Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Impacts of Climate Change and Local Disturbance on Stream Fish Assemblages in the Amazon

  • Chapter
  • First Online:
The Future of Amazonian Aquatic Biota

Abstract

Freshwater environments are among the most threatened by anthropogenic impacts in the world. Among these environments, streams are especially vulnerable to structural changes, water pollution, alterations in food chains, and loss of biodiversity, resulting from deforestation, agricultural land use, as well as small dams and road construction. Changes in rainfall patterns and increased temperature resulting from climate change may boost the negative effects of local habitat disturbances and disrupt physiological, biological and behavioral responses of the aquatic biota, including the instability of seasonal predictability. Here, we evaluate the current knowledge regarding the effects of local anthropogenic disturbances and those from ongoing planetary climate changes on the aquatic environment and fish fauna of small streams worldwide, with a special focus on Amazonian forest streams. To do so, we conducted a (non-exhaustive) literature review searching for information regarding direct and indirect impacts of climate change on the structure and hydrological dynamics of headwater streams around the world. Then, we present information on the effects of such environmental changes in species distributions, on the taxonomic and functional structure and composition of stream fish assemblages in the Amazon and in other biomes. Despite the scarcity of published references dealing with combined/synergic effects of climate change and local anthropogenic impacts on the biology and ecology of stream fishes worldwide, we bring some insights about these emerging environmental problems affecting Amazon stream fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adem, A. A., Tilahun, S. A., Ayana, E. K., Worqlul, A. W., Assefa, T. T., Dessu, S. B., & Melesse, A. M. (2016). Climate change impact on stream flow in the upper Gilgel Abay catchment, Blue Nile Basin, Ethiopia. In Landsc Dynam Soils and Hydrol Proc in Varied Climates (pp. 645–673). Springer.

    Chapter  Google Scholar 

  • Allard, L., Popée, M., Vigouroux, R., & Brosse, S. (2016). Effect of reduced impact logging and small-scale mining disturbances on Neotropical stream fish assemblages. Aquatic Sciences, 78, 315–325.

    Article  Google Scholar 

  • Al-Mukhtar, M., Dunger, V., & Merkel, B. (2014). Assessing the impacts of climate change on hydrology of the upper reach of the spree river: Germany. Water Resources Management, 28, 2731–2749.

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. JAWRA, 84(1), 73–89.

    Google Scholar 

  • Baker, C. O., & Votapka, F. E. (1990). Fish passage through culverts (Vol. 990). US Department of Transportation, Federal Highway Administration.

    Google Scholar 

  • Barros, G. G. (2022). Respostas de um peixe de riacho à construção de uma rodovia na Amazônia: variação fenotípica inter e intrapopulacional e especialização individual. Thesis, National Institute of Amazonian Research.

    Google Scholar 

  • Benone, N. L., Soares, B. E., Lobato, C. M. C., Seabra, L. B., Bauman, D., & Montag, L. F. S. (2020). How modified landscapes filter rare species and modulate the regional pool of ecological traits. Hydrobiology, 849, 4499–4514.

    Article  Google Scholar 

  • Bojsen, B. H., & Barriga, R. (2002). Effects of deforestation on fish community structure in Ecuadorian Amazon streams. Freshwater Biology, 47, 2246–2260.

    Article  Google Scholar 

  • Borba, G. C., Costa, F. R. C., Espírito-Santo, H. M. V., Leitão, R. P., Dias, M. S., & Zuanon, J. (2020). Temporal changes in rainfall affect taxonomic and functional composition of stream fish assemblages in Central Amazonia. Freshwater Biology, 66(4), 753–764. https://doi.org/10.1111/fwb.13675

    Article  Google Scholar 

  • Brejão, G. L., Hoeinghaus, D. J., Perez-Mayorga, M. A., Ferraz, S. F. B., & Casatti, L. (2017). Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conservation Biology, 32(4), 860–871.

    Article  Google Scholar 

  • Brejão, G. L., Teresa, F. B., & Gerhard, P. (2020). When roads cross streams: Fish assemblage responses to fluvial fragmentation in lowland Amazonian streams. Neotropical Ichthyology, 18(3), e200031.

    Article  Google Scholar 

  • Brown, L. R., Gray, R. H., Hughes, R. M., & Meador, M. R. (2005). Introduction to effects of urbanization on stream ecosystems. American Fisheries Society Symposium, 47, 1–8.

    Google Scholar 

  • Buisson, L., & Grenouillet, G. (2009). Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions, 15(4), 613–626.

