Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

On the Approximation of Physiologically Structured Population Model with a Three Stage-Structured Population Model in a Grazing System

  • Conference paper
  • First Online:
Stochastic Processes, Statistical Methods, and Engineering Mathematics (SPAS 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 408))

  • 640 Accesses

  • 1 Citation

Abstract

A  great deal of ecological theory is based on simple Lotka-Volterra-type of unstructured population models in the study of complex population dynamics and communities. The main reason is to obtain important information for predicting their future evolution. In these unstructured models, it is assumed that all individuals in the population are identical, with the same birth and death rates, and consume equally from shared resources in a homogeneous environment. In reality, these assumptions are not biologically true but still forms a basis for modeling population ecology. We apply this paradigm on the grazing system consisting of coupled ordinary differential equations describing the dynamics of forage resource and livestock population in a grassland ecosystem. We do this by investigating the dynamics of the individuals at different life-history stages of juvenile and adult livestock. The mathematical derivation of the model is carried out to show how the physiologically structured population model can be approximated using a three stage-structured population model. Thus the resulting system of ordinary differential equations can be solved to predict density-dependent properties of the population since it provides a somewhat close-to-reality description of the natural and traditional grazing system. This model therefore certainly contains the needed information in the modeling methodology and accommodates the necessary amount of biological details about the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berryman, A.: On principles, laws and theory in population ecology. Oikos 103(3), 695–701 (2003)

    Article  Google Scholar 

  2. Berryman, A., Michalski, J., Gutierrez, A., Arditi, R.: Logistic theory of food web dynamics. Ecology 76(2), 336–343 (1995)

    Article  Google Scholar 

  3. Bertness, M., Callaway, R.: Positive interactions in communities. Trends Ecol. Evol. 9(5), 191–193 (1994)

    Article  Google Scholar 

  4. Brännström, Å., Carlsson, L., Simpson, D.: On the convergence of the escalator boxcar train. SIAM J. Numer. Anal. 51(6), 3213–3231 (2013)

    Article  MATH  Google Scholar 

  5. Byström, P., Andersson, J.: Size-dependent foraging capacities and intercohort competition in an ontogenetic omnivore (arctic char). Oikos 110(3), 523–536 (2005)

    Article  Google Scholar 

  6. Cherrett, J.: Ecological concepts; the contribution of ecology to an understanding of the natural world. 04; QH540, C4 1988 (1989)

    Google Scholar 

  7. Chesson, P.: Macarthur’s consumer-resource model. Theor. Popul. Biol. 37(1), 26–38 (1990)

    Article  MATH  Google Scholar 

  8. Cohen, J., Pimm, S., Yodzis, P., Saldaña, J.: Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 67–78 (1993)

    Google Scholar 

  9. Connell, J.: On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122(5), 661–696 (1983)

    Article  Google Scholar 

  10. Cropp, R., Norbury, J.: Population interactions in ecology: a rule-based approach to modeling ecosystems in a mass-conserving framework. SIAM Rev. 57(3), 437–465 (2015)

    Article  MATH  Google Scholar 

  11. Cuddington, K.: The “balance of nature’’ metaphor and equilibrium in population ecology. Biol. Philos. 16(4), 463–479 (2001)

    Article  Google Scholar 

  12. Diekmann, O., Gyllenberg, M., Metz, J.: Physiologically structured population models: towards a general mathematical theory. In: Mathematics for Ecology and Environmental Sciences, pp. 5–20. Springer (2007)

    Google Scholar 

  13. Durinx, M., Metz, J.H., Meszéna, G.: Adaptive dynamics for physiologically structured population models. J. Math. Biol. 56(5), 673–742 (2008)

    Article  MATH  Google Scholar 

  14. Ginzburg, L.: The theory of population dynamics: I. back to first principles. J. Theor. Biol. 122(4), 385–399 (1986)

    Google Scholar 

  15. Gross, J., Shipley, L.A., Hobbs, N.T., Spalinger, D., Wunder, B.: Functional response of herbivores in food-concentrated patches: tests of a mechanistic model. Ecology 74(3), 778–791 (1993)

    Article  Google Scholar 

  16. Hastings, A.: Global stability in lotka-volterra systems with diffusion. J. Math. Biol. 6(2), 163–168 (1978)

    Article  MATH  Google Scholar 

  17. Hastings, A.: Mckendrick von foerster models for patch dynamics. In: Differential Equations Models in Biology, Epidemiology and Ecology, pp. 189–199. Springer (1991)

