Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

An Introduction to Clinical Aspects of Cystic Fibrosis

  • Chapter
  • First Online:
Treatment of Cystic Fibrosis and Other Rare Lung Diseases

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 1861 Accesses

Abstract

Cystic fibrosis (CF) is the most common life shortening inherited disease in people of Northern European background. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR is a 1480 base protein belonging to the ABC transporter family. It acts as a cAMP-activated chloride and bicarbonate channel and also regulates Na reabsorption through its effect on the epithelial sodium channel (ENaC). The loss of CFTR-mediated inhibition of ENaC leads to excess sodium and water reabsorption, resulting in dehydration of airway surface materials, and dehydration of airway surface materials. Concomitant loss of chloride efflux prevents the epithelium from correcting the low airway surface water volume. The subsequent decrease in periciliary water volume results in a reduction in the lubricating layer between the epithelium and mucus, causing inhibition of normal ciliary clearance of mucus. In addition to abnormalities in ion transport, dysregulation of the host inflammatory response appears to play an important role in cystic fibrosis. It is characteristic of CF that the airways become infected with pathogenic bacteria. Compounding the inability to clear infection, patients with CF also exhibit abnormal inflammatory signaling and an excessive inflammatory response. With persistent infection and periodic exacerbations of the chronic infection, progressive lung disease develops. Thus, in spite of the progress in treatment that has been made, the overwhelming majority of patients still die from respiratory failure. Treatment has traditionally focused on the downstream effects of CFTR dysfunction, and includes therapies that correct altered airway secretions (physical airway clearance therapy, dornase alfa, hypertonic saline, and the recently approved inhaled mannitol); anti-inflammatory therapies (high-dose ibuprofen and alternate-day azithromycin); anti-infective therapies (inhaled anti-pseudomonal antibiotics such as tobramycin and aztreonam, along with intermittent treatment with systemic antibiotics of episodic pulmonary exacerbations), and when lung damage is severe, lung transplantation. The recent development of first generation CFTR modulating agents to treat CFTR dysfunction (ivacaftor, a potentiator that activates defective CFTR at the cell surface, and lumacaftor, a CFTR corrector that facilitates transport of class II mutations to the apical cell surface) marks the beginning of a new era of mutation- specific therapies to improve the function of defective CFTR protein. A number of next-generation modulators and other agents are currently moving through the drug development pipeline, offering hope for increased optimism regarding continuing improvements in the long-term outlook of this difficult disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson MP, Gregory RJ, Thompson S et al (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253(5016):202–205

    Article  CAS  PubMed  Google Scholar 

  • Aurora P, Carby M, Sweet S (2008) Selection of cystic fibrosis patients for lung transplantation. Curr Opin Pulm Med 14(6):589–594

    Article  PubMed  Google Scholar 

  • Bilton D, Bellon G, Charlton B et al (2013) Pooled analysis of two large randomised phase III inhaled mannitol studies in cystic fibrosis. J Cyst Fibros 12(4):367–376

    Article  CAS  PubMed  Google Scholar 

  • Bobadilla JL, Macek M Jr, Fine JP, Farrell PM (2002) Cystic fibrosis: a worldwide analysis of CFTR mutations—correlation with incidence data and application to screening. Hum Mutat 19(6):575–606

    Article  CAS  PubMed  Google Scholar 

  • Borowitz D, Baker RD, Stallings V (2002) Consensus report on nutrition for pediatric patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 35(3):246–259

    Article  PubMed  Google Scholar 

  • Borowitz D, Parad RB, Sharp JK et al (2009) Cystic fibrosis foundation practice guidelines for the management of infants with cystic fibrosis transmembrane conductance regulator-related metabolic syndrome during the first two years of life and beyond. J Pediatr 155(6, Supplement 1):S106–S116

    Article  PubMed  Google Scholar 

  • Boucher RC (2007) Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 58:157–170

    Article  CAS  PubMed  Google Scholar 

  • Boyle MP (2003) Nonclassic cystic fibrosis and CFTR-related diseases. Curr Opin Pulm Med 9(6):498–503

