Abstract
Real-world networks often exhibit complex temporal patterns that affect their dynamics and function. In this chapter, we focus on the mathematical modelling of diffusion on temporal networks, and on its connection with continuous-time random walks. In that case, it is important to distinguish active walkers, whose motion triggers the activity of the network, from passive walkers, whose motion is restricted by the activity of the network. One can then develop renewal processes for the dynamics of the walker and for the dynamics of the network respectively, and identify how the shape of the temporal distribution affects spreading. As we show, the system exhibits non-Markovian features when the renewal process departs from a Poisson process, and different mechanisms tend to slow down the exploration of the network when the temporal distribution presents a fat tail. We further highlight how some of these ideas could be generalised, for instance to the case of more general spreading processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A.O. Allen, Probability, Statistics, and Queueing Theory: With Computer Science Applications, 2nd edn. (Academic, Boston, 1990)
R. Balescu, Statistical Dynamics: Matter Out of Equilibrium (Imperial College London, 1997)
A.-L. Barabasi, The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207 (2005)
V.D. Blondel, J.M. Hendrickx, A. Olshevsky, J.N. Tsitsiklis, Convergence in multiagent coordination, consensus, and flocking, in Proceedings of the 44th IEEE Conference on Decision and Control (IEEE, 2005), pp. 2996–3000
S. Brin, L. Page, Anatomy of a large-scale hypertextual web search engine, in Proceedings of the Seventh International World Wide Web Conference (1998), pp. 107–117
D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel. Nature 439(7075), 462 (2006)
F.R.K. Chung, F.C. Graham, Spectral Graph Theory. Number 92 (American Mathematical Society, 1997)
S. De Nigris, A. Hastir, R. Lambiotte, Burstiness and fractional diffusion on complex networks. Eur. Phys. J. B 89(5), 114 (2016)
J.C. Delvenne, S.N. Yaliraki, M. Barahona, Stability of graph communities across time scales. Proc. Natl. Acad. Sci. U.S.A. 107, 12755–12760 (2010)
F. Fouss, M. Saerens, M. Shimbo, Algorithms and Models for Network Data and Link Analysis (Cambridge University Press, 2016)
M. Gueuning, R. Lambiotte, J.-C. Delvenne, Backtracking and mixing rate of diffusion on uncorrelated temporal networks. Entropy 19(10), 542 (2017)
A.G. Hawkes, Point spectra of some mutually exciting point processes. J. R. Stat. Soc. B 33, 438–443 (1971)
T. Hoffmann, M.A. Porter, R. Lambiotte, Generalized master equations for non-Poisson dynamics on networks. Phys. Rev. E 86, 046102 (2012)
P. Holme, Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 1–30 (2015)
P. Holme, J. Saramäki, Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
I. Ispolatov, P.L. Krapivsky, A. Yuryev, Duplication-divergence model of protein interaction network. Phys. Rev. E 71(6), 061911 (2005)
B. Karrer, M.E.J. Newman, Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)
M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.-L. Barabási, J. Saramäki, Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83(2), 025102 (2011)
J. Klafter, I.M. Sokolov, First Steps in Random Walks: From Tools to Applications (Oxford University Press, New York, 2011)
R. Kobayashi, R. Lambiotte, Tideh: time-dependent hawkes process for predicting retweet dynamics, in Tenth International AAAI Conference on Web and Social Media (2016)
R. Lambiotte, M. Rosvall, I. Scholtes, From networks to optimal higher-order models of complex systems. Nat. Phys. 1 (2019)
R. Lambiotte, J.C. Delvenne, M. Barahona, Random walks, Markov processes and the multiscale modular organization of complex networks. IEEE Trans. Netw. Sci. Eng. 1, 76–90 (2014)
R. Lambiotte, P.L. Krapivsky, U. Bhat, S. Redner, Structural transitions in densifying networks. Phys. Rev. Lett. 117(21), 218301 (2016)
L. Lovász et al., Random walks on graphs: a survey, in Combinatorics, Paul erdos is Eighty, vol. 2, no. 1 (1993), pp. 1–46
R.D. Malmgren, D.B. Stouffer, A.E. Motter, L.A.N. Amaral, A poissonian explanation for heavy tails in e-mail communication. Proc. Natl. Acad. Sci. 105(47), 18153–18158 (2008)
N. Masuda, T. Takaguchi, N. Sato, K. Yano, Self-exciting point process modeling of conversation event sequences, in Temporal Networks (Springer, 2013), pp. 245–264
N. Masuda, R. Lambiotte, A guide to temporal networks (World Scientific, London, 1996)
N. Masuda, M.A. Porter, R. Lambiotte, Random walks and diffusion on networks. Phys. Rep. 716, 1–58 (2017)
A. Moinet, M. Starnini, R. Pastor-Satorras, Random walks in non-poissoinan activity driven temporal networks (2019). arXiv:1904.10749
A. Moinet, M. Starnini, R. Pastor-Satorras, Burstiness and aging in social temporal networks. Phys. Rev. Lett. 114(10), 108701 (2015)
M. Newman, Networks: An Introduction (Oxford University Press, 2010)
N. Perraudin, P. Vandergheynst, Stationary signal processing on graphs. IEEE Trans. Signal Process. 65(13), 3462–3477 (2017)
J. Petit, M. Gueuning, T. Carletti, B. Lauwens, R. Lambiotte, Random walk on temporal networks with lasting edges. Phys. Rev. E 98(5), 052307 (2018)
M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. U.S.A. 105, 1118–1123 (2008)
J. Saramäki, P. Holme, Exploring temporal networks with greedy walks. Eur. Phys. J. B 88(12), 334 (2015)
I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, F. Schweitzer, Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks. Nat. Commun. 5, 5024 (2014)
L. Speidel, R. Lambiotte, K. Aihara, N. Masuda, Steady state and mean recurrence time for random walks on stochastic temporal networks. Phys. Rev. E 91, 012806 (2015)
Q. Zhao, M.A. Erdogdu, H.Y. He, A. Rajaraman, J. Leskovec, Seismic: a self-exciting point process model for predicting tweet popularity, in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2015), pp. 1513–1522
Acknowledgements
I would like to thank my many collaborators without whom none of this work would have been done and, in particular, Naoki Masuda for co-writing (Masuda and Lambiotte 1996) that was a great inspiration for this chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Lambiotte, R. (2023). Continuous-Time Random Walks and Temporal Networks. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-30399-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-30399-9_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30398-2
Online ISBN: 978-3-031-30399-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)