    Article  Google Scholar 

  • Buisson, L., Thuiller, W., Lek, S., Lim, P. U. Y., & Grenouillet, G. (2008). Climate change hastens the turnover of stream fish assemblages. Global Change Biology, 14(10), 2232–2248.

    Article  Google Scholar 

  • Buisson, L., Grenouillet, G., Villéger, S., Canal, J., & Laffaille, P. (2013). Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biology, 19(2), 387–400.

    Article  PubMed  Google Scholar 

  • Bush, A. O., Fernandez, J. C., Esch, G. W., & Seed, J. R. (2001). Parasitism: The diversity and ecology of animal parasites. Cambridge University Press. 312p.

    Google Scholar 

  • Cairns, M. A., Ebersole, J. L., Baker, J. P., Wigington, P. J., Jr., Lavigne, H. R., & Davis, S. M. (2005). Influence of summer stream temperatures on black spot infestation of juvenile Coho Salmon in the Oregon coast range. Transactions of the American Fisheries Society, 134, 1471–1479. https://doi.org/10.1577/T04-151.1

    Article  Google Scholar 

  • Campos, D. F., Braz-Mota, S., Val, A. L., & Almeida-Val, V. M. F. (2019). Predicting thermal sensitivity of three Amazon fishes exposed to climate change scenarios. Ecological Indicators, 101, 533–540. https://doi.org/10.1016/j.ecolind.2019.01.051

    Article  CAS  Google Scholar 

  • Cantanhêde, L. G., Andrade, A. L., Leão, H., & Montag, L. F. A. (2021). How does conversion from forest to pasture affect the taxonomic and functional structure of the fish assemblages in Amazonian streams? Ecology of Freshwater Fish, 30, 334–346.

    Article  Google Scholar 

  • Carvalho, R. L., Resende, A. F., Barlow, J., França, F. M., Moura, M. R., Maciel, R., et al. (2023). Pervasive gaps in Amazonian ecological research. Current Biology, 33, 1–9. https://doi.org/10.1016/j.cub.2023.06.077

    Article  CAS  Google Scholar 

  • Casatti, L., Langeani, F., & Ferreira, C. P. (2006). Effects of physical habitat degradation on the stream fish assemblage structure in a pasture region. Environmental Management, 38, 974–982.

    Article  PubMed  Google Scholar 

  • Castanho, D. G. R., Deus, C. P., Zuanon, J., Santorelli, S., Leitão, R. P., & Teresa, F. B. S. (2019). Simulation of over-exploitation of ornamental fish and its consequences for the functional structure of assemblages of Amazonian streams. Ecology of Freshwater Fish. https://doi.org/10.1111/eff.12524

  • Chang, H., Evans, B. M., & Easterling, D. R. (2001). The effects of climate change on stream flow and nutrient loading 1. JAWRA, 37(4), 973–985.

    Google Scholar 

  • Comte, L., & Grenouillet, G. (2013). Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography, 36(11), 1236–1246.

    Article  Google Scholar 

  • Costa, F., Zuanon, J., Baccaro, F., Schietti, J., Menger, J., Souza, J. L. P., et al. (2020). Effects of climate change on central Amazonian forests: A two decades synthesis of monitoring tropical biodiversity. Oecol Australis, 24, 317–335.

    Article  Google Scholar 

  • Dagosta, F. C. P., & De Pinna, M. (2019). The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bulletin of the American Museum of Natural History, 431. 163 p.

    Google Scholar 

  • Daigle, P. A. (2010). Summary of the environmental impacts of roads management responses and research gaps: A literature review. BC Journal of Ecosystems and Management, 10(3), 65–89.

    Google Scholar 

  • Darimont, C. T., Cooke, R., Bourbonnais, M. L., Bryan, H. M., Carlson, S. M., Estes, J. A., et al. (2023). Humanity’s diverse predatory niche and its ecological consequences. Communications Biology, 6, 609. https://doi.org/10.1038/s42003-023-04940-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Doria, C. R. C., Agudelo, E., Akama, A., Barros, B., Bonfim, M., Carneiro, L., et al. (2021). The silent threat of non-native fish in the Amazon: ANNF database and review. Frontiers in Ecology and Evolution, 9, 646–702. https://doi.org/10.3389/fevo.2021.646702

    Article  Google Scholar 

  • Du, X., Shrestha, N. K., & Wang, J. (2019). Assessing climate change impacts on stream temperature in the Athabasca River basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem. Science of the Total Environment, 650, 1872–1881.

