Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Fetal Cardiovascular Physiology

  • Chapter
  • First Online:
Doppler Ultrasound in Obstetrics and Gynecology

Abstract

Our understanding of fetal cardiovascular physiology has markedly increased in the last 50 years, with the introduction of suitable animal models. When studying the cardiovascular system before birth, the temporal profile of cardiovascular development between species is a highly important consideration for translation to the human clinical situation. Rats and mice are altricial species, in which cardiovascular maturation continues past birth, becoming completed by the second week of postnatal life. In addition, rodents give birth to litters, so differences in the maternal metabolic adaptations to pregnancy in highly polytocous species also require clear thought. In contrast, sheep and humans share similar prenatal tempos of precocial cardiovascular development and some breeds of sheep give birth to singleton lambs of similar weight to term human babies. Most importantly, the sheep is the only animal model that permits surgical instrumentation of the fetus for long-term in vivo cardiovascular recording. Comparable fundamental insight has not been developed in another species. Therefore, this chapter summarizes our current understanding of fetal cardiovascular physiology derived primarily from studies in fetal sheep during basal and stressful conditions and thereby of direct human obstetric relevance. The effects on fetal cardiovascular function of advancing gestational age, antenatal glucocorticoid therapy, and exposure to adverse intrauterine conditions are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Intaglietta M, Johnson PC, Winslow RM. Microvascular and tissue oxygen distribution. Cardiovasc Res. 1996;32:632–43.

    Article  CAS  Google Scholar 

  2. Pries AR, Secomb TW, Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res. 1996;32:654–67.

    Article  CAS  Google Scholar 

  3. Rudolph AM. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res. 1985;57:811–21.

    Article  CAS  Google Scholar 

  4. Petschow R, Petschow D, Bartels R, Baumann R, Bartels H. Regulation of oxygen affinity in blood of fetal, newborn and adult mouse. Respir Physiol. 1978;35:271–82.

    Article  CAS  Google Scholar 

  5. Bard H, Shapiro M. Perinatal changes of 2,3-diphosphoglycerate and oxygen affinity in mammals not having fetal type hemoglobins. Pediatr Res. 1979;13:167–9.

    Article  CAS  Google Scholar 

  6. Bard H, Teasdale F. Red cell oxygen affinity, hemoglobin type, 2,3-diphosphoglycerate, and pH as a function of fetal development. Pediatrics. 1979;64:483–7.

    Article  CAS  Google Scholar 

  7. Robinson R, Iida H, O'Brien TP, Pane MA, Traystman RJ, Gleason CA. Comparison of cerebrovascular effects of intravenous cocaine injection in fetal, newborn, and adult sheep. Am J Physiol Heart Circ Physiol. 2000;279:H1–6.

    Article  CAS  Google Scholar 

  8. Merlet-Benichou C. Oxygen transport by the fetal blood. Poumon Coeur. 1975;31:197–203.

    CAS  Google Scholar 

  9. Oski FA. Clinical implications of the oxyhemoglobin dissociation curve in the neonatal period. Crit Care Med. 1979;7:412–8.

    Article  CAS  Google Scholar 

  10. Coceani F, Olley PM. The control of cardiovascular shunts in the fetal and perinatal period. Can J Physiol Pharmacol. 1988;66:1129–34.

    Article  CAS  Google Scholar 

  11. Kiserud T. Fetal circulation--from passive knowledge to current hemodynamics. Tidsskr Nor Laegeforen. 2001;121:313–7.

    CAS  Google Scholar 

  12. Itskovitz J, LaGamma EF, Rudolph AM. The effect of reducing umbilical blood flow on fetal oxygenation. Am J Obstet Gynecol. 1983b;145:813–8.

    Article  CAS  Google Scholar 

  13. Asakura H, Ball KT, Power GG. Interdependence of arterial PO2 and O2 consumption in the fetal sheep. J Dev Physiol. 1990;13:205–13.

    CAS  Google Scholar 

  14. Jellyman JK, Fletcher AJW, Fowden AL, Giussani DA. Glucocorticoid maturation of fetal cardiovascular function. Trends Mol Med. 2020;26(2):170−84.

