Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Effects of Temperature on Parameters of Aerobic Metabolism and the Capacity for Oxygen Transport in Fish Adapted to Different Climatic Zones

  • Chapter
  • First Online:
The Future of Amazonian Aquatic Biota

Abstract

Temperature stands out as one of the primary factors influencing physiological processes in ectothermic organisms. The impact of temperature increase on fish with diverse life histories varies significantly. Gaining knowledge about how fish respond to temperature elevation is crucial for understanding their susceptibility to climate change. Assessing aerobic metabolism provides valuable insights in this regard, and this chapter aims to evaluate the reliability of the electron transport system (ETS) activity assay by comparing physiological responses in fish from distinct climatic zones, specifically tropical and temperate regions. By conducting such comparisons, we can enhance our understanding of how fish from different climatic backgrounds may react to temperature increases and the potential implications for their adaptation to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida-Silva, J., Campos, D., & Almeida-Val, V. (2020). Metabolic adjustment of Pyrrhulina aff. Brevis exposed to different climate change scenarios. Journal of Thermal Biology, 92, 102657. https://doi.org/10.1016/j.jtherbio.2020.102657

    Article  CAS  PubMed  Google Scholar 

  • Angilletta, M. J., Jr. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570875.001.1

    Book  Google Scholar 

  • Angilletta, M. J., Jr., Huey, R. B., & Frazier, M. R. (2010). Thermodynamic effects on organismal performance: Is hotter better? Physiological and Biochemical Zoology, 83(2), 197–206. https://doi.org/10.1086/648567

    Article  PubMed  Google Scholar 

  • Araújo, J. D., Ghelfi, A., & Val, A. L. (2017). Triportheus albus Cope, 1872 in the blackwater, clearwater, and whitewater of the Amazon: A case of phenotypic plasticity? Frontiers in Genetics, 8, 114. https://doi.org/10.3389/fgene.2017.00114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Båmstedt, U. (1980). ETS activity as an estimator of respiratory rate of zooplankton populations. The significance of variations in environmental factors. Journal of Experimental Marine Biology and Ecology, 42(3), 267–283. https://doi.org/10.1016/0022-0981(80)90181-1

    Article  Google Scholar 

  • Bondyale-Juez, D. R., Packard, T. T., Viera-Rodríguez, M. A., et al. (2017). Respiration: Comparison of the Winkler technique, O2 electrodes, O2 optodes and the respiratory electron transport system assay. Marine Biology, 164, 226. https://doi.org/10.1007/s00227-017-3271-1

    Article  CAS  Google Scholar 

  • Cammen, L. M., Corwin, S., & Christensen, J. P. (1990). Electron transport system (ETS) activity as a measure of benthic macrofaunal metabolism. Marine Ecology Progress Series, 65, 171–182.

    Article  Google Scholar 

  • Campos, D. F., Amanajás, R. D., Almeida-Val, V. M. F., & Val, A. L. (2021). Climate vulnerability of South American freshwater fish: Thermal tolerance and acclimation. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335(9–10), 723–734. https://doi.org/10.1002/jez.2452

    Article  PubMed  Google Scholar 

  • Campos, D. F., Braz-Mota, S., Val, A. L., & Almeida-Val, V. M. F. (2019). Predicting thermal sensitivity of three Amazon fishes exposed to climate change scenarios. Ecological Indicators, 101, 533–540. https://doi.org/10.1016/j.ecolind.2019.01.051

    Article  CAS  Google Scholar 

  • Careau, V., Gifford, M. E., & Biro, P. A. (2014). Individual (co)variation inthermal reaction norms of standard and maximal metabolic rates inwild-caught slimy salamanders. Functional Ecology, 28, 1175–1186.

    Article  Google Scholar 

  • Cavieres, G., & Sabat, P. (2008). Geographic variation in the response to thermal acclimation in rufouscollared sparrows: Are physiological flexibility and environmental heterogeneity correlated? Funct. Ecology, 22, 509–515. https://doi.org/10.1111/j.1365-2435.2008.01382.x

    Article  Google Scholar 

  • Clark, A., & Johnston, N. M. (2002). Scaling of metabolic rate with body mass and temperature in teleost fish. The Journal of Animal Ecology, 68(5), 893–905.

    Article  Google Scholar 

  • Clark, T. D., Sandblom, E., & Jutfelt, F. (2013). Aerobic scope measurements of fishes in an era of climate change: Respirometry, relevance and recommendations. The Journal of Experimental Biology, 216, 2771–2782. https://doi.org/10.1242/jeb.084251

    Article  PubMed  Google Scholar 

  • Clarke, A. (2004). Is there a universal temperature dependence of metabolism? Functional Ecology, 18, 252–256.

