Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Continuous-Time Random Walks and Temporal Networks

  • Chapter
  • First Online:
Temporal Network Theory

Part of the book series: Computational Social Sciences ((CSS))

  • 795 Accesses

  • 1 Citation

Abstract

Real-world networks often exhibit complex temporal patterns that affect their dynamics and function. In this chapter, we focus on the mathematical modelling of diffusion on temporal networks, and on its connection with continuous-time random walks. In that case, it is important to distinguish active walkers, whose motion triggers the activity of the network, from passive walkers, whose motion is restricted by the activity of the network. One can then develop renewal processes for the dynamics of the walker and for the dynamics of the network respectively, and identify how the shape of the temporal distribution affects spreading. As we show, the system exhibits non-Markovian features when the renewal process departs from a Poisson process, and different mechanisms tend to slow down the exploration of the network when the temporal distribution presents a fat tail. We further highlight how some of these ideas could be generalised, for instance to the case of more general spreading processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A.O. Allen, Probability, Statistics, and Queueing Theory: With Computer Science Applications, 2nd edn. (Academic, Boston, 1990)

    MATH  Google Scholar 

  • R. Balescu, Statistical Dynamics: Matter Out of Equilibrium (Imperial College London, 1997)

    Google Scholar 

  • A.-L. Barabasi, The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207 (2005)

    Article  ADS  Google Scholar 

  • V.D. Blondel, J.M. Hendrickx, A. Olshevsky, J.N. Tsitsiklis, Convergence in multiagent coordination, consensus, and flocking, in Proceedings of the 44th IEEE Conference on Decision and Control (IEEE, 2005), pp. 2996–3000

    Google Scholar 

  • S. Brin, L. Page, Anatomy of a large-scale hypertextual web search engine, in Proceedings of the Seventh International World Wide Web Conference (1998), pp. 107–117

    Google Scholar 

  • D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel. Nature 439(7075), 462 (2006)

    Article  ADS  Google Scholar 

  • F.R.K. Chung, F.C. Graham, Spectral Graph Theory. Number 92 (American Mathematical Society, 1997)

    Google Scholar 

  • S. De Nigris, A. Hastir, R. Lambiotte, Burstiness and fractional diffusion on complex networks. Eur. Phys. J. B 89(5), 114 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • J.C. Delvenne, S.N. Yaliraki, M. Barahona, Stability of graph communities across time scales. Proc. Natl. Acad. Sci. U.S.A. 107, 12755–12760 (2010)

    Article  ADS  Google Scholar 

  • F. Fouss, M. Saerens, M. Shimbo, Algorithms and Models for Network Data and Link Analysis (Cambridge University Press, 2016)

    Google Scholar 

  • M. Gueuning, R. Lambiotte, J.-C. Delvenne, Backtracking and mixing rate of diffusion on uncorrelated temporal networks. Entropy 19(10), 542 (2017)

    Article  ADS  Google Scholar 

  • A.G. Hawkes, Point spectra of some mutually exciting point processes. J. R. Stat. Soc. B 33, 438–443 (1971)

    ADS  MathSciNet  MATH  Google Scholar 

  • T. Hoffmann, M.A. Porter, R. Lambiotte, Generalized master equations for non-Poisson dynamics on networks. Phys. Rev. E 86, 046102 (2012)

    Article  ADS  Google Scholar 

  • P. Holme, Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 1–30 (2015)

    Article  Google Scholar 

  • P. Holme, J. Saramäki, Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  ADS  Google Scholar 

  • I. Ispolatov, P.L. Krapivsky, A. Yuryev, Duplication-divergence model of protein interaction network. Phys. Rev. E 71(6), 061911 (2005)

    Article  ADS  Google Scholar 

  • B. Karrer, M.E.J. Newman, Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.-L. Barabási, J. Saramäki, Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83(2), 025102 (2011)

    Article  ADS  Google Scholar 

  • J. Klafter, I.M. Sokolov, First Steps in Random Walks: From Tools to Applications (Oxford University Press, New York, 2011)