    Google Scholar 

  15. Rudolph AM, Heymann MA. Circulatory changes during growth in the fetal lamb. Circ Res. 1970;26:289–99.

    Article  CAS  Google Scholar 

  16. Boddy K, et al. Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxaemia and hypercapnia in sheep. J Physiol. 1974;243(3):599–618.

    Article  CAS  Google Scholar 

  17. Dawes GS, Johnston BM, Walker DW. Relationship of arterial pressure and heart rate in fetal, new-born and adult sheep. J Physiol. 1980;309:405–17.

    Article  CAS  Google Scholar 

  18. Giussani DA, Forhead AJ, Fowden AL. Development of cardiovascular function in the horse fetus. J Physiol. 2005;565(Pt 3):1019–30.

    Article  CAS  Google Scholar 

  19. Kitanaka T, et al. Fetal responses to long-term hypoxemia in sheep. Am J Phys. 1989;256(6 Pt 2):R1348–54.

    CAS  Google Scholar 

  20. Macdonald AA, Colenbrander B, Wensing CJ. The effects of gestational age and chronic fetal decapitation on arterial blood pressure in the pig fetus. Eur J Obstet Gynecol Reprod Biol. 1983;16(1):63–70.

    Article  CAS  Google Scholar 

  21. Segar JL. Ontogeny of the arterial and cardiopulmonary baroreflex during fetal and postnatal life. Am J Phys. 1997;273(2 Pt 2):R457–71.

    CAS  Google Scholar 

  22. Unno N, et al. Blood pressure and heart rate in the ovine fetus: ontogenic changes and effects of fetal adrenalectomy. Am J Phys. 1999;276(1):H248–56.

    CAS  Google Scholar 

  23. Forhead AJ, et al. Developmental changes in blood pressure and the renin-angiotensin system in pony fetuses during the second half of gestation. J Reprod Fertil Suppl. 2000;56:693–703.

    Google Scholar 

  24. Tangalakis K, Lumbers ER, Moritz KM, Towstoless MK, Wintour EM. Effect of cortisol on blood pressure and vascular reactivity in the ovine fetus. Exp Physiol. 1992;77:709–17.

    Article  CAS  Google Scholar 

  25. Docherty CC, Kalmar-Nagy J, Engelen M, Nathanielsz PW. Development of fetal vascular responses to endothelin-1 and acetylcholine in the sheep. Am J Physiol Regul Integr Comp Physiol. 2001;280:R554–62.

    Article  CAS  Google Scholar 

  26. Anwar MA, Ju K, Docherty CC, Poston L, Nathanielsz PW. Developmental changes in reactivity of small femoral arteries in the fetal and postnatal baboon. Am J Obstet Gynecol. 2001a;184:707–12.

    Article  CAS  Google Scholar 

  27. Blanco CE, Dawes GS, Hanson MA, McCooke HB. Carotid baroreceptors in fetal and newborn sheep. Pediatr Res. 1988;24:342–6.

    Article  CAS  Google Scholar 

  28. Rose JC, Meis PJ, Morris M. Ontogeny of endocrine (ACTH, vasopressin, cortisol) responses to hypotension in lamb fetuses. Am J Phys. 1981;240:E656–61.

    CAS  Google Scholar 

  29. Toubas PL, Silverman NH, Heymann MA, Rudolph AM. Cardiovascular effects of acute hemorrhage in fetal lambs. Am J Phys. 1981;240:H45–8.

    CAS  Google Scholar 

  30. Cohn HE, Sacks EJ, Heymann MA, Rudolph AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974;120:817–24.

    Article  CAS  Google Scholar 

  31. Giussani DA, Spencer JA, Moore PJ, Bennet L, Hanson MA. Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol. 1993;461:431–49.

    Article  CAS  Google Scholar 

  32. Faucher DJ, Lowe TW, Magness RR, Laptook AR, Porter JC, Rosenfeld CR. Vasopressin and catecholamine secretion during metabolic acidemia in the ovine fetus. Pediatr Res. 1987;21:38–43.

