Abstract
The structure of the lung subserves its function, which is primarily gas exchange, and selection for expanded capacities for gas exchange is self-evident in the great diversity of pulmonary morphologies observed in different vertebrate lineages. However, expansion of aerobic capacities does not explain all of this diversity, leaving the functional underpinnings of some of the most fascinating transformations of the vertebrate lung unknown. One of these transformations is the evolution of highly branched conducting airways, particularly those of birds and mammals. Birds have an extraordinarily complex circuit of airways through which air flows in the same direction during both inspiration and expiration, unidirectional flow. Mammals also have an elaborate system of conducting airways; however, the tubes arborize rather than form a circuit, and airflow is tidal along the branches of the bronchial tree. The discovery of unidirectional airflow in crocodilians and lizards indicates that several inveterate hypotheses for the selective drivers of this trait cannot be correct. Neither endothermy nor athleticism drove the evolution of unidirectional flow. These discoveries open an uncharted area for research into selective underpinning of unidirectional airflow.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akester A. The comparative anatomy of the respiratory pathways in the domestic fowl (Gallus domesticus), pigeon (Columba livia) and domestic duck (Anas platyrhyncha). J Anat. 1960;4:487–505.
Angrist SW. Fluid control devides. Sci Am. 1964;211:80–8.
Bethe A. Atmung: Allgemeines und Vergleichendes. In: Bethe A, Bergmann EG, editors. Handbuch der normals und pathologischen Physiology, vol. 2. Berlin: Springer; 1925. p. 1–36.
Boucot A, Janis C. Environment of the early Paleozoic vertebrates. Palaeogeogr Palaeoclimatol Palaeoecol. 1983;41:251–87.
Brackenbury JH. Airflow dynamics in the avian lung as determined by direct and indirect methods. Respir Physiol. 1971;13:318–29.
Brackenbury JH. Ventilation of the lung-air sac system. In: Seller TJ, editor. Bird respiration, vol. II. Boca Raton, FL: CRC Press; 1987. p. 39–69.
Brainerd EL, Owerkowicz T. Functional morphology and evolution of aspiration breathing in tetrapods. Respir Physiol Neurobiol. 2006;154:73–88.
Butler G. On the complete or partial suppression of the right lung in the Amphisbaenidae and the left lung in snakes and snake-like lizards and amphibians. Proc Zool Soc Lond. 1895;1895:691–712.
Butler JP, Banzett RB, Fredberg JJ. Inspiratory valving in avian bronchi: aerodynamic considerations. Respir Physiol. 1988;72:241–56.
Cass AN, Servetnick MD, McCune AR. Expression of a lung developmental cassette in the adult and developing zebrafish swimbladder. Evol Dev. 2013;15:119–32.
Cieri RL, Craven BA, Schachner ER, Farmer CG. New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs. Proc Natl Acad Sci USA. 2014;111:17218–23.
Coiter V. Anatomie Avium. In Externarum et internarum praecipalium humani corporis partium tabulae atque anatomicae exercitationes observationesque varieae. Germany: Norimbergae; 1573. p. 130–3.
Cupello C, Brito PM, Herbin M, Meunier FJ, Janvier P, Dutel H, Clément G. Allometric growth in the extant coelacanth lung during ontogenetic development. Nat Commun. 2015;6:8222.
Darwin C. The descent of man, and selection in relation to sex. London: John Murray; 1871.
Dotterweich H. Die Atmung der Vögel. Z f vergl Physiol. 1936;23:744–70.
Duncker HR. The lung air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus. Ergeb Anat Entwicklungsgesch. 1971;45:1–171.
Duncker HR. General morphological principles of amniotic lungs. In: Piiper J, editor. Respiratory function in birds. Heidelberg: Springer; 1978.
Farmer C. Did lungs and the intracardiac shunt evolve to oxygenate the heart in vertebrates? Paleobiology. 1997;23:358–72.
Farmer CG. The provenance of alveolar and parabronchial lungs: insights from paleoecology and the discovery of cardiogenic, unidirectional airflow in the American alligator (Alligator mississippiensis). Physiol Biochem Zool. 2010;83:561–75.
Farmer CG. On the evolution of vascular patterns of tetrapods. J Morphol. 2011;272:1325–41.
Farmer CG. The evolution of unidirectional pulmonary airflow. Physiology. 2015a;30:260–72.
Farmer CG. Similarity of crocodilian and avian lungs indicates unidirectional flow is ancestral for archosaurs. Integr Comp Biol. 2015b;55:962–71.
Farmer CG, Carrier DR. Pelvic aspiration in the American alligator (Alligator mississippiensis). J Exp Biol. 2000;203:1679–87.
Farmer CG, Sanders K. Unidirectional airflow in the lungs of alligators. Science. 2010;327:338–40.
Gans C, Clark B. Studies on ventilation of Caiman crocodilus (Crocodilia: Reptilia). Respir Physiol. 1976;26:285–301.
Greenblatt EE, Butler JP, Venegas JG, Winkler T. Pendelluft in the bronchial tree. J Appl Physiol. 2014;117:979–88.
Hazelhoff EH. Structure and function of the lung of birds. Poult Sci. 1951;30:3–10.
Heraty KB, Laffey JG, Quinlan NJ. Fluid dynamics of gas exchange in high-frequency oscillatory ventilation: in vitro investigations in idealized and anatomically realistic airway bifurcation models. Ann Biomed Eng. 2008;36:1856–69.
