. K., & Chew, S. F. (2018). Air-breathing and excretory nitrogen metabolism in fishes. Acta Histochemica, 120, 680–690. https://doi.org/10.1016/j.acthis.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  • Ip, A., Chew, S., & Ip, Y. (2010). Ammonia production, excretion, toxicity, and defense in fish: A review. Frontiers in Physiology, 1, 134. https://doi.org/10.3389/fphys.2010.00134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ip, Y. K., Chew, S. F., & Randall, D. J. (2001). Ammonia toxicity, tolerance, and excretion. Fish Physiology, 20, 109–148.

    Article  CAS  Google Scholar 

  • Ip, Y. K., Chew, S. F., & Randall, D. J. (2004). Five tropical air-breathing fishes, six different strategies to defend against ammonia toxicity on land. Physiological and Biochemical Zoology, 77, 768–782. https://doi.org/10.1086/422057

    Article  CAS  PubMed  Google Scholar 

  • Ip, Y. K., Hou, Z., Chen, X. L., et al. (2013). High brain ammonia tolerance and down-regulation of Na+:K+:2Cl cotransporter 1b mRNA and protein expression in the brain of the swamp eel, Monopterus albus, exposed to environmental ammonia or terrestrial conditions. PLoS One, 8, e69512. https://doi.org/10.1371/journal.pone.0069512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ip, Y. K., Loong, A. M., Kuah, J. S., et al. (2012). Roles of three branchial Na+-K+-ATPase α-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 303, R112–R125. https://doi.org/10.1152/ajpregu.00618.2011

    Article  CAS  PubMed  Google Scholar 

  • Ip, Y. K., Randall, D. J., Kok, T. K. T., et al. (2004). The giant mudskipper Periophthalmodon schlosseri facilitates active NH4+ excretion by increasing acid excretion and decreasing NH3 permeability in the skin. The Journal of Experimental Biology, 207, 787–801. https://doi.org/10.1242/jeb.00788

    Article  CAS  PubMed  Google Scholar 

  • Ip, Y. K., Wilson, J. M., Loong, A. M., et al. (2012). Cystic fibrosis transmembrane conductance regulator in the gills of the climbing perch, Anabas testudineus, is involved in both hypoosmotic regulation during seawater acclimation and active ammonia excretion during ammonia exposure. Journal of Comparative Physiology B, 182, 793–812. https://doi.org/10.1007/s00360-012-0664-9

    Article  CAS  Google Scholar 

  • Ip, Y. K., Yeo, P. J., Loong, A. M., et al. (2005). The interplay of increased urea synthesis and reduced ammonia production in the African lungfish Protopterus aethiopicus during 46 days of aestivation in a mucus cocoon. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303A, 1054–1065. https://doi.org/10.1002/jez.a.237

    Article  CAS  Google Scholar 

  • IPCC. (2014). Impacts, adaptation, and vulnerability, Part. B: Regional aspects, climate change 2014. Cambridge University Press.

    Google Scholar 

  • Ishimatsu, A. (2012). Evolution of the cardiorespiratory system in air-breathing fishes. Aqua-BioScience Monographs, 5, 1–28.

    Article  Google Scholar 

  • Jézéquel, C., Tedesco, P. A., Darwall, W., et al. (2020). Freshwater fish diversity hotspots for conservation priorities in the Amazon Basin. Conservation Biology, 34, 956–965. https://doi.org/10.1111/cobi.13466

    Article  PubMed  Google Scholar 

  • Johansen, K., Hanson, D., & Lenfant, C. (1970). Respiration in a primitive air breather, Amia calva. Respiration Physiology, 9, 162–174.

    Article  CAS  PubMed  Google Scholar 

  • Jung, E. H., Brix, K. V., Richards, J. G., et al. (2020). Reduced hypoxia tolerance and survival at elevated temperatures may limit the ability of Amazonian fishes to survive in a warming world. Science of the Total Environment, 748, 141349. https://doi.org/10.1016/j.scitotenv.2020.141349

    Article  CAS  PubMed  Google Scholar 

  • Kramer, D. L., & Graham, J. B. (1976). Synchronous air breathing, a social component of respiration in fishes. Copeia, 1976, 689–697.