    Article  CAS  PubMed  Google Scholar 

  • Fazel, N., Haghighi, A. T., & Klove, B. (2017). Analysis of land use and climate change impacts by comparing river flow records for headwaters and lowland reaches. Global and Planetary Change. https://doi.org/10.1016/j.gloplacha.2017.09.014

  • Fearnside, P., & Graça, P. M. L. A. (2006). BR-319: Brazil’s Manaus-Porto Velho highway and the potential impact of linking the arc of deforestation to Central Amazonia. Environmental Management, 38(5), 705–716.

    Article  PubMed  Google Scholar 

  • Feng, D., Raoufi, R., Beighley, E., Melack, J. M., Goulding, M., Barthem, R. B., et al. (2020). Future climate impacts on the hydrology of headwater streams in the Amazon River basin: Implications for migratory goliath catfishes. Hydrological Processes, 34(26), 5402–5416. https://doi.org/10.1002/hyp.13952

    Article  Google Scholar 

  • Ferreira, M. C., Begot, T. O., da Silveira, P. B., Juen, L., & Montag, L. F. A. (2018). Effects of oil palm plantations on habitat structure and fish assemblages in Amazon streams. Environmental Biology of Fishes, 101, 547–562.

    Article  Google Scholar 

  • Fittkau, E. J., Irmler, U., Junk, W. J., Reiss, F., & Schmidt, G. W. (1975). Productivity, biomass, and population dynamics in Amazonian water bodies. In Tropical ecological systems: Trends in terrestrial and aquatic research (pp. 289–311). Springer.

    Chapter  Google Scholar 

  • Flores-Lopes, F. (2014). The occurrence of black spot disease in Astyanax aff. Fasciatus (Characiformes: Characidae) in the Guaíba Lake basin, RS, Brazil. Brazilian Journal of Biology, 74(3), 127–134.

    Article  Google Scholar 

  • Flores-Lopes, F., & Thomaz, A. T. (2011). Assessment of environmental quality through analysis of frequency of the black spot disease in an assemblage of fish, Guaíba Lake, RS, Brazil. Brazilian Journal of Biology, 71, 915–923.

    Article  Google Scholar 

  • Fonseca, A., Botelho, C., Boaventura, R. A., & Vilar, V. J. (2014). Integrated hydrological and water quality model for river management: A case study on Lena River. Science of the Total Environment, 485, 474–489.

    Article  PubMed  Google Scholar 

  • Forman, R. T. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology, Evolution, and Systematics, 29, 207–231.

    Article  Google Scholar 

  • Francis, R. A., Chadwick, M. A., & Turbelin, A. J. (2019). An overview of non-native species invasions in urban river corridors. River Research and Applications, 35(8), 1269–1278. https://doi.org/10.1002/rra.3513

    Article  Google Scholar 

  • Frederico, R. G., Olden, J. D., & Zuanon, J. (2016). Climate change sensitivity of threatened, and largely unprotected, Amazonian fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 26, 91–102.

    Article  Google Scholar 

  • Frederico, R. G., Dias, M. S., Jezequel, C., Tedesco, P. A., Hugueny, B., Zuanon, J., et al. (2021). The representativeness of protected areas for Amazonian fish diversity under climate change. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(5), 1158–1166. https://doi.org/10.1002/aqc.3528

    Article  Google Scholar 

  • Freitas, C. E. C., Siqueira-Souza, F. K., Humston, R., & Hurd, L. E. (2013). An initial assessment of drought sensitivity in Amazonian fish communities. Hydrobiology, 705(536), 159–171. https://doi.org/10.1007/s10750-012-1394-4

    Article  CAS  Google Scholar 

  • Freitas, P. V., Montag, L. F. A., Ilha, P., Torres, N. R., Maia, C., Deegan, L., et al. (2021). Local effects of deforestation on stream fish assemblages in the Amazon-Savannah transitional area. Ichthyos, 19(3), e210098.

    Google Scholar 

  • Froese, R. (2006). Cube law, condition factor and weight–length relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology, 22(4), 241–253.

    Article  Google Scholar 

  • Gain, A. K., Immerzeel, W. W., Sperna Weiland, F. C., & Bierkens, M. F. P. (2011). Impact of climate change on the stream flow of the lower Brahmaputra: Trends in high and low flows based on discharge-weighted ensemble modeling. Hydrology and Earth System Sciences, 15(5), 1537–1545.

    Article  Google Scholar 

  • Gao, P., Geissen, V., Ritsema, C. J., Mu, M. X., & Wang, F. (2013). Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China. Hydrology and Earth System Sciences, 17, 961–972.