    Article  CAS  Google Scholar 

  33. Fumia FD, Edelstone DI, Holzman IR. Blood flow and oxygen delivery to fetal organs as functions of fetal hematocrit. Am J Obstet Gynecol. 1984;150:274–82.

    Article  CAS  Google Scholar 

  34. Yaffe H, Parer JT, Block BS, Llanos AJ. Cardiorespiratory responses to graded reductions of uterine blood flow in the sheep fetus. J Dev Physiol. 1987;9:325–36.

    CAS  Google Scholar 

  35. Giussani DA, Unno N, Jenkins SL, Wentworth RA, Derks JB, Collins JH, Nathanielsz PW. Dynamics of cardiovascular responses to repeated partial umbilical cord compression in late-gestation sheep fetus. Am J Phys. 1997;273:H2351–60.

    CAS  Google Scholar 

  36. Wood CE, Keil LC, Rudolph AM. Hormonal and hemodynamic responses to vena caval obstruction in fetal sheep. Am J Phys. 1982;243:E278–86.

    CAS  Google Scholar 

  37. Hawkins P, Steyn C, McGarrigle HH, Calder NA, Saito T, Stratford LL, Noakes DE, Hanson MA. Cardiovascular and hypothalamic-pituitary-adrenal axis development in late gestation fetal sheep and young lambs following modest maternal nutrient restriction in early gestation. Reprod Fertil Dev. 2000;12:443–56.

    Article  CAS  Google Scholar 

  38. Owens JA, Falconer J, Robinson JS. Effect of restriction of placental growth on oxygen delivery to and consumption by the pregnant uterus and fetus. J Dev Physiol. 1987;9:137–50.

    CAS  Google Scholar 

  39. Jacobs R, Robinson JS, Owens JA, Falconer J, Webster ME. The effect of prolonged hypobaric hypoxia on growth of fetal sheep. J Dev Physiol. 1988;10:97–112.

    CAS  Google Scholar 

  40. Brain KL, Allison BJ, Niu Y, Cross CM, Itani N, Kane AD, Herrera EA, Giussani DA. Induction of controlled hypoxic pregnancy in large mammalian species. Physiol Rep. 2015;3(12):pii: e12614. https://doi.org/10.14814/phy2.12614.

    Article  CAS  Google Scholar 

  41. Allison BJ, Brain KL, Niu Y, Kane AD, Herrera EA, Thakor AS, Botting KJ, Cross CM, Itani N, Skeffington KL, Beck C, Giussani DA. Fetal in vivo continuous cardiovascular function during chronic hypoxia. J Physiol. 2016;594(5):1247–64. https://doi.org/10.1113/JP271091.

    Article  CAS  Google Scholar 

  42. Shaw CJ, Allison BJ, Itani N, Botting KJ, Niu Y, Lees CC, Giussani DA. Altered autonomic control of heart rate variability in the chronically hypoxic fetus. J Physiol. 2018;596(23):6105–19. https://doi.org/10.1113/JP275659. Epub 2018 Apr 29

    Article  CAS  Google Scholar 

  43. Llanos AJ, Riquelme RA, Sanhueza EM, Hanson MA, Blanco CE, Parer JT, Herrera EA, Pulgar VM, Reyes RV, Cabello G, Giussani DA. The fetal llama versus the fetal sheep: different strategies to withstand hypoxia. High Alt Med Biol. 2003;4:193–202.

    Article  Google Scholar 

  44. Giussani DA. The fetal brain sparing response to hypoxia: physiological mechanisms. J Physiol. 2016;594(5):1215–30. https://doi.org/10.1113/JP271099. Epub 2016 Jan 6. Review

    Article  CAS  Google Scholar 

  45. Parer JT, Livingston EG. What is fetal distress? Am J Obstet Gynecol. 1990;162:1421–5.

    Article  CAS  Google Scholar 

  46. Macfarlane CM, Tsakalakos N. Evidence of hyperinsulinaemia and hypoxaemia in the cord blood of neonates born to mothers with gestational diabetes. S Afr Med J. 1985;67:81–4.