    Article  Google Scholar 

  • Kramer, D. L., & Mehegan, J. P. (1981). Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces, Poecilidae). Environmental Biology of Fishes, 6, 299–313.

    Article  Google Scholar 

  • Laurent, P., & Perry, S. F. (1991). Environmental effects on fish gill morphology. Physiological Zoology, 64, 4–25.

    Article  Google Scholar 

  • Lefevre, S., Bayley, M., Mckenzie, D. J., & Craig, J. F. (2014). Air-breathing fishes. Journal of Fish Biology, 84, 547–553. https://doi.org/10.1111/jfb.12349

    Article  CAS  PubMed  Google Scholar 

  • Lefevre, S., Wang, T., Huong, D. T. T., et al. (2013). Partitioning of oxygen uptake and cost of surfacing during swimming in the air-breathing catfish Pangasianodon hypophthalmus. Journal of Comparative Physiology B, 183, 215–221. https://doi.org/10.1007/s00360-012-0701-8

    Article  CAS  Google Scholar 

  • Lima Filho, J. A., Martins, J., Arruda, R., & Carvalho, L. N. (2012). Air-breathing behavior of the jeju fish Hoplerythrinus unitaeniatus in amazonian streams. Biotropica, 44, 512–520. https://doi.org/10.1111/j.1744-7429.2011.00839.x

    Article  Google Scholar 

  • Lin, H. C., & Sung, W. T. (2003). The distribution of mitochondria-rich cells in the gills of air-breathing fishes. Physiological and Biochemical Zoology, 76, 215–228.

    Article  PubMed  Google Scholar 

  • Loong, A. M., Chew, S. F., Wong, W. P., et al. (2012). Both seawater acclimation and environmental ammonia exposure lead to increases in mRNA expression and protein abundance of Na+:K+:2Cl cotransporter in the gills of the climbing perch, Anabas testudineus. Journal of Comparative Physiology. B, 182, 491–506. https://doi.org/10.1007/s00360-011-0634-7

    Article  CAS  Google Scholar 

  • Loong, A. M., Hiong, K. C., Lee, S. M. L., et al. (2005). Ornithine-urea cycle and urea synthesis in African lungfishes, Protopterus aethiopicus and Protopterus annectens, exposed to terrestrial conditions for six days. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303A, 354–365. https://doi.org/10.1002/jez.a.147

    Article  CAS  Google Scholar 

  • Loong, A. M., Pang, C. Y. M., Hiong, K. C., et al. (2008). Increased urea synthesis and/or suppressed ammonia production in the African lungfish, Protopterus annectens, during aestivation in air or mud. Journal of Comparative Physiology B, 178, 351–363. https://doi.org/10.1007/s00360-007-0228-6

    Article  CAS  Google Scholar 

  • McDonald, M. D., Smith, C. P., & Walsh, P. J. (2006). The physiology and evolution of urea transport in fishes. The Journal of Membrane Biology, 212, 93–107. https://doi.org/10.1007/s00232-006-0869-5

    Article  CAS  PubMed  Google Scholar 

  • McKenzie, D. J., & Randall, D. J. (1990). Does Amia calva aestivate? Fish Physiology and Biochemistry, 8, 147–158. https://doi.org/10.1007/BF00004442

    Article  CAS  PubMed  Google Scholar 

  • Musa-Aziz, R., Chen, L.-M., Pelletier, M. F., & Boron, W. F. (2009). Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proceedings of the National Academy of Sciences, 106, 5406–5411. https://doi.org/10.1073/pnas.0813231106

    Article  Google Scholar 

  • Nakhoul, N. L., Hering-Smith, K. S., Abdulnour-Nakhoul, S. M., & Hamm, L. L. (2001). Transport of NH3 /NH4+ in oocytes expressing aquaporin-1. American Journal of Physiology-Renal Physiology, 281, F255–F263. https://doi.org/10.1152/ajprenal.2001.281.2.F255