    Book  MATH  Google Scholar 

  • R. Kobayashi, R. Lambiotte, Tideh: time-dependent hawkes process for predicting retweet dynamics, in Tenth International AAAI Conference on Web and Social Media (2016)

    Google Scholar 

  • R. Lambiotte, M. Rosvall, I. Scholtes, From networks to optimal higher-order models of complex systems. Nat. Phys. 1 (2019)

    Google Scholar 

  • R. Lambiotte, J.C. Delvenne, M. Barahona, Random walks, Markov processes and the multiscale modular organization of complex networks. IEEE Trans. Netw. Sci. Eng. 1, 76–90 (2014)

    Article  MathSciNet  Google Scholar 

  • R. Lambiotte, P.L. Krapivsky, U. Bhat, S. Redner, Structural transitions in densifying networks. Phys. Rev. Lett. 117(21), 218301 (2016)

    Article  ADS  Google Scholar 

  • L. Lovász et al., Random walks on graphs: a survey, in Combinatorics, Paul erdos is Eighty, vol. 2, no. 1 (1993), pp. 1–46

    Google Scholar 

  • R.D. Malmgren, D.B. Stouffer, A.E. Motter, L.A.N. Amaral, A poissonian explanation for heavy tails in e-mail communication. Proc. Natl. Acad. Sci. 105(47), 18153–18158 (2008)

    Article  ADS  Google Scholar 

  • N. Masuda, T. Takaguchi, N. Sato, K. Yano, Self-exciting point process modeling of conversation event sequences, in Temporal Networks (Springer, 2013), pp. 245–264

    Google Scholar 

  • N. Masuda, R. Lambiotte, A guide to temporal networks (World Scientific, London, 1996)

    MATH  Google Scholar 

  • N. Masuda, M.A. Porter, R. Lambiotte, Random walks and diffusion on networks. Phys. Rep. 716, 1–58 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Moinet, M. Starnini, R. Pastor-Satorras, Random walks in non-poissoinan activity driven temporal networks (2019). arXiv:1904.10749

  • A. Moinet, M. Starnini, R. Pastor-Satorras, Burstiness and aging in social temporal networks. Phys. Rev. Lett. 114(10), 108701 (2015)

    Article  ADS  Google Scholar 

  • M. Newman, Networks: An Introduction (Oxford University Press, 2010)

    Google Scholar 

  • N. Perraudin, P. Vandergheynst, Stationary signal processing on graphs. IEEE Trans. Signal Process. 65(13), 3462–3477 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Petit, M. Gueuning, T. Carletti, B. Lauwens, R. Lambiotte, Random walk on temporal networks with lasting edges. Phys. Rev. E 98(5), 052307 (2018)

    Article  ADS  Google Scholar 

  • M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. U.S.A. 105, 1118–1123 (2008)

    Article  ADS  Google Scholar 

  • J. Saramäki, P. Holme, Exploring temporal networks with greedy walks. Eur. Phys. J. B 88(12), 334 (2015)

    Article  ADS  Google Scholar 

  • I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, F. Schweitzer, Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks. Nat. Commun. 5, 5024 (2014)

    Article  ADS  Google Scholar 

  • L. Speidel, R. Lambiotte, K. Aihara, N. Masuda, Steady state and mean recurrence time for random walks on stochastic temporal networks. Phys. Rev. E 91, 012806 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Q. Zhao, M.A. Erdogdu, H.Y. He, A. Rajaraman, J. Leskovec, Seismic: a self-exciting point process model for predicting tweet popularity, in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2015), pp. 1513–1522

    Google Scholar 

Download references

Acknowledgements

I would like to thank my many collaborators without whom none of this work would have been done and, in particular, Naoki Masuda for co-writing (Masuda and Lambiotte 1996) that was a great inspiration for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Lambiotte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lambiotte, R. (2023). Continuous-Time Random Walks and Temporal Networks. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-30399-9_12

Download citation

Keywords

Publish with us

Policies and ethics