    CAS  Google Scholar 

  47. Galanti B, Kaihura CT, Ricci L, Bedocchi L, Rossi T, Benassi G, Benassi L. Perinatal morbidity and mortality in children born to mothers with gestational hypertension. Acta Biomed Ateneo Parmense. 2000;71(Suppl 1):361–5.

    Google Scholar 

  48. Thilaganathan B, Salvesen DR, Abbas A, Ireland RM, Nicolaides KH. Fetal plasma erythropoietin concentration in red blood cell-isoimmunized pregnancies. Am J Obstet Gynecol. 1992;167:1292–7.

    Article  CAS  Google Scholar 

  49. Kendall G, Peebles D. Acute fetal hypoxia: the modulating effect of infection. Early Hum Dev. 2005;81:27–34.

    Article  CAS  Google Scholar 

  50. Manzar S. Maternal sickle cell trait and fetal hypoxia. Am J Perinatol. 2000;17:367–70.

    Article  CAS  Google Scholar 

  51. Mukherjee AB, Hodgen GD. Maternal ethanol exposure induces transient impairment of umbilical circulation and fetal hypoxia in monkeys. Science. 1982;218:700–2.

    Article  CAS  Google Scholar 

  52. Witlin AG. Asthma in pregnancy. Semin Perinatol. 1997;21:284–97.

    Article  CAS  Google Scholar 

  53. Tomson T, Danielsson BR, Winbladh B. Epilepsy and pregnancy. Balancing between risks to the mother and child. Lakartidningen. 1997;94:2827–32, 2835.

    CAS  Google Scholar 

  54. Fernandez-Twinn DS, Gascoin G, Musial B, Carr S, Duque-Guimaraes D, Blackmore HL, Alfaradhi MZ, Loche E, Sferruzzi-Perri AN, Fowden AL, Ozanne SE. Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia and male offspring insulin sensitivity. Sci Rep. 2017;14(7):44,650. https://doi.org/10.1038/srep44650.

    Article  CAS  Google Scholar 

  55. Longo LD. Carbon monoxide: effects on oxygenation of the fetus in utero. Science. 1976;194(4264):523–5.

    Article  CAS  Google Scholar 

  56. Socol ML, Manning FA, Murata Y, Druzin ML. Maternal smoking causes fetal hypoxia: experimental evidence. Am J Obstet Gynecol. 1982;142:214–8.

    Article  CAS  Google Scholar 

  57. Maier RF, Bialobrzeski B, Gross A, Vogel M, Dudenhausen JW, Obladen M. Acute and chronic fetal hypoxia in monochorionic and dichorionic twins. Obstet Gynecol. 1995;86:973–7.

    Article  CAS  Google Scholar 

  58. Salafia CM, Minior VK, Lopez-Zeno JA, Whittington SS, Pezzullo JC, Vintzileos AM. Relationship between placental histologic features and umbilical cord blood gases in preterm gestations. Am J Obstet Gynecol. 1995;173:1058–64.

    Article  CAS  Google Scholar 

  59. Stubblefield PG, Berek JS. Perinatal mortality in term and post-term births. Obstet Gynecol. 1980;56:676–82.

    CAS  Google Scholar 

  60. Leszczynska-Gorzelak B, Poniedzialek-Czajkowska E, Oleszczuk J. Fetal blood saturation during the 1st and 2nd stage of labor and its relation to the neonatal outcome. Gynecol Obstet Investig. 2002a;54:159–63.

    Article  Google Scholar 

  61. Kovalovszki L, Villanyi E, Benko G. Placental villous edema: a possible cause of antenatal hypoxia. Acta Paediatr Hung. 1990;30:209–15.

    CAS  Google Scholar 

  62. Faiz SA, Habib FA, Sporrong BG, Khalil NA. Results of delivery in umbilical cord prolapse. Saudi Med J. 2003;24:754–7.