    Article  Google Scholar 

  • García-Girón, J., Bini, L. M., & Heino, J. (2023). Shortfalls in our understanding of the causes and consequences of functional and phylogenetic variation of freshwater communities across continents. Biological Conservation, 282, 110082. https://doi.org/10.1016/j.biocon.2023.110082

    Article  Google Scholar 

  • Givati, A., Thirel, G., Rosenfeld, D., & Paz, D. (2019). Climate change impacts on streamflow at the upper Jordan River based on an ensemble of regional climate models. Journal of Hydrology: Regional Studies, 21, 92–109.

    Google Scholar 

  • Gloor, M., Barichivich, J., Ziv, G., Brienen, R., Schöngart, J., Peylin, P., et al. (2015). Recent Amazon climate as background for possible ongoing and future changes of Amazon humid forests. Global Biogeochemical Cycles, 29(9), 1384–1399. https://doi.org/10.1002/2014GB005080

    Article  CAS  Google Scholar 

  • Gomes, E. S. (2020). Efeitos da degradação ambiental sobre relações parasito-hospedeiro em riachos urbanos na Amazônia. Unpublished Masters Dissertation, INPA, Manaus, 43p.

    Google Scholar 

  • Graça, P. M. L. A., Dos Santos Jr, M. A., Rocha, V. M., Fearnside, P. M., Emilio, T., Menger, J. S., et al. (2014). Cenários de desmatamento para região de influência da rodovia BR-319: perda potencial de habitats, status de proteção e ameaça para a biodiversidade. In T. Emilio & F. Luizão (Eds.), Cenários para a Amazônia: Clima, Biodiversidade e Uso da Terra (pp. 91–101). Editora INPA.

    Google Scholar 

  • Herrera-R, G. A., Oberdorff, T., Anderson, E. P., Brosse, S., Carvajal-Vallejos, F. M., Frederico, R., et al. (2020). The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Global Change Biology, 26, 5509–5523.

    Article  PubMed  Google Scholar 

  • Hudson, P. J., Dobson, A. P., & Lafferty, K. D. (2006). Is a healthy ecosystem one that is rich in parasites? TREE, 21(7), 381–385. https://doi.org/10.1016/j.tree.2006.04.007

    Article  PubMed  Google Scholar 

  • Ilha, P., Rosso, S., & Schiesari, L. (2019). Effects of deforestation on headwater stream fish assemblages in the upper Xingu River basin, southeastern Amazonia. Neotropical Ichthyology, 17, e180099.

    Article  Google Scholar 

  • IPCC. (2023). In Core Writing Team, H. Lee, & J. Romero (Eds.), Climate change 2023: Synthesis report, summary for policymakers. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. IPCC.

    Google Scholar 

  • Jacob, L. L., Prudente, B. S., Montag, A. L. F., & Silva, R. R. (2021). The effect of different logging regimes on the ecomorphological structure of stream fish assemblages in the Brazilian Amazon. Hydrobiology, 848, 1027–1039.

    Article  Google Scholar 

  • Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden, A. S., et al. (2022). The direct drivers of recent global anthropogenic biodiversity loss. Science Advances, 8(45), eabm9982. https://doi.org/10.1126/sciadv.abm9982

    Article  PubMed  PubMed Central  Google Scholar 

  • Juen, L., Cunha, E. J., Carvalho, F. G., Ferreira, M. C., Begot, T. O., Andrade, A. L., et al. (2016). Effects of oil palm plantations on the habitat structure and biota of streams in eastern Amazon. River Research and Applications, 32(10), 2081–2094.

    Article  Google Scholar 

  • Junk, W. J. (1983). As águas da Bacia Amazônica. In E. Salati, W. J. Junk, S. HOR, & A. E. Oliveira (Eds.), Amazônia: desenvolvimento, integração e ecologia (pp. 45–100). São Paulo.

    Google Scholar 

  • Khan, B., & Colbo, M. H. (2008). The impact of physical disturbance on stream communities: Lessons from road culverts. Hydrobiology, 600, 229–235.

    Article  Google Scholar 

  • Kirk, M. A., & Rahel, F. J. (2022). Air temperatures over-predict changes to stream fish assemblages with climate warming compared with water temperatures. Ecological Applications, 32(1), e02465.

    Article  PubMed  Google Scholar 

  • Kuczynski, L., Ontiveros, V. J., & Hillebrand, H. (2023). Biodiversity time series are biased towards increasing species richness in changing environments. Nature Ecology & Evolution, 7, 994–1001. https://doi.org/10.1038/s41559-023-02078-w

    Article  Google Scholar 

  • Kwon, Y. S., Bae, M. J., Hwang, S. J., Kim, S. H., & Park, Y. S. (2015). Predicting potential impacts of climate change on freshwater fish in Korea. Ecological Informatics, 29, 156–165.