    Google Scholar 

  18. Jackson, L., Trebitz, A., Cottingham, K.: An introduction to the practice of ecological modeling. Bioscience 50(8), 694–706 (2000)

    Article  Google Scholar 

  19. Krementz, D., Brown, P.W., Kehoe, F., Houston, C.: Population dynamics of white-winged scoters. J. Wildl. Manag. 222–227 (1997)

    Google Scholar 

  20. Lawton, J.: Are there general laws in ecology? Oikos 177–192 (1999)

    Google Scholar 

  21. Liu, Y., He, Z.: Behavioral analysis of a nonlinear three-staged population model with age-size-structure. Appl. Math. Comput. 227, 437–448 (2014)

    MATH  Google Scholar 

  22. Lundberg, S., Persson, L.: Optimal body size and resource density. J. Theor. Biol. 164(2), 163–180 (1993)

    Article  Google Scholar 

  23. Lundström, N., Loeuille, N., Meng XB, M., Brännström, A.: Meeting yield and conservation objectives by harvesting both juveniles and adults. Am. Nat. 193(3), 373–390 (2019)

    Google Scholar 

  24. Metz, J., De Roos, A.: The role of physiologically structured population models within a general individual-based modelling perspective. In: Individual Based Models and Approaches in Ecology: Populations, Communities, and Ecosystems, pp. 88–111 (1992)

    Google Scholar 

  25. Metz, J., Diekmann, O.: Age dependence. In: The Dynamics of Physiologically Structured Populations, pp. 136–184. Springer (1986)

    Google Scholar 

  26. Metz, J., Diekmann, O.: The dynamics of physiologically structured populations, vol. 86. Springer (1986)

    Google Scholar 

  27. Meza, M., Bhaya, A., Kaszkurewicz, E., da Silveira, C.: On–off policy and hysteresis on–off policy control of the herbivore-vegetation dynamics in a semi-arid grazing system. Ecol. Eng. 28(2), 114–123 (2006)

    Google Scholar 

  28. Mittelbach, G.: Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology 62(5), 1370–1386 (1981)

    Article  Google Scholar 

  29. Nankinga, L., Carlsson, L.: A mathematical model for harvesting in a stage-structured cannibalistic system. In: Submitted to Proceedings of SPAS 2019, pp. 735–751. Springer (2020)

    Google Scholar 

  30. Neubert, M., Caswell, H.: Density-dependent vital rates and their population dynamic consequences. J. Math. Biol. 41(2), 103–121 (2000)

    Article  MATH  Google Scholar 

  31. Odenbaugh, J.: The “structure” of population ecology: philosophical reflections on unstructured and structured models. na (2005)

    Google Scholar 

  32. Owen-Smith, N.: Credible models for herbivore-vegetation systems: towards an ecology of equations: starfield festschrift. S. Afr. J. Sci. 98(9), 445–449 (2002)

    Google Scholar 

  33. Owen-Smith, N.: A metaphysiological modelling approach to stability in herbivore-vegetation systems. Ecol. Model. 149(1–2), 153–178 (2002)

    Article  Google Scholar 

  34. Pennycuick, C., Compton, R., Beckingham, L.: A computer model for simulating the growth of a population, or of two interacting populations. J. Theor. Biol. 18(3), 316–329 (1968)

    Article  Google Scholar 

  35. Persson, L., Leonardsson, K., Christensen, B.: Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theor. Popul. Biol. 54(3), 270–293 (1998)

    Article  MATH  Google Scholar 

  36. de Roos, A.: Numerical methods for structured population models: the escalator boxcar train. Numer. Methods Part. Differ. Equ. 4(3), 173–195 (1988)

    Article  MATH  Google Scholar 

  37. de Roos, A.: A gentle introduction to physiologically structured population models. In: Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, pp. 119–204. Springer (1997)

    Google Scholar 

  38. de Roos, A.: Interplay between individual growth and population feedbacks shapes body-size distributions. In: Body Size: The Structure and Function of Aquatic Ecosystems, pp. 225–244. Cambridge University Press (2007)

    Google Scholar 

  39. de Roos, A., Diekmann, O., Metz, J.: Studying the dynamics of structured population models: a versatile technique and its application to daphnia. Am. Nat. 139(1), 123–147 (1992)