    Article  CAS  PubMed  Google Scholar 

  • Nawata, C. M., Wood, C. M., & O’Donnell, M. J. (2010). Functional characterization of Rhesus glycoproteins from an ammoniotelic teleost, the rainbow trout, using oocyte expression and SIET analysis. The Journal of Experimental Biology, 213, 1049–1059. https://doi.org/10.1242/jeb.038752

    Article  CAS  Google Scholar 

  • Nelson, J. A. (2014). Breaking wind to survive: Fishes that breathe air with their gut. Journal of Fish Biology, 84, 554–576. https://doi.org/10.1111/jfb.12323

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, G. E., Dymowska, A., & Stecyk, J. A. W. (2012). New insights into the plasticity of gill structure. Respiratory Physiology & Neurobiology, 184, 214–222. https://doi.org/10.1016/j.resp.2012.07.012

    Article  Google Scholar 

  • Ong, K. J., Stevens, E. D., & Wright, P. A. (2007). Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure. The Journal of Experimental Biology, 210, 1109–1115. https://doi.org/10.1242/jeb.002238

    Article  CAS  PubMed  Google Scholar 

  • Partridge, B. L. (1982). The structure and function of fish schools. Scientific American, 246, 114–123. https://doi.org/10.1038/scientificamerican0682-114

    Article  CAS  PubMed  Google Scholar 

  • Pelster, B. (2009). Buoyancy control in aquatic vertebrates. In M. L. Glass & S. C. Wood (Eds.), Cardio-respiratory control in vertebrates (pp. 65–98). Springer Verlag.

    Chapter  Google Scholar 

  • Pelster, B. (2021). Using the swimbladder as a respiratory organ and/or a buoyancy structure—Benefits and consequences. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335, 831–842. https://doi.org/10.1002/jez.2460

    Article  CAS  PubMed  Google Scholar 

  • Pelster, B., Bridges, C. R., & Grieshaber, M. K. (1988). Physiological adaptations of the intertidal rockpool teleost Blennius pholis L., to aerial exposure. Respiration Physiology, 71, 355–373. https://doi.org/10.1016/0034-5687(88)90028-X

    Article  CAS  PubMed  Google Scholar 

  • Pelster, B., & Burggren, W. W. (2018). Responses to environmental stressors in developing animals: Costs and benefits of phenotypic plasticity. In Development and environment (pp. 97–113). Springer.

    Chapter  Google Scholar 

  • Pelster, B., Giacomin, M., Wood, C. M., & Val, A. L. (2016). Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira. Journal of Comparative Physiology. B, 186, 615–624.

    Article  Google Scholar 

  • Pelster, B., & Wood, C. M. (2018). Ionoregulatory and oxidative stress issues associated with the evolution of air-breathing. Acta Histochemica, 120, 667–679. https://doi.org/10.1016/j.acthis.2018.08.012

    Article  CAS  PubMed  Google Scholar 

  • Pelster, B., Wood, C. M., Braz-Mota, S., & Val, A. L. (2020). Gills and air-breathing organ in O2 uptake, CO2 excretion, N-waste excretion, and ionoregulation in small and large pirarucu (Arapaima gigas). Journal of Comparative Physiology B, 190, 569–583. https://doi.org/10.1007/s00360-020-01286-1

    Article  CAS  Google Scholar 

  • Pelster, B., Wood, C. M., Speers-Roesch, B., et al. (2015). Gut transport characteristics in herbivorous and carnivorous serrasalmid fish from ion-poor Rio Negro water. Journal of Comparative Physiology B, 185, 225–241. https://doi.org/10.1007/s00360-014-0879-z

    Article  CAS  Google Scholar 

  • Perry, S. F., & Gilmour, K. M. (2002). Sensing and transfer of respiratory gases at the fish gill. The Journal of Experimental Zoology, 293, 249–263. https://doi.org/10.1002/jez.10129