    Article  Google Scholar 

  • Lacerda, A. C. F., Roumbedakis, K., Junior, J. B., Nuñer, A. P. O., Petrucio, M. M., & Martins, M. L. (2018). Fish parasites as indicators of organic pollution in southern Brazil. Journal of Helminthology, 92(3), 322–331.

    Article  CAS  PubMed  Google Scholar 

  • Leal, C. G., Lennox, G. D., Ferraz, S. F. B., Ferreira, J., Gardner, T. A., Thomson, J. R., et al. (2020). Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species. Science, 370, 117–121.

    Article  CAS  PubMed  Google Scholar 

  • Leitão, R. P., Zuanon, J., Villéger, S., Williams, S. E., Baraloto, C., Fortunel, C., et al. (2016). Rare species contribute disproportionately to the functional structure of species assemblages. Proceedings of the Royal Society B, 20160084. https://doi.org/10.1098/rspb.2016.0084

  • Leitão, R. P., Zuanon, J., Mouillot, D., Leal, C. G., Hughes, R. M., Kaufmann, P. R., et al. (2018). Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography, 4, 219–232.

    Article  Google Scholar 

  • Lobato, C. M. C., Benone, N. L., Brasil, L. S., & Montag, L. F. A. (2022). Land use effects on the co-occurrence patterns of streams ichthyofauna in the eastern Amazon. Ecological Indicators, 145, 109659.

    Article  Google Scholar 

  • Lowe-McConnell, R. H. (1987). Ecological studies in tropical fish communities. Cambridge University Press.

    Book  Google Scholar 

  • Lyu, J., Mo, S., Luo, P., Zhou, M., Shen, B., & Nover, D. (2019). A quantitative assessment of hydrological responses to climate change and human activities at spatiotemporal within a typical catchment on the loess plateau, China. Quaternary International, 527, 1–11.

    Article  Google Scholar 

  • Macedo, N. M. N., Coe, M. T., DeFries, R., Uriarte, M., Brando, P. M., Neill, C., et al. (2018). Land-use-driven stream warming in southeastern Amazonia. Philosophical Transactions of the Royal Society B, 368, 20120153.

    Article  Google Scholar 

  • Maghsood, F. F., Moradi, H., MassahBavani, A. R., Panahi, M., Berndtsson, R., & Hashemi, H. (2019). Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios. Water, 11(2), 1–21.

    Article  Google Scholar 

  • Magurran, A., & MacGill, B. J. (2011). Biological diversity: Frontiers in measurement and assessment. Oxford University Press.

    Google Scholar 

  • Maia, C., Salvador, G. N., Begot, T. O., Freitas, P. V., Nonato, F. A. S., Torres, N. R., et al. (2022). Fish functional responses to local habitat variation in streams within multiple land uses areas in the Amazon. Neotropical Ichthyology, 20(4), e220091.

    Article  Google Scholar 

  • Marcogliese, D. J. (2001). Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology, 79(8), 1331–1352.

    Article  Google Scholar 

  • Marengo, J., & Espinoza, J. C. (2016). Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. International Journal of Climatology, 36(3), 1033–1050. https://doi.org/10.1002/joc.4420

    Article  Google Scholar 

  • Marengo, J., Nobre, C. A., Tomasella, J., Oyama, M. D., de Oliveira, G. S., de Oliveira, R., et al. (2008). The drought of Amazonia in 2005. Journal of Climate, 21(3), 495–516. https://doi.org/10.1002/joc.4420

    Article  Google Scholar 

  • Martins, A. R., Bastos, D. A., Sousa, L. M., Giarizzo, T., Vieira, T. B., & Zuanon, J. (2022). Intense droughts affect temporal stability of Amazonian stream fish assemblages. Freshwater Biology, 67(9), 1656–1667. https://doi.org/10.1111/fwb.13970

    Article  Google Scholar 

  • Mascarenhas, M. B. C. (2019). Efeitos da alteração ambiental sobre Bryconops giacopinii (Characidae) em igarapés de terra firme: dieta, fator de condição, parasitismo e reprodução. Unpublished Masters Dissertation, National Institute for Amazonian Research, Manaus, Brazil.

    Google Scholar 

  • Melo, C. E., Machado, F. A., & Pinto-Silva, V. (2003). Diversidade de peixes em um córrego de cerrado no Brasil Central. Brazilian Journal of Ecology, 1(2), 17–23.