    Article  Google Scholar 

  40. de Roos, A., Persson, L.: Physiologically structured models-from versatile technique to ecological theory. Oikos 94(1), 51–71 (2001)

    Article  Google Scholar 

  41. de Roos, A., Persson, L.: Population and community ecology of ontogenetic development, vol. 59. Princeton University Press (2013)

    Google Scholar 

  42. de Roos, A., Schellekens, T., van Kooten, T., van de Wolfshaar, K., Claessen, D., Persson, L.: Simplifying a physiologically structured population model to a stage-structured biomass model. Theor. Popul. Biol. 73(1), 47–62 (2008)

    Article  MATH  Google Scholar 

  43. Sabelis, M., Diekmann, O., Jansen, V.: Metapopulation persistence despite local extinction: predator-prey patch models of the lotka-volterra type. Biol. J. Lin. Soc. 42(1–2), 267–283 (1991)

    Article  Google Scholar 

  44. Sæther, B.E., Bakke, Ø.: Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81(3), 642–653 (2000)

    Article  Google Scholar 

  45. Sisodiya, A., Singh, B., Joshi, B.: Effect of two interacting populations on resource following generalized logistic growth. Appl. Math. Sci. 5(9), 407–420 (2011)

    MATH  Google Scholar 

  46. Turchin, P.: Does population ecology have general laws? Oikos 94(1), 17–26 (2001)

    Article  Google Scholar 

  47. Walzer, A.: Logic and rhetoric in malthus’s essay on the principle of population, 1798. Q. J. Speech 73(1), 1–17 (1987)

    Article  Google Scholar 

  48. Webb, G.: Logistic models of structured population growth. In: Hyperbolic Partial Differential Equations, pp. 527–539. Elsevier (1986)

    Google Scholar 

  49. Weisberg, P., Coughenour, M., Bugmann, H.: Modelling of large herbivore-vegetation interactions in a landscape context. Conservation Biology Series-Cambridge- 11, 348 (2006)

    Google Scholar 

Download references

Acknowledgements

This research work was supported by Swedish International Development Cooperation Agency (Sida) and International Science Programme (ISP) in collaboration with Sida-Makerere Bilateral Research Cooperation. Canpwonyi is so much grateful to the Research environment at Mathematics and Applied Mathematics (MAM), Division of Applied Mathematics, Malardalen University for providing a conducive and enabling atmosphere for education and research. Canpwonyi also wants to thank B.K. Nannyonga, G.M. Malinga, and A. Ssematimba for their guidance in the course of his studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Canpwonyi .

Editor information

Editors and Affiliations

Appendix–Systematic Derivation of the Maturation Rates of Juveniles and Adults

Appendix–Systematic Derivation of the Maturation Rates of Juveniles and Adults

Our task is to write the maturation rates of the juveniles \(x_wg_1(x_w,N)l_1(x_w,t)\) and \(x_mg_2(x_m,F)l_2(x_m,t)\) in terms of \(L_1\), \(L_2\) and A.

At the equilibrium, \(\frac{\partial }{\partial t}l_1^{*}(x,t) =\frac{\partial }{\partial t}l_2^{*}(x,t)=0\), and the juvenile dynamics becomes

$$\begin{aligned} \frac{\partial }{\partial x}g_1(x,N)l_1^{*}(x,t)= - \mu _1l_1^{*}(x,t). \end{aligned}$$
(34.40)
$$\begin{aligned} \frac{\partial }{\partial x}g_2(x,F)l_2^{*}(x,t)= - (\mu _2 + h_1)l_2^{*}(x,t). \end{aligned}$$
(34.41)

Now by considering Eq. (34.40) and dividing both sides by \(g_1(x,N)l_1^{*}(x,t)\) we have;

$$\begin{aligned}\frac{\frac{\partial }{\partial x}g_1(x,N) l_1^{*}(x,t)}{g_1(x,N)l_1^{*}(x,t)} = -\frac{ d_1(F)l_1^{*}(x,t)}{g_1(x,N)l_1^{*}(x,t)} \end{aligned}$$

.

