Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Crop Responses to Drought Stress

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 1
  • 1058 Accesses

  • 2 Citations

Abstract

Climate change is leading to a hotter and parched world. The world’s population is also continuously growing. In such scenarios, both agricultural “thirst” and human thirst will be enhanced. A drought causes adverse comprehensive physiological, morphological, and biochemical changes, leading to reduced crop growth and yield and, ultimately, to decreased food security. Water scarcity is one of the key abiotic stresses responsible for the massive decline in crop yields globally. To fine-tune drought resistance, production of plants with high water use efficiency (WUE), and water deficient tolerant plants with high yields is needed. This chapter endeavors to record the developments in understanding the responses of crop plants to droughts and the basic plant machinery required to mitigate drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abobatta WF (2019) Drought adaptive mechanisms of plants—a review. Adv Agric Environ Sci 2(1):62–65. https://doi.org/10.30881/aaeoa.00021

    Article  Google Scholar 

  • Alghabari F, Ihsan MZ, Hussain S, Aishia G, Daur I (2015) Effect of Rht alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis. Environ Sci Pollut Res 22(20):15506–15515. https://doi.org/10.1007/s11356-015-4724-z

    Article  Google Scholar 

  • Álvarez S, Rodríguez P, Broetto F, Sánchez-Blanco MJ (2018) Long term responses and adaptive strategies of Pistacia lentiscus under moderate and severe deficit irrigation and salinity: osmotic and elastic adjustment, growth, ion uptake and photosynthetic activity. Agric Water Manag 202:253–262. https://doi.org/10.1016/j.agwat.2018.01.006

    Article  Google Scholar 

  • Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13(9):627–639. https://doi.org/10.1038/nrg3291

    Article  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032. https://doi.org/10.5897/AJAR10.027

    Article  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89(7):925–940

    PubMed Central  Google Scholar 

  • Atta K, Chettri P, Pal AK (2020) Physiological and biochemical changes under salinity and drought stress in ricebean [Vigna umbellata (thunb.) ohwi and ohashi] seedlings. Int J Environ Clim Chan 10(8):58–64. https://doi.org/10.9734/ijecc/2020/v10i830218

    Article  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Google Scholar 

  • Baidyussen A, Jatayev S, Khassanova G, Amantayev B, Sereda G, Sereda S, Gupta NK, Gupta S, Schramm C, Anderson P et al (2021) Expression of specific alleles of zinc-finger transcription factors, HvSAP8 and HvSAP16, and corresponding SNP markers, are associated with drought tolerance in barley populations. Int J Mol Sci 22:12156

    PubMed Central  Google Scholar 

  • Barik SR, Pandit E, Pradhan SK, Mohanty SP, Mohapatra T (2019) Genetic mapping of morpho-physiological traits involved during reproductive stage drought tolerance in rice. PLoS One 14:e0214979

    PubMed Central  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Res. 5: F1000 Faculty Rev-1554. https://doi.org/10.12688/f1000research.7678.1

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P et al (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125(7):1473–1485. https://doi.org/10.1007/s00122-012-1927-2

    Article  Google Scholar 

  • Bhatnagar-Mathur P, Rao JS, Vadez V et al (2014) Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33(2):327–340

    Google Scholar 

  • Blum A (2011) Plant water relations, plant stress and plant production. In: Plant breeding for water-limited environments. Springer, New York, pp 11–52. https://doi.org/10.1007/978-1-4419-7491-4_2

    Chapter  Google Scholar 

  • Boulard T, Roy JC, Pouillard JB, Fatnassi H, Grisey A (2017) Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosyst Eng 158:110–133

    Google Scholar 

  • Buckley TN (2019) How do stomata respond to water status? New Phytol 224:21–36. https://doi.org/10.1111/nph.15899

    Article  Google Scholar 

  • Cai K, Chen X, Han Z, Wu X, Zhang S, Li Q, Nazir MM, Zhang G, Zeng F (2020) Screening of worldwide barley collection for drought tolerance: the assessment of various physiological measures as the selection criteria. Front Plant Sci 29:1159

    Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    PubMed Central  Google Scholar 

  • Chapin FS III, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92

    Google Scholar 

  • Chen J, Yin Y (2017) WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. Plant Signal Behav 12(11):e1365212. https://doi.org/10.1080/15592324.2017.1365212

    Article  PubMed Central  Google Scholar 

  • Christov NK, Christova PK, Kato H et al (2014) TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in trans genic Arabidopsis. Plant Physiol Biochem 84:251–260

    Google Scholar 

  • Chung Y, Kwon SI, Choe S (2014) Antagonistic regulation of Arabidopsis growth by brassinosteroids and abiotic stresses. Mol Cells 37(11):795–803. https://doi.org/10.14348/molcells.2014.0127

    Article  PubMed Central  Google Scholar 

  • Datta K, Baisakh N, Ganguly M et al (2012) Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10(5):579–586

    Google Scholar 

  • Deokar AA, Kondawar V, Kohli D et al (2015) The CarERF genes in chickpea (Cicer arietinum L.) and the identify cation of CarERF116 as abiotic stress responsive transcription factor. Funct Integr Genomics 15(1):27–46

    Google Scholar 

  • Dey A, Samanta MK, Gayen S et al (2016) The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC Plant Biol 16(1):1–20

    Google Scholar 

  • Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, Bhosale R, Antoni R, Nguyen T, Hiratsuka S et al (2017) Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat Plants 3:17057. https://doi.org/10.1038/nplants.2017.57

    Article  Google Scholar 

  • Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69:577–592

    Google Scholar 

  • Dinneny JR (2019) Developmental responses to water and salinity in root systems. Annu Rev Cell Dev Biol 35:239–257. https://doi.org/10.1146/annurev-cellbio-100617-062949

    Article  Google Scholar 

  • Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D et al (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167(16):1360–1370. https://doi.org/10.1016/j.jplph.2010.05.013

    Article  Google Scholar 

  • Earl HJ, Davis RF (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron J 95(3):688–696. https://doi.org/10.2134/agronj2003.6880

    Article  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255–1264

    Google Scholar 

  • Eltayeb AE, Yamamoto S, Habora MEE, Yin L, Tsujimoto H, Tanaka K (2011) Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breed Sci 61:3–10

    Google Scholar 

  • Eshed Y, Lippman ZB (2019) Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366(6466):eaax0025. https://doi.org/10.1126/science.aax0025

    Article  Google Scholar 

  • Faillace GR, Caruso PB, Timmers LFSM, Favero D, Guzman FL, Rechenmacher C, de Oliveira-Busatto LA, de Souza ON, Bredemeier C, Bodanese-Zanettini MH (2021) Molecular characterisation of soybean osmotins and their involvement in drought stress response. Front Genet 25:632–685

    Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Google Scholar 

  • Feng J, Wang L, Wu Y et al (2018) TaSnRK2.9, a sucrose non-fermenting 1-related protein kinase gene, posi tively regulates plant response to drought and salt stress in transgenic tobacco. Front Plant Sci 9:2003–2017

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2020) Overcoming water challenges in agriculture. In: The state of food and agriculture 2020. FAO, Rome

    Google Scholar 

  • Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidase over–expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot 59:729–737

    Google Scholar 

  • Fuganti-Pagliarini R, Ferreira LC, Rodrigues FA et al (2017) Characterization of soybean genetically modified for drought tolerance in field conditions. Front Plant Sci 8:1–15

    Google Scholar 

  • Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, Nakano Y, Shigeoka S (2006) Glutathione peroxidase-like protein of synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128:251–262

    Google Scholar 

  • Galindo A, ColladoGonzález J, Griñán I, Corell M, Centeno A, Martín-Palomo MJ et al (2018) Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric Water Manag 202:311–324. https://doi.org/10.1016/j.agwat.2017.08.015

    Article  Google Scholar 

  • George S, Venkataraman G, Parida A (2010) A chloroplast-localized and auxin induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167:311–318