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol. 2013;3:849–915.
Huxley TH. On the respiratory organs of Apteryx. Proc Zool Soc Lond. 1882;1882:560–9.
Kramer DL, Lindsey CC, Moodie GEE, Stevens ED. The fishes and the aquatic environment of the central Amazon basin, with particular reference to respiratory patterns. Can J Zool. 1978;56:717–29.
Krefft G. Description of a gigantic amphibian allied to genus Lepidosiren, from Wide Bay district, Queensland. Proc Zool Soc Lond. 1870;1870:221–4.
Liem KF. Respiratory gas bladders in teleosts: functional conservatism and morphological diversity. Am Zool. 1989;29:333–52.
Longo S, Riccio M, McCune AR. Homology of lungs and gas bladders: insights from arterial vasculature. J Morphol. 2013;274:687–703.
Maina JN. The morphometry of the avian lung. In: King AS, McLelland J, editors. Form and function in birds, vol. 4. London: Academic; 1989. p. 307–68.
Maina JN. The gas exchangers: structure, function, and evolution of the respiratory processes. New York: Springer; 1998.
Maina JN. What it takes to fly: the structural and functional respiratory refinements in birds and bats. J Exp Biol. 2000;203:3045–64.
Maina JN. Some recent advances on the study and understanding of the functional design of the avian lung: morphological and morphometric perspectives. Biol Rev Camb Philos Soc. 2002;77:97–152.
Maina JN. Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biol Rev Camb Philos Soc. 2006;81:545–79.
Maina JN, King AS, Settle G. An allometric study of pulmonary morphometric parameters in birds, with mammalian comparisons. Philos Trans R Soc Lond Ser B Biol Sci. 1989;326:1–57.
Maina JN, Veltcamp CJ, Henry J. Study of the spatial organization of the gas exchange components of the snake lung-the sandboa Eryx colubrinus (Reptilia: Ophidia: Colubridae)-by latex casting. J Zool. 1999;247:81–90.
Mathie JN, Franklin CE. The influence of body size on the diving behaviour and physiology of the bimodally respiring turtle, Elseya albagula. J Comp Physiol B. 2006;176:739–47.
Milani A. Beiträge zur Kenntniss der Reptilienlunge. Zool Jahrb. 1894;7:545–92.
Milani A. Beiträge zur Kenntnis der Reptilienlunge II. Zool Jahrb. 1897;10:93–156.
Miller WS. The structure of the lung. J Morph. 1893;VIII:165–89.
Montiero A, Smith RL. Bronchial tree architecture in mammals of diverse body mass. Int J Morphol. 2014;32:312–6.
Nysten M. Étude anatomique des rapports de la vessie aérienne avec l’axe vertébral chez Pantodon buchholzi Peters. Ann Mus R l’Afrique Cent Sci Zool. 1962;8:187–220.
Perry SF. Reptilian lungs: functional anatomy and evolution. Berlin: Springer; 1983.
Perry SF, Duncker HR. Lung architecture, volume and static mechanics in five species of lizards. Respir Physiol. 1978;34:61–81.
Perry SF, Schmitz A, Andersen NA, Wallau BR, Nicol S. Descriptive study of the diaphragm and lungs in the short-nosed echidna, Tachyglossus aculeatus (Mammalia: monotremata). J Morphol. 2000;243:247–55.
Pick FK. Zur feineren Anatomie der Lunge von Halicore dugong. Archiv für Naturgeschichte. 1907;73:245–72.
Sagemehl M. Beitrage zur vergleichenden Anatomie der Fische-III. Das Cranium der Characiniden nebst allgemeinen Bemerkungen uber die mit dem Weber’schen Apparat versehenen Physostomenfamilien. Morphol Jahrb. 1885;1885:1–119.
Schachner ER, Cieri RL, Butler JP, Farmer CG. Unidirectional pulmonary airflow patterns in the savannah monitor lizard. Nature. 2014;506:367–70.
Schmidt-Neilsen K. How birds breathe. Sci Am. 1971;225:72–9.
Van Wallach V. The lungs of snakes. In: Gans C, Gaunt AS, editors. Biology of the Reptilia, Morphology G. Visceral Organs, vol. 19. Ithaca, NY: Society for the Study of Amphibians and Reptiles; 1998. p. 93–295.
Weibel ER. Morphometry of the human lung. Berlin: Springer; 1963.
Weibel ER. The pathway for oxygen. Cambridge: Harvard University Press; 1984.
West JB. Respiratory physiology—the essentials. Baltimor: Williams and Wilkins; 1995.
Whitford WG, Hutchison VH. Gas exchange in salamanders. Physiol Zool. 1965;38:228–42.
Wolf S. Zur kenntnis von Bau und Funktion der Reptilienlunge. Zool Jahrb Abt Anat Ontol. 1933;57:139–90.
Acknowledgments
I thank Brent Craven and Robert Cieri for modeling work and advice, and Robert Cieri, Scott Echols, Adam Huttenlocker, Jeremy Klingler, Nicola Nelson, and Brett Gartrell, for help obtaining CT data.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Farmer, C.G. (2017). Pulmonary Transformations of Vertebrates. In: Maina, J. (eds) The Biology of the Avian Respiratory System. Springer, Cham. https://doi.org/10.1007/978-3-319-44153-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-44153-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44152-8
Online ISBN: 978-3-319-44153-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)