Integrating from size \(x_b\) to any size x and using juvenile growth rate we obtain

$$\begin{aligned} \int _{x_b}^{x}\frac{\frac{\partial }{\partial s}g_1(s,N)l_1^{*}(s,t) }{g_1(s,N)l_1^{*}(s,t)}ds= & {} \int _{x_b}^{x}-\frac{ \mu _1l_1^{*}(s,t)}{g_1(s,N)l_1^{*}(s,t)}ds \\ \ln (g_1(s,N)l_1^{*}(s,t))\big |_{x_b}^{x}= & {} - \int _{x_b}^{x} \frac{\mu _1}{g_1(s,F)}ds \\ \ln (g_1(x,N)l_1^{*}(x,t))-\ln (g_1(x_b,N)l_1^{*}(x_b,t))= & {} -\frac{\mu _1}{v_{L_1}}\int _{x_b}^{x}\frac{1}{s}ds \\ \ln \left( \frac{g_1(x,N)l_1^{*}(x,t)}{g_1(x_b,N)l_1^{*}(x_b,t)}\right)= & {} - \frac{\mu _1}{v_{L_1}}\int _{x_b}^{x}\frac{1}{s}ds \\= & {} - \frac{\mu _1}{v_{L_1}}\ln s\bigg |_{x_b}^{x} \\= & {} - \frac{\mu _1}{v_{L_1}}(\ln x-\ln x_b) \\= & {} - \frac{\mu _1}{v_{L_1}}\ln \left( \frac{x}{x_b}\right) \\= & {} \ln \left( \frac{x}{x_b}\right) ^{- \frac{\mu _1}{v_{L_1}}} \end{aligned}$$

or equivalently

$$\begin{aligned} \frac{g_1(x,N)l_1^{*}(x,t)}{g_1(x_b,N)l_1^{*}(x_b,t)}= & {} \left( \frac{x}{x_b}\right) ^{- \frac{\mu _1}{v_{L_1}}} \\ g_1(x,N)l_1^{*}(x,t)= & {} g_1(x_b,N)l_1^{*}(x_b,t) \left( \frac{x}{x_b}\right) ^{- \frac{\mu _1}{v_{L_1}}} \\= & {} g_1(x_b,N)l_1^{*}(x_b,t) x_b^{\frac{\mu _1}{v_{L_1}}}x^{{- \frac{\mu _1}{v_{L_1}}}}. \end{aligned}$$

Therefore the maturation rate of \(l_1\) into \(l_2\), attained at \(x_w\), is given by

$$\begin{aligned} x_wg_1(x_w,N)l_1^{*}(x_w,t) = g_1(x_b,N)l_1^{*} (x_b,t)x_b^{\frac{\mu _1}{v_{L_1}}}x_w^{1-{{\frac{\mu _1}{v_{L_1}}}}}. \end{aligned}$$
(34.42)

The equilibrium juvenile distribution for \(l_1\) is therefore given by

$$\begin{aligned} l_1^{*}(x,t)= \frac{g_1(x_b,N)l_1^{*}(x_b,t)}{xv_{L_1}} x_b^{\frac{\mu _1}{v_{L_1}}}x^{{-\frac{\mu _1}{v_{L_1}}}}. \end{aligned}$$
(34.43)

Next we calculate the juvenile biomass density for \(L_1\) by substituting Equation (34.2) in Eq. (34.17) so that

$$\begin{aligned} L_1^{*}(t)= & {} \int _{{x_b}}^{x_w}x\frac{g_1(x_b,N)l_1(x_b,t)}{xv_{L_1}} x_b^\frac{\mu _1}{v_{L_1}}x^{-{\frac{\mu _1}{v_{L_1}}}}dx\\= & {} \int _{{x_b}}^{x_w}\frac{g_1(x_b,N)l_1(x_b,t)}{v_{L_1}} x_b^\frac{\mu _1}{v_{L_1}}x^{-{\frac{\mu _1}{v_{L_1}}}}dx\\= & {} \frac{g_1(x_b,N)l_1(x_b,t)}{v_{L_1}}x_b^\frac{\mu _1}{v_{L_1}} \int _{{x_b}}^{x_w}x^{-{\frac{\mu _1}{v_{L_1}}}}dx\\= & {} \frac{g_1(x_b,N)l_1(x_b,t)}{v_{L_1}} x_b^\frac{\mu _1}{v_{L_1}} \frac{x^{1-{\frac{\mu _1}{v_{L_1}}}}}{1-{\frac{\mu _1}{v_{L_1}}}}\bigg |_{x_b} ^{x_w}\\= & {} \frac{g_1(x_b,N)l_1(x_b,t)}{v_{L_1}} x_w^\frac{\mu _1}{v_{L_1}} ~~\frac{x_w^{1-\frac{\mu _1}{v_{L_1}}} - x_b^{1-\frac{\mu _1}{v_{L_1}}}}{1-{\frac{\mu _1}{v_{L_1}}}}\\= & {} \frac{g_1(x_b,N)l_1(x_b,t)}{v_{L_1}}x_b^\frac{\mu _1}{v_{L_1} }v_{L_1}\frac{x_w^{1-\frac{\mu _1}{v_{L_1}}} - x_b^{1-\frac{\mu _1}{v_{L_1}}}}{v_{L_1}-\mu _1}\\= & {} \frac{g_1(x_b,N)l_1(x_b,t)}{v_{L_1}-\mu _1}x_b^\frac{\mu _1}{v_{L_1}} \left( x_w^{1-\frac{\mu _1}{v_{L_1}}}-x_b^{1-\frac{\mu _1}{v_{L_1}}}\right) \end{aligned}$$