    Google Scholar 

  • Ghazy MI, Salem KFM, Sallam A (2021) Utilization of genetic diversity and marker-trait to improve drought tolerance in rice (Oryza sativa L.). Mol Biol Rep 48:157–170

    Google Scholar 

  • Gleick PH (2000) World’s water 2000–2001: the biennial report on freshwater resources. Island Press, Washington, DC, p 53

    Google Scholar 

  • Gregorova Z, Kovacik J, Klejdus B, Maglovski M, Kuna R, Hauptvogel P et al (2015) Drought-induced responses of physiology, metabolites, and PR proteins in Triticum aestivum. J Agric Food Chem 63(37):8125–8133. https://doi.org/10.1021/acs.jafc.5b02951

    Article  Google Scholar 

  • Hasanuzzaman MI, Roychowdhury RA, Karmakar JO, Dey NA, Nahar KA, Fujita MA (2015) Recent advances in biotechnology and genomic approaches for abiotic stress tolerance in crop plants. In: Genomics and proteomics: concepts, technologies and applications. Apple Academic Press, Burlington, pp 333–366

    Google Scholar 

  • Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10:103

    PubMed Central  Google Scholar 

  • Hernández-Jiménez MJ, Lucas MM, de Felipe MR (2002) Antioxidant defence and damage in senescing lupin nodules. Plant Physiol Biochem 40(6–8):645–657. https://doi.org/10.1016/S0981-9428(02)01422-5

    Article  Google Scholar 

  • Hsieh EJ, Cheng MC, Lin TP (2013) Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol Biol 82(3):223–237

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Google Scholar 

  • Ishizaki T, Maruyama K, Obara M et al (2013) Expression of Arabidopsis DREB1C improves survival, growth, and yield of upland New Rice for Africa (NERICA) under drought. Mol Breed 31(2):255–264

    Google Scholar 

  • Jia X, Mao K, Wang P, Wang Y, Jia X, Huo L, Sun X, Che R, Gong X, Ma F (2021) Overexpression of MdATG8i improves water use efficiency in transgenic apple by modulating photosynthesis, osmotic balance, and autophagic activity under moderate water deficit. Hortic Res 8:81

    PubMed Central  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    Google Scholar 

  • Kabbadj A, Makoudi B, Mouradi M, Pauly N, Frendo P, Ghoulam C (2017) Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba. PLoS One 12:e0190284

    PubMed Central  Google Scholar 

  • Kamphorst SH, Gonçalves GMB, Amaral Júnior ATD, Lima VJD, Schmitt KFM, Leite JT, Azeredo VC, Gomes LP, Silva JGS, Carvalho CM et al (2021) Supporting physiological trait for indirect selection for grain yield in drought-stressed popcorn. Plan Theory 10:1510

    Google Scholar 

  • Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020) The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl Sci 10:5692

    Google Scholar 

  • Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881

    Google Scholar 

  • Koncagül E, Tran M, Connor R, Uhlenbrook S (2018) World water development report 2020—water and climate change. SC-2018/WS/5.

    Google Scholar 

  • Kumawat KR, Sharma NK (2018) Effect of drought stress on plants growth. Pop Kheti 6:239–241

    Google Scholar 

  • Kumar M, Kumar Patel M, Kumar N, Bajpai AB, Siddique KHM (2021) Metabolomics and molecular approaches reveal drought stress tolerance in plants. Int J Mol Sci 22(17):9108. https://doi.org/10.3390/ijms22179108

  • Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26. https://doi.org/10.3389/fchem.2018.00026

    Article  PubMed Central  Google Scholar 

  • Larcher W (2005) Climatic constraints drive the evolution of low temperature resistance in woody plants. J Agric Meteorol 61:189–202

    Google Scholar 

  • Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants 8:94

    PubMed Central  Google Scholar 

  • Lens F, Picon-Cochard C, Delmas CEL, Signarbieux C, Buttler A et al (2016) Herbaceous angiosperms are not more vulnerable to drought-induced embolism than angiosperm trees. Plant Physiol 172:661–667