    Article  Google Scholar 

  • Clarke, A., & Fraser, K. P. P. (2004). Why does metabolism scale with temperature? Functional Ecology, 18(2), 243–251.

    Article  Google Scholar 

  • Cohen DM, Inada T, Iwamoto T, and Scialabba N (1990) FAO species catalogue. Vol. 10. Gadiform fishes of the world (order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers and other gadiform fishes known to date. FAO Fisheries Synopsis. 125(10). : FAO. 442 p.

    Google Scholar 

  • Dell, A. I., Pawar, S., & Savage, V. M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences, 108(26), 10591–10596. https://doi.org/10.1073/pnas.1015178108

    Article  Google Scholar 

  • Ern, R., Andreassen, A. H., & Jutfelt, F. (2023). Physiological mechanisms of acute upper thermal tolerance in fish. Physiology, 38(3), 141–158. https://doi.org/10.1152/physiol.00027.2022

    Article  PubMed  Google Scholar 

  • Ern, R., Huong, D. T. T., Phuong, N. T., Wang, T., & Bayley, M. (2014). Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean. The Journal of Experimental Biology, 217, 809–814. https://doi.org/10.1242/jeb.094169

    Article  PubMed  Google Scholar 

  • Farrell, A. P. (2009). Environment, antecedents and climate change: Lessons from the study of temperature physiology and river migration of salmonids. Journal of Experimental Biology, 212, 3771–3780. https://doi.org/10.1242/jeb.023671

    Article  CAS  PubMed  Google Scholar 

  • Fry, F. E. J. (1947). Effects of the environment on animal activity. Ontario Fisheries Research Laboratory Publication, Biology Series, 55(68), 1–62.

    Google Scholar 

  • Fry, F. E. J. (1971). The effect of environmental factorson the physiology of fish. In W. S. Hoar & D. J. Randall (Eds.), Fish physiology (Vol. 6, pp. 1–98). Academic Press.

    Google Scholar 

  • Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293(5538), 2248–2251. https://doi.org/10.1126/science.1061967

    Article  CAS  PubMed  Google Scholar 

  • Gunderson, A. R., & Stillman, J. H. (2015). Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proceedings of the Royal Society B: Biological Sciences, 282, 20150401.

    Article  PubMed Central  Google Scholar 

  • Healy, T. M., & Schulte, P. M. (2012). Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiological and Biochemical Zoology, 85(2), 107–119. https://doi.org/10.1086/664584

    Article  CAS  PubMed  Google Scholar 

  • Hernández-León, S., & Ikeda, T. (2005). Zooplankton respiration. In P. A. Del Giorgio & P. J. Williams (Eds.), Respiration in aquatic systems (pp. 57–82). Oxford University Press.

    Chapter  Google Scholar 

  • Herrera, A., Packard, T., Santana, A., & Gómez, M. (2011). Effect of starvation and feeding on respiratory metabolism in Leptomysis lingvura (GO Sars 1866). Journal of Experimental Marine Biology and Ecology, 409(1), 154–159. https://doi.org/10.1016/j.jembe.2011.08.016

    Article  Google Scholar 

  • Hochachka, P. W., & Somero, G. N. (1984). Biochemical adaptation (pp. 1–537). Princeton University Press.

    Book  Google Scholar 

  • Holt, R. E., & Jørgensen, C. (2015). Climate change in fish: Effects of respiratory constraints on optimal life history and behaviour. Biology Letters, 11(2), 1–4.

    Article  Google Scholar 

  • Horne, L. M., DeVries, D. R., Wright, R., Irwin, E., Staton, B. A., Abdelrahman, H. A., & Stoeckel, J. A. (2022). Thermal performance of the electron transport system complex III in seven Alabama fishes. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 339(2), 153–162. https://doi.org/10.1002/jez.2667

    Article  CAS  PubMed  Google Scholar 

  • Johnston, I. A., Calvo, J., Guderley, H., Fernandez, D., & Palmer, L. (1998). Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. The Journal of Experimental Biology, 201, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T., & Overgaard, J. (2022). Extreme escalation of heat failure rates in ectotherms with global warming. Nature, 611(7934), 93–98. https://doi.org/10.1038/s41586-022-05334-4

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, R. C., et al. (2013). Effects of temperature on hardhead minnow (Mylopharodoncon ocephalus) blood-oxygen equilibria. Environmental Biology of Fishes, 96(12), 1389–1397.