    Article  PubMed  Google Scholar 

  • Pratt, K. L., & Franklin, C. E. (2009). Predator or prey? The dive response to aerial and aquatic predators of Arafura filesnakes. Australian Journal of Zoology, 57, 423. https://doi.org/10.1071/ZO09080

    Article  Google Scholar 

  • Ramos, C. A., Fernandes, M. N., da Costa, O. T. F., & Duncan, W. P. (2013). Implications for osmorespiratory compromise by anatomical remodeling in the gills of Arapaima gigas. The Anatomical Record, 296, 1664–1675. https://doi.org/10.1002/ar.22758

    Article  PubMed  Google Scholar 

  • Randall, D. J., Cameron, J. N., Daxboeck, C., & Smatresk, N. (1981). Aspects of bimodal gas exchange in the bowfin. Respiration Physiology, 43, 339–348. https://doi.org/10.1016/0034-5687(81)90114-6

    Article  CAS  PubMed  Google Scholar 

  • Randall, D. J., Farrell, A. P., & Haswell, M. S. (1978). Carbon dioxide excretion in the pirarucu (Arapaima gigas), an obligate air-breathing fish. Canadian Journal of Zoology, 56, 977–982. https://doi.org/10.1139/z78-136

    Article  CAS  Google Scholar 

  • Randall, D. J., & Ip, Y. K. (2006). Ammonia as a respiratory gas in water and air-breathing fishes. Respiratory Physiology & Neurobiology, 154, 216–225.

    Article  CAS  Google Scholar 

  • Randall, D. J., Ip, Y. K., Chew, S. F., & Wilson, J. M. (2004). Air breathing and ammonia excretion in the giant mudskipper, Periophthalmodon schlosseri. Physiological and Biochemical Zoology, 77, 783–788. https://doi.org/10.1086/423745

    Article  CAS  PubMed  Google Scholar 

  • Randall, D. J., Wilson, J. M., Peng, K. W., et al. (1999). The mudskipper, Periophthalmodon schlosseri, actively transports NH4+ against a concentration gradient. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 277, R1562–R1567. https://doi.org/10.1152/ajpregu.1999.277.6.R1562

    Article  CAS  Google Scholar 

  • Robertson, L. M., Val, A. L., Almeida-Val, V. F., & Wood, C. M. (2015). Ionoregulatory aspects of the osmorespiratory compromise during acute environmental hypoxia in 12 tropical and temperate Teleosts. Physiological and Biochemical Zoology, 88, 357–370. https://doi.org/10.1086/681265

    Article  PubMed  Google Scholar 

  • Sayer, M. D. J. (2005). Adaptations of amphibious fish for surviving life out of water. Fish and Fisheries, 6, 186–211. https://doi.org/10.1111/j.1467-2979.2005.00193.x

    Article  Google Scholar 

  • Scadeng, M., McKenzie, C., He, W., et al. (2020). Morphology of the Amazonian Teleost genus Arapaima using advanced 3D imaging. Frontiers in Physiology, 11, 260. https://doi.org/10.3389/fphys.2020.00260

    Article  PubMed  PubMed Central  Google Scholar 

  • Schöngart, J., & Junk, W. J. (2020). Clime e hidrologia nas várzeas da Amazonia Central. In W. J. Junkj, M. Piedale, F. Wittmann, & J. Schöngart (Eds.), Desafios para um Manejo Sustentavel (pp. 44–65).

    Google Scholar 

  • Scott, G. R., Matey, V., Mendoza, J. A., et al. (2017). Air breathing and aquatic gas exchange during hypoxia in armoured catfish. Journal of Comparative Physiology. B, 187, 117–133.

    Article  CAS  Google Scholar 

  • Shartau, R. B., Baker, D. W., Crossley, D. A., & Brauner, C. J. (2016). Preferential intracellular pH regulation: Hypotheses and perspectives. The Journal of Experimental Biology, 219, 2235–2244. https://doi.org/10.1242/jeb.126631

    Article  PubMed  Google Scholar 

  • Shartau, R. B., Baker, D. W., Harter, T. S., et al. (2020). Preferential intracellular pH regulation is a common trait amongst fishes exposed to high environmental CO2. The Journal of Experimental Biology, 223, jeb.208868. https://doi.org/10.1242/jeb.208868

    Article  Google Scholar 

  • Shartau, R. B., & Brauner, C. J. (2014). Acid-base and ion balance in fishes with bimodal respiration. Journal of Fish Biology, 84, 682–704.