    Google Scholar 

  • Mendes Jr, R. N. G. (2013). Composição e estrutura das assembleias de peixes de pequenos riachos afluentes do Lago Ajuruxi, Mazagão-AP. Unpublished Masters Dissertation, National Institute for Amazonian Research., Manaus, Brazil.

    Google Scholar 

  • Moreira, L. H. A., Takemoto, R. M., & Pavanelli, G. C. (2015). Urbanization effects on the host/parasite relationship in fishes from tributary streams of Pirapó River, Paraná state: Assessment of potential environmental bioindicators. Acta Scientiarum Biological Sciences, 37(3), 319–326.

    Article  Google Scholar 

  • Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004

    Article  Google Scholar 

  • Murdoch, A., Mantyka-Pringle, C., & Sharma, S. (2020). The interactive effects of climate change and land use on boreal stream fish communities. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.134518

  • Nelson, K. C., Palmer, M. A., Pizzuto, J. E., Moglen, G. E., Angermeier, P. L., Hilderbrand, R. H., et al. (2009). Forecasting the combined effects of urbanization and climate change on stream ecosystems: From impacts to management options. Journal of Applied Ecology, 46, 154–163.

    Article  PubMed  Google Scholar 

  • Oberdorff, T., Jézéquel, C., Campero, M., Carvajal-Vallejos, F., Cornu, J. F., Dias, M. S., et al. (2015). Opinion paper: How vulnerable are Amazonian freshwater fishes to ongoing climate change? Journal of Applied Ichthyology, 31, 4–9.

    Article  Google Scholar 

  • Oliveira, D. C. D., & Bennemann, S. T. (2005). Ictiofauna, recursos alimentares e relações com as interferências antrópicas em um riacho urbano no sul do Brasil. Biota Neotropica, 5, 95–107.

    Article  Google Scholar 

  • Oliveira, V. A., de Mello, C. R., Beskow, S., Viola, M. R., & Srinivasan, R. (2019). Modeling the effects of climate change on hydrology and sediment load in a headwater basin in the Brazilian Cerrado biome. Ecological Engineering, 133, 20–31.

    Article  Google Scholar 

  • Pelicice, F. M., Agostinho, A. A., Azevedo-Santos, V. M., Bessa, E., Casatti, L., Garrone-Neto, D., et al. (2022). Ecosystem services generated by Neotropical freshwater fishes (pp. 1–24). Hydrobiology.

    Google Scholar 

  • Perkins, D. M., Reiss, J., Yvon-Durocher, G., & Woodward, G. (2010). Global change and food webs in running waters. Hydrobiologia, 657, 181–198. https://doi.org/10.1007/s10750-009-0080-7

    Article  Google Scholar 

  • Phan, D. B., Wu, C. C., & Hsieh, S. C. (2011). Impact of climate change on stream discharge and sediment yield in North Viet Nam. Water Resources, 38, 827–836.

    Article  CAS  Google Scholar 

  • Pinto, B. C. T., Araújo, F. G., Rodrigues, V. D., & Hughes, R. M. (2009). Local and ecoregion effects on fish assemblage structure in tributaries of the Rio Paraiba do Sul, Brazil. Freshwater Biology, 54, 2600–2615.

    Article  Google Scholar 

  • Prudente, B. S., Pompeu, P. S., Juen, L., & Montag, L. F. A. (2017). Effects of reduced-impact logging on physical habitat and fish assemblages in streams of eastern Amazonia. Freshwater Biology, 62(2), 303–316.

    Article  Google Scholar 

  • Punzet, M., Voß, F., Voß, A., Kynast, E., & Bärlund, I. (2012). A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first-order decay rates. Journal of Hydrometeorology, 13(3), 1052–1065.

    Article  Google Scholar 

  • Ribeiro-Brasil, D. R. G., Torres, N. R., Picanço, A. B., Sousa, D. S., Ribeiro, V. S., Brasil, L. S., & Montag, L. F. A. (2020). Contamination of stream fish by plastic waste in the Brazilian Amazon. Environmental Pollution, 266, 115241.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, J. B., Stein, E. D., Beck, M. W., & Ambrose, R. F. (2020). The impact of climate change induced alterations of streamflow and stream temperature on the distribution of riparian species. PLoS One, 15(11), e0242682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolla, A., Esteves, K. E., & Avila-da-Silva, A. O. (2009). Feeding ecology of a stream fish assemblage in an Atlantic Forest remnant (Serra do Japi, SP, Brazil). Neotropical Ichthyology, 7, 65–76.