    Article  PubMed  Google Scholar 

  • Burrows EF, Southern KW, Noone PG (2012) Sodium channel blockers for cystic fibrosis. Cochrane Database Syst Rev 3:CD005087

    Google Scholar 

  • Campodonico VL, Gadjeva M, Paradis-Bleau C, Uluer A, Pier GB (2008) Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol Med 14(3):120–133

    Article  CAS  PubMed  Google Scholar 

  • Carlstedt-Duke J, Bronnegard M, Strandvik B (1986) Pathological regulation of arachidonic acid release in cystic fibrosis: the putative basic defect. Proc Natl Acad Sci USA 83(23):9202–9206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrabino S, Carpani D, Livraghi A et al (2006) Dysregulated interleukin-8 secretion and NF-kappaB activity in human cystic fibrosis nasal epithelial cells. J Cyst Fibros 5(2):113–119

    Article  CAS  PubMed  Google Scholar 

  • Caverly LJ, Zhao J, LiPuma JJ (2015) Cystic fibrosis lung microbiome: opportunities to reconsider management of airway infection. Pediatr Pulmonol 50(Suppl 40):S31–S38

    Article  PubMed  Google Scholar 

  • Chen J, Kinter M, Shank S, Cotton C, Kelley TJ, Ziady AG (2008) Dysfunction of Nrf-2 in CF epithelia leads to excess intracellular H2O2 and inflammatory cytokine production. PLoS One 3(10):e3367

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen JH, Stoltz DA, Karp PH et al (2010) Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell 143(6):911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collaco JM, Cutting GR (2008) Update on gene modifiers in cystic fibrosis. Curr Opin Pulm Med 14(6):559–566

    Article  PubMed  PubMed Central  Google Scholar 

  • Collawn JF, Matalon S (2014) CFTR and lung homeostasis. Am J Physiol Lung Cell Mol Physiol 307:L917–L923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collawn JF, Lazrak A, Bebok Z, Matalon S (2012) The CFTR and ENaC debate: how important is ENaC in CF lung disease? Am J Physiol Lung Cell Mol Physiol 302(11):L1141–L1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo C, Costantini D, Rocchi A et al (2005) Cytokine levels in sputum of cystic fibrosis patients before and after antibiotic therapy. Pediatr Pulmonol 40(1):15–21

    Article  PubMed  Google Scholar 

  • Cutting GR (2010) Modifier genes in Mendelian disorders: the example of cystic fibrosis. Ann N Y Acad Sci 1214:57–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cystic Fibrosis Foundation (2008) Cystic fibrosis foundation patient registry, 2007 annual data report. Cystic Fibrosis Foundation, Bethesda, MD

    Google Scholar 

  • Cystic Fibrosis Foundation (2013) Cystic fibrosis foundation patient registry 2012 annual data report. Cystic Fibrosis Foundation, Bethesda, MD

    Google Scholar 

  • Dasenbrook EC, Konstan MW (2012) Inhaled hypertonic saline in infants and young children with cystic fibrosis. JAMA 307(21):2316–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis PB (2006) Cystic fibrosis since 1938. Am J Respir Crit Care Med 173(5):475–482

    Article  PubMed  Google Scholar 

  • De Boeck K, Munck A, Walker S et al (2014) Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibros 13(6):674–680

    Article  PubMed  Google Scholar 

  • Doring G, Conway S, Heijerman H et al (2000) Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 16(4):749–767

    Article  CAS  PubMed  Google Scholar 

  • Eigen H, Rosenstein BJ, FitzSimmons S, Schidlow DV (1995) A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J Pediatr 126(4):515–523

    Article  CAS  PubMed  Google Scholar 

  • Elkins MR, Robinson M, Rose BR et al (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354(3):229–240

    Article  CAS  PubMed  Google Scholar 

  • Eng W, LeGrys VA, Schechter MS, Laughon MM, Barker PM (2005) Sweat-testing in preterm and full-term infants less than 6 weeks of age. Pediatr Pulmonol 40(1):64–67

    Article  PubMed  Google Scholar 

  • Farrell PM, Rosenstein BJ, White TB et al (2008) Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr 153(2):S4–S14