    Google Scholar 

  63. Mukhopadhyay S, Arulkumaran S. Breech delivery. Best Pract Res Clin Obstet Gynaecol. 2002;16:31–42.

    Article  Google Scholar 

  64. Preston R, Crosby ET, Kotarba D, Dudas H, Elliott RD. Maternal positioning affects fetal heart rate changes after epidural analgesia for labour. Can J Anaesth. 1993;40:1136–41.

    Article  CAS  Google Scholar 

  65. Kuipers IM, Maertzdorf WJ, Keunen H, De Jong DS, Hanson MA, Blanco CE. Effect of maternal hypoxemia on behavior in unanesthetized normoxic or mildly hyperoxic fetal lambs. J Appl Physiol (1985). 1994;76(6):2535–40.

    Article  CAS  Google Scholar 

  66. Iwamoto HS, Kaufman T, Keil LC, Rudolph AM. Responses to acute hypoxemia in fetal sheep at 0.6-0.7 gestation. Am J Phys. 1989;256:H613–20.

    CAS  Google Scholar 

  67. Gardner DS, Powlson AS, Giussani DA. An in vivo nitric oxide clamp to investigate the influence of nitric oxide on continuous umbilical blood flow during acute hypoxaemia in the sheep fetus. J Physiol. 2001;537(Pt 2):587–96.

    Article  CAS  Google Scholar 

  68. Itskovitz J, Goetzman BW, Rudolph AM. The mechanism of late deceleration of the heart rate and its relationship to oxygenation in normoxemic and chronically hypoxemic fetal lambs. Am J Obstet Gynecol. 1982;142:66–73.

    Article  CAS  Google Scholar 

  69. Peeters LL, Sheldon RE, Jones MD Jr, Makowski EL, Meschia G. Blood flow to fetal organs as a function of arterial oxygen content. Am J Obstet Gynecol. 1979;135:637–46.

    Article  CAS  Google Scholar 

  70. Fisher DJ, Heymann MA, Rudolph AM. Fetal myocardial oxygen and carbohydrate consumption during acutely induced hypoxemia. Am J Phys. 1982;242:H657–61.

    CAS  Google Scholar 

  71. Thornburg KL, Reller MD. Coronary flow regulation in the fetal sheep. Am J Phys. 1999;277:R1249–60. 351.

    CAS  Google Scholar 

  72. Anderson PA, Glick KL, Killam AP, Mainwaring RD. The effect of heart rate on in utero left ventricular output in the fetal sheep. J Physiol. 1986;372:557–73.

    Article  CAS  Google Scholar 

  73. Boyle DW, Hirst K, Zerbe GO, Meschia G, Wilkening RB. Fetal hind limb oxygen consumption and blood flow during acute graded hypoxia. Pediatr Res. 1990;28:94–100.

    Article  CAS  Google Scholar 

  74. Cohen WR, Piasecki GJ, Cohn HE, Young JB, Jackson BT. Adrenal secretion of catecholamines during hypoxemia in fetal lambs. Endocrinology. 1984;114:383–90.

    Article  CAS  Google Scholar 

  75. Edelstone DI, Holzman IR. Fetal intestinal oxygen consumption at various levels of oxygenation. Am J Phys. 1982;242:H50–4.

    CAS  Google Scholar 

  76. Wilkening RB, Meschia G. Fetal oxygen uptake, oxygenation, and acid-base balance as a function of uterine blood flow. Am J Phys. 1983;244:H749–55.

    CAS  Google Scholar 

  77. Blanco CE, Dawes GS, Hanson MA, McCooke HB. The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs. J Physiol. 1984;351:25–37.

    Article  CAS  Google Scholar 

  78. Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev. 1994;74(323–364):13452.

    Google Scholar 

  79. Hohimer AR, Bissonnette JM, Richardson BS, Machida CM. Central chemical regulation of breathing movements in fetal lambs. Respir Physiol. 1983;52:99–111.

    Article  CAS  Google Scholar 

  80. Edelman NH, Melton JE, Neubauer JA. The modulation of peripheral chemoreceptor input by central nervous system hypoxia. Adv Exp Med Biol. 1993;337:345–52.