    Article  Google Scholar 

  • Röpke, C. P., Amadio, S., Zuanon, J., Ferreira, F., Deus, C. P., Pires, T. H. S., & Winemiller, K. O. (2017). Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the Central Amazon. Scientific Reports, 7, 40170. https://doi.org/10.1038/srep40170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röpke, C. P., Pires, T. H., Winemiller, K. O., de Fex, W. D., Deus, C. P., & Amadio, S. (2019). Reproductive allocation by Amazon fishes in relation to feeding strategy and hydrology. Hydrobiology, 826, 291–305.

    Article  Google Scholar 

  • Röpke, C. P., Pires, T. H. S., Zuchi, N., Zuanon, J., & Amadio, S. (2022). Effects of climate-driven hydrological changes in the reproduction of Amazonian floodplain fishes. Journal of Applied Ecology, 59(4), 1134–1145. https://doi.org/10.1111/1365-2664.14126

    Article  Google Scholar 

  • Sanchez, J. D. J. S., de Jesús M. J., Carranza, M., Hernández, R., & del Rocío, M. (2019). Distribución potencial de peces dulceacuícolas tropicales bajo escenarios de cambio climático. Tesis Maestro. El Colegio de la Frontera Sur. EcoSur.

    Google Scholar 

  • Schmidt, G. W. (1972). Chemical properties of some waters in the tropical rain - forest region of Central - Amazonia along the new road Manaus - Caracarai. Amazoniana, 3(2), 199–207.

    Google Scholar 

  • Seabra, L. B., Benone, N. L., & Montag, L. F. A. (2022). Assessing the effects of multiple land uses on the functional beta diversity of stream fishes in the Amazon region. Hydrobiology, 849(20), 4515–4527.

    Article  Google Scholar 

  • Sioli, H. (1975). Tropical Rivers: The Amazon. In B. A. Whitton (Ed.), River ecology (pp. 461–488). University of California Press.

    Google Scholar 

  • Smith, W. S., Lima, C. R., Silva, L. C. M., Corrêa, C. S., Teodoro, C. C., Vaz, A. A., et al. (2018). A duplicação de rodovias no Brasil sob o olhar da Ictiofauna. Boletim Sociedade Brasileria de Ictiologia, 125, 16–23.

    Google Scholar 

  • Sorribas, M. V., Paiva, R. C., Melack, J. M., Bravo, J. M., Jones, C., Carvalho, L., et al. (2016). Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change, 136(3), 555–570.

    Article  CAS  Google Scholar 

  • Sousa, R. G. C., Almeida Mereles, M., Siqueira-Souza, F. K., Hurd, L. E., & Carvalho Freitas, C. E. (2018). Small dams for aquaculture negatively impact fish diversity in Amazonian streams. Aquaculture Environment Interactions, 10, 89–98.

    Article  Google Scholar 

  • Stefan, H. G., & Sinokrot, B. A. (1993). Projected global climate change impact on water temperatures in five north central US streams. Climatic Change, 24(4), 353–381.

    Article  Google Scholar 

  • Stouffer, P. C., Jirinec, V., Rutt, C. L., Bierregaard, R. O., Jr., Hernández-Palma, A., Johnson, E. I., et al. (2021). Long-term change in the avifauna of undisturbed Amazonian rainforest: Ground-foraging birds disappear and the baseline shifts. Ecology Letters, 24(2), 186–195. https://doi.org/10.1111/ele.13628

    Article  PubMed  Google Scholar 

  • Struebig, M. J., Wilting, A., Gaveau, D. L. A., Meijaard, E., Smith, R. J., The Borneo Mammal Distribution Consortium, et al. (2015). Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Current Biology, 25, 372–378. https://doi.org/10.1016/j.cub.2014.11.067

    Article  CAS  PubMed  Google Scholar 

  • Sun, J., Lei, X., Tian, Y., Liao, W., & Wang, Y. (2013). Hydrological impacts of climate change in the upper reaches of the Yangtze River Basin. Quaternary International, 304, 62–74.

    Article  Google Scholar 

  • Suzuki, H., Nakatsugawa, M., & Ishiyama, N. (2022). Climate change impacts on stream water temperatures in a snowy cold region according to geological conditions. Water, 14(14), 2166.

    Article  Google Scholar 

  • Taniwaki, R. H., Cassiano, C. C., Filoso, S., de Barros Ferraz, S. F., de Camargo, P. B., & Martinelli, L. A. (2017). Impacts of converting low-intensity pastureland to high-intensity bioenergy cropland on the water quality of tropical streams in Brazil. Science of the Total Environment, 584, 339–347.