    Article  PubMed  PubMed Central  Google Scholar 

  • Flume PA, O’Sullivan BP, Robinson KA et al (2007) Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med 176(10):957–969

    Article  CAS  PubMed  Google Scholar 

  • Flume PA, Robinson KA, O’Sullivan BP et al (2009) Cystic fibrosis pulmonary guidelines: airway clearance therapies. Respir Care 54(4):522–537

    PubMed  Google Scholar 

  • Freedman SD, Blanco PG, Zaman MM et al (2004) Association of cystic fibrosis with abnormalities in fatty acid metabolism. N Engl J Med 350(6):560–569

    Article  CAS  PubMed  Google Scholar 

  • Fuchs HJ, Borowitz DS, Christiansen DH et al (1994) Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med 331(10):637–642

    Article  CAS  PubMed  Google Scholar 

  • Gallati S (2014) Disease-modifying genes and monogenic disorders: experience in cystic fibrosis. Appl Clin Genet 7:133–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168(8):918–951

    Article  PubMed  Google Scholar 

  • Gilljam M, Moltyaner Y, Downey GP et al (2004) Airway inflammation and infection in congenital bilateral absence of the vas deferens. Am J Respir Crit Care Med 169(2):174–179

    Article  PubMed  Google Scholar 

  • Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88(4):553–560

    Article  CAS  PubMed  Google Scholar 

  • Goss CH, Burns JL (2007) Exacerbations in cystic fibrosis. 1: epidemiology and pathogenesis. Thorax 62(4):360–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Griesenbach U, Alton EW (2013) Moving forward: cystic fibrosis gene therapy. Hum Mol Genet 22(R1):R52–R58

    Article  CAS  PubMed  Google Scholar 

  • Hall GL, Logie KM, Parsons F et al (2011) Air trapping on chest CT is associated with worse ventilation distribution in infants with cystic fibrosis diagnosed following newborn screening. PLoS One 6(8):e23932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson C, Butler SM, Konstan MW, Morgan W, Wohl MEB (2003) Factors influencing outcomes in cystic fibrosis: a center-based analysis. Chest 123(1):20–27

    Article  PubMed  Google Scholar 

  • Karp CL, Flick LM, Park KW et al (2004) Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat Immunol 5(4):388–392

    Article  CAS  PubMed  Google Scholar 

  • Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151(4):1075–1082

    CAS  PubMed  Google Scholar 

  • Konstan MW (2008) Ibuprofen therapy for cystic fibrosis lung disease: revisited. Curr Opin Pulm Med 14(6):567–573

    Article  CAS  PubMed  Google Scholar 

  • Konstan MW, Butler SM, Wohl ME et al (2003) Growth and nutritional indexes in early life predict pulmonary function in cystic fibrosis. J Pediatr 142(6):624–630

    Article  PubMed  Google Scholar 

  • Konstan MW, Morgan WJ, Butler SM et al (2007) Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr 151(2):134–139 e131

    Article  PubMed  Google Scholar 

  • LeGrys VA, Yankaskas JR, Quittell LM, Marshall BC, Mogayzel PJ Jr (2007) Diagnostic sweat testing: the Cystic Fibrosis Foundation guidelines. J Pediatr 151(1):85–89

    Article  PubMed  Google Scholar 

  • Machen TE (2006) Innate immune response in CF airway epithelia: hyperinflammatory? Am J Physiol Cell Physiol 291(2):C218–C230

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Grubb BR, Tarran R et al (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95(7):1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Wagner VE, Hill DB et al (2006) A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 103(48):18131–18136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mickle JE, Cutting GR (1998) Clinical implications of cystic fibrosis transmembrane conductance regulator mutations. Clin Chest Med 19(3):443–458, v

    Article  CAS  PubMed  Google Scholar 

  • Muhlebach MS, Stewart PW, Leigh MW, Noah TL (1999) Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 160(1):186–191

    Article  CAS  PubMed  Google Scholar 

  • Muhlebach MS, Reed W, Noah TL (2004) Quantitative cytokine gene expression in CF airway. Pediatr Pulmonol 37(5):393–399