    Article  CAS  PubMed  Google Scholar 

  • Shelton, G., Jones, D. R., & Milsom, W. K. (1986). Control of breathing in ectothermic vertebrates. In Comprehensive physiology (pp. 857–909). Wiley.

    Chapter  Google Scholar 

  • Shingles, A., McKenzie, D. J., Claireaux, G., & Domenici, P. (2005). Reflex cardioventilatory responses to hypoxia in the flathead gray mullet (Mugil cephalus) and their behavioral modulation by perceived threat of predation and water turbidity. Physiological and Biochemical Zoology, 78, 744–755. https://doi.org/10.1086/432143

    Article  CAS  PubMed  Google Scholar 

  • Sloman, K. A., Sloman, R. D., De Boeck, G., et al. (2009). The role of size in synchronous air breathing of Hoplosternum littorale. Physiological and Biochemical Zoology, 82, 625–634. https://doi.org/10.1086/605936

    Article  CAS  PubMed  Google Scholar 

  • Sloman, K. A., Wood, C. M., Scott, G. R., et al. (2006). Tribute to R. G. Boutilier: The effect of size on the physiological and behavioural responses of oscar, Astronotus ocellatus, to hypoxia. The Journal of Experimental Biology, 209, 1197–1205. https://doi.org/10.1242/jeb.02090

    Article  PubMed  Google Scholar 

  • Smatresk, N. J. (1986). Ventilatory and cardiac reflex responses to hypoxia and NaCN in Lepisosteus osseus, an air-breathing fish. Physiological Zoology, 59, 385–397. https://doi.org/10.1086/physzool.59.4.30158592

    Article  Google Scholar 

  • Smatresk, N. J., & Cameron, J. N. (1982). Respiration and acid-base physiology of the spotted gar, a bimodal breather: II. Responses to temperature change and hypercapnia. The Journal of Experimental Biology, 96, 281–293. https://doi.org/10.1242/jeb.96.1.281

    Article  Google Scholar 

  • Sollid, J., De Angelis, P., Gundersen, K., & Nilsson, G. E. (2003). Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. The Journal of Experimental Biology, 206, 3667–3673. https://doi.org/10.1242/jeb.00594

    Article  PubMed  Google Scholar 

  • Tay, Y. L., Loong, A. M., Hiong, K. C., et al. (2006). Active ammonia transport and excretory nitrogen metabolism in the climbing perch, Anabas testudineus, during 4 days of emersion or 10 minutes of forced exercise on land. The Journal of Experimental Biology, 209, 4475–4489. https://doi.org/10.1242/jeb.02557

    Article  CAS  PubMed  Google Scholar 

  • Tencatt, L. F. C., Muriel-Cunha, J., Zuanon, J., et al. (2020). A journey through the Amazon Middle Earth reveals Aspidoras azaghal (Siluriformes: Callichthyidae), a new species of armoured catfish from the rio Xingu basin, Brazil. Journal of Fish Biology, 97, 1072–1086. https://doi.org/10.1111/jfb.14467

    Article  CAS  PubMed  Google Scholar 

  • Thinh, P. V., Huong, D. T. T., Gam, L. T. H., et al. (2019). Renal acid excretion contributes to acid-base regulation during hypercapnia in air-exposed swamp eel (Monopterus albus). The Journal of Experimental Biology, 222, jeb.198259. https://doi.org/10.1242/jeb.198259

    Article  Google Scholar 

  • Thurman, E. (1985). Geochemistry of natural waters. Martinus Nijhof/Dr. W Junk Publishers.