    Article  CAS  Google Scholar 

  81. López-Barneo J, López-López JR, Ureña J, González C. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science. 1988;241(4865):580–2.

    Article  Google Scholar 

  82. Koos BJ. Adenosine A2a receptors and O2 sensing in development. Am J Physiol Regul Integr Comp Physiol. 2011;301(3):R601–22.

    Article  CAS  Google Scholar 

  83. Giussani DA, Gardner DS, Cox DT, Fletcher AJ. Purinergic contribution to circulatory, metabolic, and adrenergic responses to acute hypoxemia in fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2001;280(3):R678–85.

    Article  CAS  Google Scholar 

  84. Reuss ML, Parer JT, Harris JL, Krueger TR. Hemodynamic effects of alpha-adrenergic blockade during hypoxia in fetal sheep. Am J Obstet Gynecol 142, 410-415. Physiol. 1982;1:283–93.

    Google Scholar 

  85. Iwamoto HS, Rudolph AM, Mirkin BL, Keil LC. Circulatory and humoral responses of sympathectomized fetal sheep to hypoxemia. Am J Phys. 1983;245:H767–72.

    CAS  Google Scholar 

  86. Jones CT, Robinson RO. Plasma catecholamines in foetal and adult sheep. J Physiol. 1975;248:15–33.

    Article  CAS  Google Scholar 

  87. Cohen WR, Piasecki GJ, Jackson BT. Plasma catecholamines during hypoxemia in fetal lamb. Am J Phys. 1982;243:R520–5.

    CAS  Google Scholar 

  88. Jones CT, Roebuck MM, Walker DW, Lagercrantz H, Johnston BM. Cardiovascular, metabolic and endocrine effects of chemical sympathectomy and of adrenal demedullation in fetal sheep. J Dev Physiol. 1987;9:347–67.

    CAS  Google Scholar 

  89. Jones CT, Roebuck MM, Walker DW, Johnston BM. The role of the adrenal medulla and peripheral sympathetic nerves in the physiological responses of the fetal sheep to hypoxia. J Dev Physiol. 1988;10:17–36.

    CAS  Google Scholar 

  90. Cheung CY. Fetal adrenal medulla catecholamine response to hypoxia-direct and neural components. Am J Phys. 1990;258:R1340–6.

    CAS  Google Scholar 

  91. Court DJ, Parer JT, Block BS, Llanos AJ. Effects of beta-adrenergic blockade on blood flow distribution during hypoxaemia in fetal sheep. J Dev Physiol. 1984;6:349–58.

    CAS  Google Scholar 

  92. Fletcher AJ, Edwards CM, Gardner DS, Fowden AL, Giussani DA. Neuropeptide Y in the sheep fetus: effects of acute hypoxemia and dexamethasone during late gestation. Endocrinology. 2000;141:3976–82.

    Article  CAS  Google Scholar 

  93. Ekblad E, Edvinsson L, Wahlestedt C, Uddman R, Hakanson R, Sundler F. Neuropeptide Y co-exists and co-operates with noradrenaline in perivascular nerve fibers. Regul Pept. 1984;8:225–35.

    Article  CAS  Google Scholar 

  94. Mormede P, Castagne V, Rivet JM, Gaillard R, Corder R. Involvement of neuropeptide Y in neuroendocrine stress responses. Central and peripheral studies. J Neural Transm Suppl. 1990;29:65–75.

    CAS  Google Scholar 

  95. Lundberg JM, Fried G, Pernow J, Theodorsson-Norheim E. Co-release of neuropeptide Y and catecholamines upon adrenal activation in the cat. Acta Physiol Scand. 1986;126:231–8.

    Article  CAS  Google Scholar 

  96. Thakor AS, Bloomfield MR, Patterson M, Giussani DA. Calcitonin gene related peptide antagonism attenuates the haemodynamic and glycaemic responses to acute hypoxaemia in the late gestation sheep fetus. J Physiol. 2005;566(2):587–97.

    Article  CAS  Google Scholar 

  97. Giussani DA, McGarrigle HH, Spencer JA, Moore PJ, Bennet L, Hanson MA. Effect of carotid denervation on plasma vasopressin levels during acute hypoxia in the late-gestation sheep fetus. J Physiol. 1994;477(Pt 1):81–7.