    Article  PubMed  Google Scholar 

  • Nazer D, Abdulhamid I, Thomas R, Pendleton S (2006) Home versus hospital intravenous antibiotic therapy for acute pulmonary exacerbations in children with cystic fibrosis. Pediatr Pulmonol 41(8):744–749

    Article  PubMed  Google Scholar 

  • Nick JA, Sanders LA, Ickes B et al (2013) Blood mRNA biomarkers for detection of treatment response in acute pulmonary exacerbations of cystic fibrosis. Thorax 68(10):929–937

    Article  CAS  PubMed  Google Scholar 

  • Nick JA, Moskowitz SM, Chmiel JF et al (2014) Azithromycin may antagonize inhaled tobramycin when targeting Pseudomonas aeruginosa in cystic fibrosis. Ann Am Thorac Soc 11(3):342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan BP, Flume P (2009) The clinical approach to lung disease in patients with cystic fibrosis. Semin Respir Crit Care Med 30(5):505–513

    Article  PubMed  Google Scholar 

  • O’Sullivan BP, Freedman SD (2009) Cystic fibrosis. Lancet 373(9678):1891–1904

    Article  PubMed  Google Scholar 

  • O’Sullivan BP, Michelson AD (2006) The inflammatory role of platelets in cystic fibrosis. Am J Respir Crit Care Med 173(5):483–490

    Article  PubMed  Google Scholar 

  • Oakland M, Sinn PL, McCray PB Jr (2012) Advances in cell and gene-based therapies for cystic fibrosis lung disease. Mol Ther J Am Soc Gene Ther 20(6):1108–1115

    Article  CAS  Google Scholar 

  • Owens CM, Aurora P, Stanojevic S et al (2011) Lung Clearance Index and HRCT are complementary markers of lung abnormalities in young children with CF. Thorax 66(6):481–488

    Article  CAS  PubMed  Google Scholar 

  • Patient Registry 2007 Annual Report (2007) Cystic fibrosis foundation annual data report. Cystic Fibrosis Foundation, Baltimore, MD

    Google Scholar 

  • Peterson ML, Jacobs DR Jr, Milla CE (2003) Longitudinal changes in growth parameters are correlated with changes in pulmonary function in children with cystic fibrosis. Pediatrics 112:588–592

    Article  PubMed  Google Scholar 

  • Pezzulo AA, Tang XX, Hoegger MJ et al (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487(7405):109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan JM, Tiddens HA, Sy JP et al (2001) A two-year randomized, placebo-controlled trial of dornase alfa in young patients with cystic fibrosis with mild lung function abnormalities. J Pediatr 139(6):813–820

    Article  CAS  PubMed  Google Scholar 

  • Quinton PM (2008) Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 372(9636):415–417

    Article  CAS  PubMed  Google Scholar 

  • Ratjen F, Durham T, Navratil T et al (2012) Long term effects of denufosol tetrasodium in patients with cystic fibrosis. J Cyst Fibros 11(6):539–549

    Article  CAS  PubMed  Google Scholar 

  • Regelmann WE, Elliott GR, Warwick WJ, Clawson CC (1990) Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone. Am Rev Respir Dis 141:914–921

    Article  CAS  PubMed  Google Scholar 

  • Ren CL, Pasta DJ, Rasouliyan L, Wagener JS, Konstan MW, Morgan WJ (2008) Relationship between inhaled corticosteroid therapy and rate of lung function decline in children with cystic fibrosis. J Pediatr 153(6):746–751

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld M, Ratjen F, Brumback L et al (2012) Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: the ISIS randomized controlled trial. JAMA 307(21):2269–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld M, Allen J, Arets BH et al (2013) An official American Thoracic Society workshop report: optimal lung function tests for monitoring cystic fibrosis, bronchopulmonary dysplasia, and recurrent wheezing in children less than 6 years of age. Ann Am Thorac Soc 10(2):S1–S11

    Article  Google Scholar 

  • Rottner M, Kunzelmann C, Mergey M, Freyssinet JM, Martinez MC (2007) Exaggerated apoptosis and NF-kappaB activation in pancreatic and tracheal cystic fibrosis cells. FASEB J Off Publ Fed Am Soc Exp Biol 21(11):2939–2948