    PubMed Central  Google Scholar 

  • Li P, Ma B, Palta JA, Ding T, Cheng Z, Lv G, Xiong Y (2021) Wheat breeding highlights drought tolerance while ignores the advantages of drought avoidance: a meta-analysis. Eur J Agron 122:126–196

    Google Scholar 

  • Liang C, Meng Z, Meng Z et al (2016) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L). Sci Rep 6:35040

    PubMed Central  Google Scholar 

  • Liu D, Liu Y, Rao J, Wang G, Li H, Ge F, Chen C (2013) Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants. Mol Biol 47(4):515–523

    Google Scholar 

  • López-Galiano MJ, García-Robles I, González-Hernández AI, Camañes G, Vicedo B, Real MD et al (2019) Expression of miR159 is altered in tomato plants undergoing drought stress. Plants 8(7):201

    PubMed Central  Google Scholar 

  • Luo Q, Wei Q, Wang R et al (2017) BdCIPK31, a calcineurin B-like protein-interacting protein kinase, regulates plant response to drought and salt stress. Front Plant Sci 8:1116–1184

    Google Scholar 

  • Mahan JR, Gitz DC, Payton PR, Allen R (2009) Overexpression of glutathione reductase in cotton does not alter emergence rates under temperature stress. Crop Sci 49:272–280

    Google Scholar 

  • Mega R, Abe F, Kim JS, Tsuboi Y, Tanaka K, Kobayashi H, Sakata Y, Hanada K, Tsujimoto H, Kikuchi J, Cutler SR, Okamoto M (2019) Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat Plants 5(2):153–159. https://doi.org/10.1038/s41477-019-0361-8

    Article  Google Scholar 

  • Melchiorre M, Robert G, Trippi V, Racca R, Lascano HR (2009) Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regul 57:57–68

    Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Google Scholar 

  • Mohamed EA, Iwaki T, Munir I, Tamoi M, Shigeoka S, Wadano A (2003) Overexpression of bacterial catalase in tomato leaf chloroplasts enhances photo-oxidative stress tolerance. Plant Cell Environ 26:2037–2046

    Google Scholar 

  • Morran S, Eini O, Pyvovarenko T et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9(2):230–249

    Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    PubMed Central  Google Scholar 

  • Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E et al (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33:862–869

    Google Scholar 

  • Okamoto M, Peterson FC, Defries A, Park SY, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci U S A 110(29):12132–12137. https://doi.org/10.1073/pnas.1305919110

    Article  PubMed Central  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2014) ABA control of plant macro-element membrane transport systems in response to water deficit and high salinity. New Phytol 202(1):35–49. https://doi.org/10.1111/nph.12613

    Article  Google Scholar 

  • Pandey AS, Sharma E, Jain N et al (2018) A rice bZIP transcription factor, OsbZIP16, regulates abiotic stress tolerance when over-expressed in Arabidopsis. J Plant Biochem Biotechnol 27(4):393–400

    Google Scholar 

  • Park SY, Peterson FC, Mosquna A, Yao J, Volkman BF, Cutler SR (2015) Agrochemical control of plant water use using engineered abscisic acid receptors. Nature 520(7548):545–548. https://doi.org/10.1038/nature14123

    Article  Google Scholar 

  • Perlikowski D, Kosmala A (2020) Mechanisms of drought resistance in introgression forms of Lolium multiflorum/Festuca arundinacea. Biol Plant 64:497–503

    Google Scholar 

  • Pour-Aboughadareh A, Mohammadi R, Etminan A, Shooshtari L, Maleki-Tabrizi N, Poczai P (2020) Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability 12:5610

    Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Google Scholar 

  • Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK et al (2018) Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol 60(9):805–826. https://doi.org/10.1111/jipb.12654

    Article  Google Scholar 

  • Rai KK, Rai N, Rai SP (2018) Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation. Plant Physiol Biochem 128:72–88. https://doi.org/10.1016/j.plaphy.2018.04.023

    Article  Google Scholar 

  • Rellán-Álvarez R, Lobet G, Dinneny JR (2016) Environmental control of root system biology. Annu Rev Plant Biol 67:619–642. https://doi.org/10.1146/annurev-arplant-043015-111848