    Article  CAS  Google Scholar 

  98. Perez R, Espinoza M, Riquelme R, Parer JT, Llanos AJ. Arginine vasopressin mediates cardiovascular responses to hypoxemia in fetal sheep. Am J Phys. 1989;256:R1011–8.

    CAS  Google Scholar 

  99. Broughton PF, Lumbers ER, Mott JC. Factors influencing plasma renin and angiotensin II in the conscious pregnant ewe and its foetus. J Physiol. 1974;243:619–36.

    Article  Google Scholar 

  100. Robillard JE, Weitzman RE, Burmeister L, Smith FG Jr. Developmental aspects of the renal response to hypoxemia in the lamb fetus. Circ Res. 1981;48:128–38.

    Article  CAS  Google Scholar 

  101. Green LR, McGarrigle HH, Bennet L, Hanson MA. Angiotensin II and cardiovascular chemoreflex responses to acute hypoxia in late gestation fetal sheep. J Physiol. 1998a;507(Pt 3):857–67.

    Article  CAS  Google Scholar 

  102. Kjellmer I, Andiné P, Hagberg H, Thiringer K. Extracellular increase of hypoxanthine and xanthine in the cortex and basal ganglia of fetal lambs during hypoxia-ischemia. Brain Res. 1989;478(2):241–7.

    Article  CAS  Google Scholar 

  103. van Bel F, Sola A, Roman C, Rudolph AM. Role of nitric oxide in the regulation of the cerebral circulation in the lamb fetus during normoxemia and hypoxemia. Biol Neonate. 1995;68:200–10.

    Article  Google Scholar 

  104. Pearce WJ. Mechanisms of hypoxic cerebral vasodilatation. Pharmacol Ther. 1995;65(1):75–91.

    Article  CAS  Google Scholar 

  105. Gardner DS, Fowden AL, Giussani DA. Adverse intrauterine conditions diminish the fetal defense against acute hypoxia by increasing nitric oxide activity. Circulation. 2002b;106:2278–83.

    Article  CAS  Google Scholar 

  106. Gardner DS, Giussani DA. Enhanced umbilical blood flow during acute hypoxemia after chronic umbilical cord compression: a role for nitric oxide. Circulation. 2003;108:331–5.

    Article  Google Scholar 

  107. Thakor AS, Giussani DA. The role of nitric oxide in mediating in vivo vascular responses to calcitonin gene related peptide in essential and peripheral circulations in the fetus. Circulation. 2005;112(16):2510–6.

    Article  CAS  Google Scholar 

  108. Morrison S, Gardner DS, Fletcher AJ, Bloomfield MR, Giussani DA. Enhanced nitric oxide activity offsets peripheral vasoconstriction during acute hypoxaemia via chemoreflex and adrenomedullary actions in the sheep fetus. J Physiol. 2003;547:283–91.

    Article  CAS  Google Scholar 

  109. Thakor AS, Richter HG, Kane AD, Dunster C, Kelly FJ, Poston L, Giussani DA. Redox modulation of the fetal cardiovascular defence to hypoxaemia. J Physiol. 2010b;588(Pt 21):4235–47.

    Article  CAS  Google Scholar 

  110. Thakor AS, Allison BJ, Niu Y, Botting KJ, Serón-Ferré M, Herrera EA, Giussani DA. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia. J Pineal Res. 2015; https://doi.org/10.1111/jpi.12242. [Epub ahead of print].

  111. Kane AD, Hansell JA, Herrera EA, Allison BJ, Niu Y, Brain KL, Kaandorp JJ, Derks JB, Giussani DA. Xanthine oxidase and the fetal cardiovascular defence to hypoxia in late gestation ovine pregnancy. J Physiol. 2014;592(Pt 3):475–89.

    Article  CAS  Google Scholar 

  112. Kane AD, Herrera EA, Hansell JA, Giussani DA. Statin treatment depresses the fetal defence to acute hypoxia via increasing nitric oxide bioavailability. J Physiol. 2012;590(Pt 2):323–34.