    Google Scholar 

  • Sagel SD, Wagner BD, Anthony MM, Emmett P, Zemanick ET (2012) Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am J Respir Crit Care Med 186(9):857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiman L, Marshall BC, Mayer-Hamblett N et al (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290(13):1749–1756

    Article  CAS  PubMed  Google Scholar 

  • Schechter MS (2011) Nongenetic influences on cystic fibrosis outcomes. Curr Opin Pulm Med 17(6):448–454

    PubMed  Google Scholar 

  • Schultz MJ (2004) Macrolide activities beyond their antimicrobial effects: macrolides in diffuse panbronchiolitis and cystic fibrosis. J Antimicrob Chemother 54(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Sermet-Gaudelus I, Boeck KD, Casimir GJ et al (2010) Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med 182(10):1262–1272

    Article  CAS  PubMed  Google Scholar 

  • Sly PD, Brennan S, Gangell C et al (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180(2):146–152

    Article  PubMed  Google Scholar 

  • Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85(2):229–236

    Article  CAS  PubMed  Google Scholar 

  • Smyth A (2005) Prophylactic antibiotics in cystic fibrosis: a conviction without evidence? Pediatr Pulmonol 40(6):471–476

    Article  PubMed  Google Scholar 

  • Subbarao P, Stanojevic S, Brown M et al (2013) Lung clearance index as an outcome measure for clinical trials in young children with cystic fibrosis. A pilot study using inhaled hypertonic saline. Am J Respir Crit Care Med 188(4):456–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Szaff M, Hoiby N, Flensborg EW (1983) Frequent antibiotic therapy improves survival of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection. Acta Paediart Scand 72:651–657

    Article  CAS  Google Scholar 

  • Tepper LA, Ciet P, Caudri D, Quittner AL, Utens EM, Tiddens HA (2016) Validating chest MRI to detect and monitor cystic fibrosis lung disease in a pediatric cohort. Pediatr Pulmonol 51:34–41

    Article  PubMed  Google Scholar 

  • Tiddens HA, Puderbach M, Venegas JG et al (2015) Novel outcome measures for clinical trials in cystic fibrosis. Pediatr Pulmonol 50:302–315. doi:10.1002/ppul.23146

    Article  Google Scholar 

  • Tirouvanziam R, de Bentzmann S, Hubeau C et al (2000) Inflammation and infection in naive human cystic fibrosis airway grafts. Am J Respir Cell Mol Biol 23(2):121–127

    Article  CAS  PubMed  Google Scholar 

  • Treggiari MM, Rosenfeld M, Retsch-Bogart G, Gibson R, Ramsey B (2007) Approach to eradication of initial Pseudomonas aeruginosa infection in children with cystic fibrosis. Pediatr Pulmonol 42(9):751–756

    Article  PubMed  Google Scholar 

  • Vanscoy LL, Blackman SM, Collaco JM et al (2007) Heritability of lung disease severity in cystic fibrosis. Am J Respir Crit Care Med 175(10):1036–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wainwright CE, Elborn JS, Ramsey BW et al (2015) Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 373(3):220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worlitzsch D, Tarran R, Ulrich M et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109(3):317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabner J, Smith JJ, Karp PH, Widdicombe JH, Welsh MJ (1998) Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelia in vitro. Mol Cell 2(3):397–403

    Article  CAS  PubMed  Google Scholar 

  • Zaman MM, Gelrud A, Junaidi O et al (2004) Interleukin 8 secretion from monocytes of subjects heterozygous for the deltaF508 cystic fibrosis transmembrane conductance regulator gene mutation is altered. Clin Diagn Lab Immunol 11(5):819–824

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nauman Chaudary M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chaudary, N., Schechter, M.S. (2017). An Introduction to Clinical Aspects of Cystic Fibrosis. In: Azuma, A., Schechter, M. (eds) Treatment of Cystic Fibrosis and Other Rare Lung Diseases. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0977-1_1

Download citation

Publish with us

Policies and ethics