    Book  Google Scholar 

  • Tng, Y. Y. M., Chew, S. F., Wee, N. L. J., et al. (2009). Acute ammonia toxicity and the protective effects of methionine sulfoximine on the swamp eel, Monopterus albus. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311A, 676–688. https://doi.org/10.1002/jez.555

    Article  CAS  Google Scholar 

  • Tsui, T. K. N., Randall, D. J., Chew, S. F., et al. (2002). Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus. The Journal of Experimental Biology, 205, 651–659. https://doi.org/10.1242/jeb.205.5.651

    Article  CAS  PubMed  Google Scholar 

  • Turko, A. J., Rossi, G. S., & Wright, P. A. (2021). More than breathing air: Evolutionary drivers and physiological implications of an amphibious lifestyle in fishes. Physiology, 36, 307–314. https://doi.org/10.1152/physiol.00012.2021

    Article  PubMed  Google Scholar 

  • Ultsch, G. R. (1987). The potential role of hypercarbia in the transition from water-breathing to air-breathing in vertebrates. Evolution, 41, 442–445. https://doi.org/10.1111/j.1558-5646.1987.tb05811.x

    Article  PubMed  Google Scholar 

  • Ultsch, G. R. (1996). Gas exchange, hypercarbia and acid-base balance, paleoecology, and the evolutionary transition from water-breathing to air-breathing among vertebrates. Palaeogeography Palaeoclimatology Palaeoecology, 123, 1–27. https://doi.org/10.1016/0031-0182(96)00121-6

    Article  Google Scholar 

  • Val, A. L., & Almeida-Val, V. M. F. (1995). Fishes of the Amazon and their environment zoophysiology (Vol. 32). Springer verlag.

    Book  Google Scholar 

  • Val, A. L., Almeida-Val, V. M. F., & Randall, D. J. (2006). Tropical environment. In A. L. Val, V. M. F. Almeida-Val, & D. J. Randall (Eds.), Fish physiology (Vol. 21, pp. 1–45). Elsevier B.V.

    Google Scholar 

  • Val, A., & Wood, C. M. (2022). Global change and physiological challenges for fish of the Amazon today and in the near future. The Journal of Experimental Biology, 225, jeb.216440. https://doi.org/10.1242/jeb.216440

    Article  Google Scholar 

  • Wang, T., & Jackson, D. C. (2016). How and why pH changes with body temperature: The α-stat hypothesis. The Journal of Experimental Biology, 219, 1090–1092.

    Article  PubMed  Google Scholar 

  • Weihrauch, D., Wilkie, M. P., & Walsh, P. J. (2009). Ammonia and urea transporters in gills of fish and aquatic crustaceans. The Journal of Experimental Biology, 212, 1716–1730. https://doi.org/10.1242/jeb.024851

    Article  CAS  PubMed  Google Scholar 

  • Westneat, D. F., Potts, L. J., Sasser, K. L., & Shaffer, J. D. (2019). Causes and consequences of phenotypic plasticity in complex environments. Trends in Ecology & Evolution, 34, 555–568. https://doi.org/10.1016/j.tree.2019.02.010

    Article  Google Scholar 

  • Wilkie, M. P. (2002). Ammonia excretion and urea handling by fish gills: Present understanding and future research challenges. The Journal of Experimental Zoology, 293, 284–301.

    Article  CAS  PubMed  Google Scholar 

  • Wood, C. M. (1993). Ammonia and urea metabolism and excretion. In D. H. Evans (Ed.), The physiology of fishes (pp. 379–425). CRC Press.

    Google Scholar 

  • Wood, C. M. (1996). Is there a relationship between urea production and acid-base balance in fish? In A. L. Val & D. J. Randall (Eds.), Physiology and biochemistry of the fishes of the Amazon (pp. 339–357). INPA.

    Google Scholar 

  • Wood, C. M. (2001). The influence of feeding, exercise, and temperature on nitrogen metabolism and excretion. In P. A. Anderson & P. A. Wright (Eds.), Fish physiology (Vol. 20, pp. 201–238). Academic Press.