    Article  CAS  Google Scholar 

  113. Fowden AL, Li J, Forhead AJ. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc. 1998;57(1):113–22.

    Article  CAS  Google Scholar 

  114. Ballard PL, Ballard RA. Scientific basis and therapeutic regimens for use of antenatal glucocorticoids. Am J Obstet Gynecol. 1995;173(1):254–62.

    Article  CAS  Google Scholar 

  115. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50(4):515–25.

    Article  CAS  Google Scholar 

  116. Fletcher AJ, et al. Effects of low dose dexamethasone treatment on basal cardiovascular and endocrine function in fetal sheep during late gestation. J Physiol. 2002;545(2):649–60.

    Article  CAS  Google Scholar 

  117. Fletcher AJ, et al. Development of the ovine fetal cardiovascular defense to hypoxemia towards full term. Am J Physiol Heart Circ Physiol. 2006;291(6):H3023–34.

    Article  CAS  Google Scholar 

  118. Fletcher AJ, et al. Effects of gestational age and cortisol treatment on ovine fetal heart function in a novel biventricular Langendorff preparation. J Physiol. 2005;562(Pt 2):493–505.

    Article  CAS  Google Scholar 

  119. Fletcher AJ, et al. Cardiovascular and endocrine responses to acute hypoxaemia during and following dexamethasone infusion in the ovine fetus. J Physiol. 2003;549(Pt 1):271–87.

    Article  CAS  Google Scholar 

  120. Jellyman JK, et al. Fetal cardiovascular, metabolic and endocrine responses to acute hypoxaemia during and following maternal treatment with dexamethasone in sheep. J Physiol. 2005;567(Pt 2):673–88.

    Article  CAS  Google Scholar 

  121. Jellyman JK, et al. Antenatal glucocorticoid therapy increases glucose delivery to cerebral circulations during acute hypoxemia in fetal sheep during late gestation. Am J Obstet Gynecol. 2009;201(1):82.e1–8.

    Article  Google Scholar 

  122. Block BS, Schlafer DH, Wentworth RA, Kreitzer LA, Nathanielsz PW. Intrauterine asphyxia and the breakdown of physiologic circulatory compensation in fetal sheep. Am J Obstet Gynecol. 1990;162(5):1325–31.

    Article  CAS  Google Scholar 

  123. Prior T, Mullins E, Bennett P, Kumar S. Prediction of fetal compromise in labor. Obstet Gynecol Clin N Am. 2014;123:1263–71.

    Google Scholar 

  124. Herrera EA, Rojas RT, Krause BJ, Ebensperger G, Reyes RV, Giussani DA, Parer JT, Llanos AJ. Cardiovascular function in term fetal sheep conceived, gestated and studied in the hypobaric hypoxia of the Andean altiplano. J Physiol. 2016;594(5):1231–45. https://doi.org/10.1113/JP271110. Epub 2015 Oct 1.

  125. Brain KL, Allison BJ, Niu Y, Cross CM, Itani N, Kane AD, Herrera EA, Skeffington KL, Botting KJ, Giussani DA. Intervention against hypertension in the next generation programmed by developmental hypoxia. PLoS Biol. 2019;17(1):e2006552. https://doi.org/10.1371/journal.pbio.2006552. eCollection 2019 Jan.

Download references

Acknowledgments

Professor Dino Giussani’s current programs of research are funded by the British Heart Foundation and the Medical Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino A. Giussani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giussani, D.A., Botting, K.J., Niu, Y., Shaw, C.J., Ford, S.G., Thakor, A.S. (2023). Fetal Cardiovascular Physiology. In: Maulik, D., Lees, C.C. (eds) Doppler Ultrasound in Obstetrics and Gynecology. Springer, Cham. https://doi.org/10.1007/978-3-031-06189-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06189-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06188-2

  • Online ISBN: 978-3-031-06189-9

  • eBook Packages: MedicineMedicine (R0)

Keywords

Publish with us

Policies and ethics