    Article  Google Scholar 

  • Kochhann, D., Campos, D. F., & Val, A. L. (2015). Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 190, 54–60. https://doi.org/10.1016/j.cbpa.2015.09.006

    Article  CAS  Google Scholar 

  • Lannig, G., Eckerle, L., Serendero, I., et al. (2003). Temperature adaptation in eurythermal cod (Gadus morhua): A comparison of mitochondrial enzyme capacities in boreal and Arctic populations. Marine Biology, 142, 589–599. https://doi.org/10.1007/s00227-002-0967-6

    Article  CAS  Google Scholar 

  • Lefevre, S. (2016). Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. Conservation Physiology, 4(1), cow009. https://doi.org/10.1093/conphys/cow009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liefting, M., Hoffmann, A. A., & Ellers, J. (2009). Plasticity versus environmental canalization: Population differences in thermal responses along a latitudinal gradient in Drosophila serrata. Evolution, 63, 1954–1963. https://doi.org/10.1111/j.1558-5646.2009.00683.x

    Article  PubMed  Google Scholar 

  • Masel, J., King, O. D., & Maughan, H. (2007). The loss of adaptive plasticity during long periods of environmental stasis. The American Naturalist, 169, 38–46. https://doi.org/10.1086/510212

    Article  PubMed  Google Scholar 

  • McCullough, D. A., et al. (2009). Reviews in fisheries science research in thermal biology: Burning questions for coldwater stream fishes. Reviews in Fisheries Science, 17(1), 90–115.

    Article  Google Scholar 

  • Metcalfe, N. B., Van Leeuwen, T. E., & Killen, S. S. (2016). Does individual variation in metabolic phenotype predict fish behaviour and performance? Journal of Fish Biology, 88(1), 298–321. 10.1111/jfb.12699.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, R., Andreassen, A. H., Åsheim, E. R., Finnøen, M. H., Dresler, G., Brembu, T., Loh, A., Miest, J. J., & Jutfelt, F. (2022). Reduced physiological plasticity in a fish adapted to stable temperatures. Proceedings of the National Academy of Sciences, 119(22), e2201919119. https://doi.org/10.1073/pnas.2201919119

    Article  CAS  Google Scholar 

  • Munday, P. L., McCormick, M. I., & Nilsson, G. E. (2012). Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? The Journal of Experimental Biology.; 15 November 2012, 215(22), 3865–3873. https://doi.org/10.1242/jeb.074765

  • Muskó, I. B., G-Tóth, L., & Szábo, E. (1995). Respiration and respiratory electron transport system (ETS) activity of two amphipods: Corophium curvispinum G.O. Sars and Gammarus fossarum Koch. Polskie Archiwum Hydrobiologii, 42, 547–558.

    Google Scholar 

  • Nati, J. J. H., Lindström, J., Halsey, L. G., & Killen, S. S. (2016). Is there a trade-off between peak performance and performance breadth across temperatures for aerobic scope in teleost fishes? Biology Letters, 12, 122016019120160191. https://doi.org/10.1098/rsbl.2016.0191

    Article  Google Scholar 

  • Nati, J. J., Svendsen, M. B., Marras, S., Killen, S. S., Steffensen, J. F., McKenzie, D. J., & Domenici, P. (2021). Intraspecific variation in thermal tolerance differs between tropical and temperate fishes. Scientific Reports, 11(1), 1–8. https://doi.org/10.1038/s41598-021-00695-8

    Article  CAS  Google Scholar 

  • Norin, T., Malte, H., & Clark, T. D. (2016). Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Functional Ecology, 30(3), 369–378. https://doi.org/10.2307/48582145

    Article  Google Scholar 

  • Packard, T. T. (1971). The measurement of respiratory electron transport activity in marine phytoplankton. Journal of Marine Research, 29(3), 235–244. https://doi.org/10.1007/BF00393750

    Article  Google Scholar 

  • Packard, T. T., Berdalet, E., Blasco, D., Roy, S., St-Amand, L., Lagacé, B., Lee, K., & Gagné, J. (1996). Oxygen consumption in the marine bacterium pseudomonas nautical predicted from ETS activity and bisubstrate enzyme kinetics. Journal of Plankton Research, 18(10), 1819–1835.

    Article  CAS  Google Scholar 

  • Packard, T. T., & Christensen, J. P. (2004). Respiration and vertical carbon flux in the Gulf of Maine water column. Journal of Marine Research, 62(1), 93–115. https://doi.org/10.1357/00222400460744636

    Article  Google Scholar 

  • Packard, T. T., & Gómez, M. (2008). Exploring a first-principles-based model for zooplankton respiration. ICES Journal of Marine Science, 65(3), 371–378. https://doi.org/10.1093/icesjms/fsn003

    Article  Google Scholar 

  • Pörtner, H. (2001). Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 88, 137–146. https://doi.org/10.1007/s001140100216

    Article  PubMed  Google Scholar 

  • Pörtner, H. O. (2002). Climate variations and the physiological basis of temperature dependent biogeography: Systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132, 739–761.

    Article  Google Scholar 

  • Pörtner, H. O. (2010). Oxygen- and capacity-limitation of thermal tolerance: A matrixfor integrating climate-related stressor effects in marine ecosystems. The Journal of Experimental Biology, 213, 881–893.