    Article  PubMed  Google Scholar 

  • Tickner, D., Opperman, J. J., Abell, R., Acreman, M., Arthington, A. H., Bunn, S. E., et al. (2020). Bending the curve of global freshwater biodiversity loss: An emergency recovery plan. Bioscience, 70(4), 330–342. https://doi.org/10.1093/biosci/biaa002

    Article  PubMed  PubMed Central  Google Scholar 

  • Trancoso, R. (2006). Mudanças na cobertura da terra e alterações na resposta hidrológica de bacias hidrográficas na Amazônia. Dissertation, National Institute of Amazonian Research.

    Google Scholar 

  • Trancoso, R., Carneiro Filho, A., Tomasella, J., Schietti, J., Forsberg, B. R., & Miller, R. P. (2010). Deforestation and conservation in major watersheds of the Brazilian Amazon. Environmental Conservation, 36(4), 277–288. https://doi.org/10.1017/S0376892909990373

    Article  Google Scholar 

  • Trombulak, S. C., & Fressel, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14(1), 18–30.

    Article  Google Scholar 

  • van Rees, C. B., Waylen, K. A., Schmidt-Kloiber, A., Thackeray, S. J., Kalinkat, G., Martens, K., et al. (2021). Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience. Conservation Letters, 14(1), e12771.

    Article  Google Scholar 

  • Wang, X., Li, Z., & Li, M. (2018). Impacts of climate change on stream flow and water quality in a drinking water source area, northern China. Environment and Earth Science, 77, 1–14.

    Article  Google Scholar 

  • Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philosophical Transactions. Royal Society of London, 365, 2093–2106. https://doi.org/10.1098/rstb.2010.0055

    Article  Google Scholar 

  • Woznicki, S. A., Nejadhashemi, A. P., Tang, Y., & Wang, L. (2016). Large-scale climate change vulnerability assessment of stream health. Ecological Indicators, 69, 578–594.

    Article  Google Scholar 

  • Xenopoulos, M. A., Lodge, D. M., Alcamo, J., Märker, M., Schulze, K., & Van Vuuren, D. P. (2005). Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology, 11(10), 1557–1564.

    Article  Google Scholar 

  • Xu, Y. P., Zhang, X., Ran, Q., & Tian, Y. (2013). Impact of climate change on hydrology of upper reaches of Qiantang River Basin, East China. Journal of Hydrology, 483, 51–60.

    Article  Google Scholar 

  • Yuhara, T. Y. (2012). Avaliação do impacto da utilização de manilhas na construção de estradas sobre ambientes aquáticos e na ictiofauna em duas rodovias na região sul de Minas Gerais. Dissertation, Universidade Federal de Lavras.

    Google Scholar 

Download references

Acknowledgments

We thank the ADAPTA project for providing support to field and laboratory activities related to our research with stream fishes, and especially during the development of the Doctoral Thesis (GGB) and the Master’s Dissertation (MBCB). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior— Brasil (CAPES)—Finance Code 001, and Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) through the Post-Graduate Program Biologia de Água Doce e Pesca Interior at INPA. We are also grateful to CNPq, FAPEAM and CAPES for long-term financial support to the Igarapés project; INPA provided logistic support to field and laboratory activities, as well as office space and other facilities, for which we sincerely thank. Camila S. dos Anjos helped with fish parasites identification, Eurizângela Dary with analysis of fish stomach contents, and José da Silva Lopes (“Seu Zé”) provided invaluable help during the field trips. We also thank Dr. Gilvan Yogui from the Laboratory of Organic Compounds in Coastal and Marine Ecosystems, Oceanography Department of Federal University of Pernambuco in Recife, Brazil, for the support with stable isotope analyses, and Dr. Márcio Silva Araújo from Universidade Estadual Paulista (UNESP-Rio Claro) for the support with stable isotope, geometric morphometric and individual specialization analyses. Fish specimen collections were authorized by SISBIO (permit # 10199-5).

Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content of this chapter.

Ethics Approval

Research activities with fishes at INPA were authorized by the institutional Ethics Committee on the Use of Animals in Research (permit # 052/2012 granted to Projeto Igarapés/JZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Gazzana Barros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barros, G.G., Mascarenhas, B., Zuanon, J., de Deus, C.P. (2024). Impacts of Climate Change and Local Disturbance on Stream Fish Assemblages in the Amazon. In: de Souza, S.S., Braz-Mota, S., Val, A.L. (eds) The Future of Amazonian Aquatic Biota. Springer, Cham. https://doi.org/10.1007/978-3-031-66822-7_4

Download citation

Keywords

Publish with us

Policies and ethics