    Google Scholar 

  • Wood, C. M., de Souza Netto, J. G., Wilson, J. M., Duarte, R. M., & Val, A. L. (2017). Nitrogen metabolism in tambaqui (Colossoma macropomum), a neotropical model teleost: Hypoxia, temperature, exercise, feeding, fasting, and high environmental ammonia. Journal of Comparative Physiology B, 187, 135–151.

    Article  CAS  Google Scholar 

  • Wood, C. M., Iftikar, F. I., Scott, G. R., et al. (2009). Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (Astronotus ocellatus): New angles to the osmorespiratory compromise. The Journal of Experimental Biology, 212, 1949–1964. https://doi.org/10.1242/jeb.028464

    Article  CAS  PubMed  Google Scholar 

  • Wood, C. M., Kajimura, M., Sloman, K. A., et al. (2007). Rapid regulation of Na+ fluxes and ammonia excretion in response to acute environmental hypoxia in the Amazonian oscar, Astronotus ocellatus. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292, R2048–R2058. https://doi.org/10.1152/ajpregu.00640.2006

    Article  CAS  PubMed  Google Scholar 

  • Wood, C. M., Pelster, B., Braz-Mota, S., & Val, A. L. (2020). Gills versus kidney for ionoregulation in the obligate air-breathing Arapaima gigas, a fish with a kidney in its air-breathing organ. The Journal of Experimental Biology, 223, jeb232694. https://doi.org/10.1242/jeb.232694

    Article  PubMed  Google Scholar 

  • Wood, C. M., Pelster, B., Giacomin, M., et al. (2016). The transition from water-breathing to air-breathing is associated with a shift in ion uptake from gills to gut: A study of two closely related erythrinid teleosts, Hoplerythrinus unitaeniatus and Hoplias malabaricus. Journal of Comparative Physiology. B, 186, 431–445. https://doi.org/10.1007/s00360-016-0965-5

    Article  CAS  Google Scholar 

  • Wood, C. M., Ruhr, I. M., Schauer, K. L., et al. (2019). The osmorespiratory compromise in the euryhaline killifish: Water regulation during hypoxia. The Journal of Experimental Biology, 222, jeb204818. https://doi.org/10.1242/jeb.204818

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood, C. M., Walsh, P. J., Chew, S. F., & Ip, Y. K. (2005). Greatly elevated urea excretion after air-exposure appears to be carrier-mediated in the slender lungfish (Protopterus dolloi). Physiological and Biochemical Zoology, 78, 893–907.

    Article  CAS  PubMed  Google Scholar 

  • Wood, S. C., Weber, R. E., & Davis, B. J. (1979). Effects of air-breathing on acid-base balance in the catfish, Hypostomus sp. Comparative Biochemistry and Physiology Part A: Physiology, 62, 185–187. https://doi.org/10.1016/0300-9629(79)90753-9

    Article  Google Scholar 

  • Wright, P. A. (2021). Cutaneous respiration and osmoregulation in amphibious fishes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 253, 110866. https://doi.org/10.1016/j.cbpa.2020.110866

    Article  CAS  Google Scholar 

  • Wright, P. A., & Wood, C. M. (2009). A new paradigm for ammonia excretion in aquatic animals: Role of Rhesus(Rh) glycoproteins. The Journal of Experimental Biology, 212, 2303–2312. https://doi.org/10.1242/jeb.023085

    Article  CAS  PubMed  Google Scholar 

  • Wright, P. A., & Wood, C. M. (2012). Seven things fish know about ammonia and we don’t. Respiratory Physiology & Neurobiology, 184, 231–240. https://doi.org/10.1016/j.resp.2012.07.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Pelster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pelster, B., Wood, C.M. (2024). Increasing Temperatures Enhance Hypoxic Encounters in the Amazon: Consequences for Air-Breathing Fish. In: de Souza, S.S., Braz-Mota, S., Val, A.L. (eds) The Future of Amazonian Aquatic Biota. Springer, Cham. https://doi.org/10.1007/978-3-031-66822-7_14

Download citation

Publish with us

Policies and ethics