    Article  PubMed  Google Scholar 

  • Pörtner, H. O., & Farrell, A. P. (2008). Physiology and climate change. Science, 322, 690–692.

    Article  PubMed  Google Scholar 

  • Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315, 95–97.

    Article  PubMed  Google Scholar 

  • Pörtner, H. O., et al. (2006). Trade-offs in thermal adaptation: The need for a molecular to ecological integration. Physiological and Biochemical Zoology, 79(2), 295–313.

    Article  PubMed  Google Scholar 

  • Rohr, J. R., Civitello, D. J., Cohen, J. M., Roznik, E. A., Sinervo, B., & Dell, A. I. (2018). The complex drivers of thermal acclimation and breadth in ectotherms. Ecology Letters, 21(9), 1425–1439. https://doi.org/10.1111/ele.13107

    Article  PubMed  Google Scholar 

  • Rolfe, D. F. S., & Brown, G. C. (1997). Cellular energy metabolism and molecular origin of standard metabolic rate in mammals. Physiological Reviews, 77, 731–758.

    Article  CAS  PubMed  Google Scholar 

  • Schulte, P. M. (2015). The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. The Journal of Experimental Biology, 218, 1856–1866. https://doi.org/10.1242/jeb.118851

    Article  PubMed  Google Scholar 

  • Seebacher, F., White, C. R., & Franklin, C. E. (2015). Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 5, 61–66.

    Article  Google Scholar 

  • Simčič, T., & Brancelj, A. (2003). Estimation of the proportion of metabolically active mass in the amphipod Gammarus fossarum. Freshwater Biology, 48, 1093–1099.

    Article  Google Scholar 

  • Simčič, T., & Brancelj, A. (2004). Respiratory electron transport system (ETS) activity as an estimator of the thermal tolerance of two Daphnia hybrids. Journal of Plankton Research, 26, 525–534. https://doi.org/10.1093/plankt/fbh056

    Article  Google Scholar 

  • Simčič, T., Jesenšek, D., & Brancelj, A. (2015). Effects of increased temperature on metabolic activity and oxidative stress in the first life stages of marble trout (Salmo marmoratus). Fish Physiology and Biochemistry, 41(4), 1005–1014.

    Article  PubMed  Google Scholar 

  • Simčič, T., Jesenšek, D., & Brancelj, A. (2017). Metabolic characteristics of early life history stages of native marble trout (Salmo marmoratus) and introduced brown trout (Salmo trutta) and their hybrids in the Soča River. Ecology of Freshwater Fish, 26(1), 141–149. https://doi.org/10.1111/eff.12264

    Article  Google Scholar 

  • Smith, J. C., & Chong, C. K. (1982). Body weight, activities of cytochrome oxidase and electron transport system in the liver of the American plaice Hippoglossoides platessoides. Can these activities serve as indicators of metabolism? Marine Ecology Progress Series, 9, 171–117.

    Article  CAS  Google Scholar 

  • St-Pierre, J., Brand, M. D., & Boutilier, R. G. (2000). Mitochondria as ATP consumers: Cellular treason in anoxia. Proceedings of the National Academy of Sciences, 97, 8670–8674. https://doi.org/10.1073/pnas.140093597

    Article  CAS  Google Scholar 

  • Steinhausen, M. F., Sandblom, E., Eliason, E. J., Verhille, C., & Farrell, A. P. (2008). The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka). The Journal of Experimental Biology.; 15 December 2008, 211(24), 3915–3926. https://doi.org/10.1242/jeb.019281

    Article  CAS  PubMed  Google Scholar 

  • Val, A. L., & Wood, C. M. (2022). Global change and physiological challenges for fish of the Amazon today and in the near future. The Journal of Experimental Biology. 15 May 2022, 225(10) jeb216440. https://doi.org/10.1242/jeb.216440

  • Val, A. L., Paula-Silva, N., Almeida-Val, F., & V. M., & Wood, C. M. (2016). In vitro effects of increased temperature and decreased pH on blood oxygen affinity of 10 fish species of the Amazon. Journal of Fish Biology, 89(1), 264–279. https://doi.org/10.1111/jfb.13009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiani Kochhann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kochhann, D., Simčič, T., de Nazaré Paula-da-Silva, M., Brancelj, A., Val, A.L. (2024). Effects of Temperature on Parameters of Aerobic Metabolism and the Capacity for Oxygen Transport in Fish Adapted to Different Climatic Zones. In: de Souza, S.S., Braz-Mota, S., Val, A.L. (eds) The Future of Amazonian Aquatic Biota. Springer, Cham. https://doi.org/10.1007/978-3-031-66822-7_16

Download citation

Keywords

Publish with us

Policies and ethics