    Article  Google Scholar 

  • Robbins NE 2nd, Dinneny JR (2018) Growth is required for perception of water availability to pattern root branches in plants. Proc Natl Acad Sci U S A 115(4):E822–E831. https://doi.org/10.1073/pnas.1710709115

    Article  PubMed Central  Google Scholar 

  • Rosenthal DM, Stiller V, Sperry JS, Donovan LA (2010) Contrasting drought tolerance strategies in two desert annuals of hybrid origin. J Exp Bot 61:2769–2778

    PubMed Central  Google Scholar 

  • Roychowdhury R, Khan MH, Choudhury S (2019) Physiological and molecular responses for metalloid stress in rice—a comprehensive overview. Adv Rice Res Abiotic Stress Tol 1:341–369. https://doi.org/10.1016/B978-0-12-814332-2.00016-2

    Article  Google Scholar 

  • Rubio MC, Gonzalez EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M (2002) Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plant 115:531–540

    Google Scholar 

  • Santos TDO, Amaral Junior ATD, Bispo RB, Lima VJ, Kamphorst SH, Leite JT, Júnior DRS, Santos PHAD, de Oliveira UA, Schmitt KFM et al (2021) Phenotyping Latin American open-pollinated varieties of popcorn for environments with low water availability. Plants 10:1211

    PubMed Central  Google Scholar 

  • Sapna H, Ashwini N, Ramesh S, Nataraja KN (2020) Assessment of DNA methylation pattern under drought stress using methylation-sensitive randomly amplified polymorphism analysis in rice. Plant Genet Resour 18(4):222–230. https://doi.org/10.1017/S1479262120000234

    Article  Google Scholar 

  • Scarpeci TE, Frea VS, Zanor MI et al (2016) Overexpression of AtERF019 delays plant growth and senescence and improves drought tolerance in Arabidopsis. J Exp Bot 68:673–685

    Google Scholar 

  • Scharwies JD, Dinneny JR (2019) Water transport, perception, and response in plants. J Plant Res 132(3):311–324. https://doi.org/10.1007/s10265-019-01089-8

    Article  Google Scholar 

  • Schulz P, Piepenburg K, Lintermann R, Herde M, Schottler MA, Schmidt LK, Ruf S, Kudla J, Romeis T, Bock R (2021) Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signaling networks. Plant Biotechnol J 19:74–86

    Google Scholar 

  • Schuppler U, He PH, John PC, Munns R (1998) Effect of water stress on cell division and Cdc2-like cell cycle kinase activity in wheat leaves. Plant Physiol 117(2):667–678

    PubMed Central  Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Sidhu GPS, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K (2020a) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39:509–531

    Google Scholar 

  • Sharma A, Wang J, Xu D, Tao S, Chong S, Yan D, Li Z, Yuan H, Zheng B (2020b) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci Total Environ 713:136675

    Google Scholar 

  • Shavrukov Y, Baho M, Lopato S et al (2016) The TaDREB3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. Plant Biotechnol J 14(1):313–322

    Google Scholar 

  • Singh J, Thakur JK (2018) Photosynthesis and abiotic stress in plants. In: Biotic and abiotic Stress tolerance in plants. Springer, Singapore, pp 27–46. https://doi.org/10.1007/978-981-10-9029-5_2

    Chapter  Google Scholar 

  • Song L, Huang SC, Wise A, Castanon R, Nery JR, Chen H, Watanabe M, Thomas J, Bar-Joseph Z, Ecker JR (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354(6312):aag1550. https://doi.org/10.1126/science.aag1550

    Article  PubMed Central  Google Scholar 

  • Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K (2018) A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556(7700):235–238. https://doi.org/10.1038/s41586-018-0009-2

    Article  Google Scholar 

  • Tatar Ö, Gevrek MN (2008) Lipid peroxidation and water content of wheat. Asian J Plant Sci 7:409–412

    Google Scholar 

  • Tekle AT, Alemu MA (2016) Drought tolerance mechanisms in field crops. World J Biol Med Sci 3(2):15–39