or equivalently

$$\begin{aligned}g_1(x_b,N)l_1^{*}(x_b,t)x_b^{\frac{\mu _1}{v_{L_1}}} =\frac{\big (v_{L_1}-\mu _1\big )}{\left( x_{w}^{1-\frac{\mu _1}{v_{L_1}}} - x_{b}^{1-\frac{\mu _1}{v_{L_1}}} \right) }L_1^{*}(t)\end{aligned}$$

and substituting this in Eq. (34.42) we have the juvenile maturation rate of \(L_1\) from \(x_b\) to \(x_w\)

$$\begin{aligned} x_wg_1(x_w,N)l_1(x_w,t)= & {} \frac{\left( v_{L_1}- \mu _1\right) }{\left( x_{w}^{1-\frac{\mu }{v_{L_1}}} - x_{b}^{1-\frac{\mu _1}{v_{L_1}}} \right) }L_1^{*}(x,t)x_w^{1-\frac{\mu _1}{v_{L_1}}} \\= & {} \frac{\left( v_{L_1}-\mu _1\right) }{x_w^{1- \frac{\mu _1}{v_{L_1}}} \left( 1-(\frac{x_b}{x_w})^{1-\frac{\mu _1}{v_{L_1}}}\right) } L_1^{*}(x,t)x_w^{1-\frac{\mu _1}{v_{L_1}}}\\= & {} \frac{\left( v_{L_1}-\mu _1\right) }{1- \left( \frac{x_b}{x_w}\right) ^{1-\frac{\mu _1}{v_{L_1}}}}L_1^{*}(t)\\= & {} \gamma (v_{L_1}(F))L_1^{*}(t), \end{aligned}$$

where

$$\begin{aligned} \gamma (v_{L_1})=\frac{\big (v_{L_1}-\mu _1\big )}{1-\left( \frac{x_b}{x_w} \right) ^{1-\frac{\mu _1}{v_{L_1}}}}. \end{aligned}$$

The juvenile maturation rate of \(L_2\) from size \(x_w\) to size \(x_{m}\) can as well be derived in a similar fashion to give

$$\begin{aligned} x_mg_2(x_m,F)l_2(x_m,t) =\gamma (v_{L_2})L_2^{*}(t), \end{aligned}$$

where

$$\begin{aligned} \gamma (v_{L_2})=\frac{v_{L_2}-(\mu _2+h_1)}{1-\left( \frac{x_w}{x_m}\right) ^{1- \frac{\mu _2+h_1}{v_{L_2}}}}. \end{aligned}$$

With these maturation rates for the juveniles substituted in the juvenile dynamics, we obtain the set of ordinary differential equations describing the three stage-structured population model for the grazing system given in (34.36).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Canpwonyi, S., Carlsson, L. (2022). On the Approximation of Physiologically Structured Population Model with a Three Stage-Structured Population Model in a Grazing System. In: Malyarenko, A., Ni, Y., Rančić, M., Silvestrov, S. (eds) Stochastic Processes, Statistical Methods, and Engineering Mathematics . SPAS 2019. Springer Proceedings in Mathematics & Statistics, vol 408. Springer, Cham. https://doi.org/10.1007/978-3-031-17820-7_34

Download citation

Keywords

MSC 2020

Publish with us

Policies and ethics