    Google Scholar 

  • Tiwari P, Srivastava D, Chauhan AS, Indoliya Y, Singh PK, Tiwari S et al (2021) Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes. Ecotoxicol Environ Saf 207:111252. https://doi.org/10.1016/j.ecoenv.2020.111252

    Article  Google Scholar 

  • Tzortzakis N, Chrysargyris A, Aziz A (2020) Adaptive response of a native mediterranean grapevine cultivar upon short-term exposure to drought and heat stress in the context of climate change. Agronomy 10(2):249

    Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2011) World population prospects: the 2010 revision, volume I: comprehensive tables. ST/ESA/SER.A/313, United Nations. www.un.org/en/development/desa/population/publications/pdf/trends/WPP2010/WPP2010_Volume-I_Comprehensive-Tables.pdf

  • Vaidya AS, Helander JDM, Peterson FC, Elzinga D, Dejonghe W, Kaundal A, Park SY, Xing Z, Mega R, Takeuchi J, Khanderahoo B, Bishay S, Volkman BF, Todoroki Y, Okamoto M, Cutler SR (2019) Dynamic control of plant water use using designed ABA receptor agonists. Science 366(6464):eaaw8848. https://doi.org/10.1126/science.aaw8848

    Article  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005a) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005b) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 8:87–90

    Google Scholar 

  • Wang L, Chen L, Li R et al (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65(39):8674–8682

    Google Scholar 

  • Wang H, Tang J, Liu J, Hu J, Liu J, Chen Y, Cai Z, Wang X (2018a) Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol Plant 11(2):315–325. https://doi.org/10.1016/j.molp.2017.12.013

    Article  Google Scholar 

  • Wang P, Zhao Y, Li Z, Hsu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C, Gao J, Cao M, Huang X, Zhu Y, Tang K, Wang X, Tao WA, Xiong Y, Zhu JK (2018b) Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and Stress response. Mol Cell 69(1):100–112.e6. https://doi.org/10.1016/j.molcel.2017.12.002

    Article  Google Scholar 

  • Wasaya A, Zhang X, Fang Q, Yan Z (2018) Root phenotyping for drought tolerance: a review. Agronomy 8(11):241. https://doi.org/10.3390/agronomy8110241

    Article  Google Scholar 

  • Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, Zhao W, Yao QH (2015) Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One 10(9):e0136960. https://doi.org/10.1371/journal.pone.0136960

    Article  PubMed Central  Google Scholar 

  • Yan J, Wang J, Tissue D, Holaday AS, Allen R, Zhang H (2003) Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an arabidopsis ascorbate peroxidase gene. Crop Sci 43(2003):1477–1483

    Google Scholar 

  • Ying S, Zhang D-F, Fu J et al (2012) Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235(2):253–266

    Google Scholar 

  • Yu T, Li YS, Chen XF, Hu J, Chang X, Zhu YG (2003) Transgenic tobacco plants overexpressing cotton glutathione S-transferase (GST) show enhanced resistance to methyl viologen. J Plant Physiol 160:1305–1311

    Google Scholar 

  • Zhang L, Xi D, Li S et al (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77(1–2):17–31

    Google Scholar 

  • Zhang H, Zhang J, Wei P et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807

    Google Scholar 

  • Zhang F, Wang P, Zou YN, Wu QS, Kuča K (2019) Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch Agron Soil Sci 65(9):1316–1330. https://doi.org/10.1080/03650340.2018.1563780

    Article  Google Scholar 

  • Zhao Y, Zhang C, Liu W et al (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6(1):23890–23811

    PubMed Central  Google Scholar 

  • Zhu M, Meng X, Cai J et al (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol 18(1):1–14

    Google Scholar 

  • Zingaretti SM, Rodrigues FA, Graca JP, Pereira LM, Lourenco MV (2012) Sugarcane responses at water deficit conditions. In: Rahman IMM (ed) Water stress. IntechOpen, Shanghai, pp 255–276

    Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24:57–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandita, D. (2023). Crop Responses to Drought Stress. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-37424-1_8

Download citation

Keywords

Publish with us

Policies and ethics