Abstract
The field of thermophilic microbiology was born in the late 1970s with the pioneering work of Brock (Thermophiles biodiversity, ecology, and evolution. Springer, Boston, pp. 1–9, 2001) and dramatically expanded through the ’80s with the isolation of hyperthermophiles by Stetter (FEMS Microbiol Rev 18:149–158, 1996). The development of SSU rRNA phylogenetics revealed the complexity and diversity of prokaryotic phylotypes on biotopes widely differing in extreme conditions (e.g. spanning gradients of pH between 0 and 10 and temperatures from 60 °C to over 120 °C, respectively). Sites of volcanic activity all over the Earth’s surface and under the sea provide a variety of different environments for extremophilic microorganisms. Hot springs populated by hyperthermophiles (Topt > 65 °C), the majority of which belonging to the domain of Archaea, are very diverse and some of them show combinations of other extreme conditions, for example, acidic, alkaline, high pressure, and high concentrations of salts and heavy metals (Cowan et al. in Curr Opin Microbiol 25:97–102, 2015). Archaea inhabiting hot springs are considered to be the closest living descendants of the earliest living forms on Earth and their study provide insights into the origin and evolution of life (Woese et al. in Proc Natl Acad Sci USA 87:4576–4579, 1990; Olsen et al. in J Bacteriol 176:1–6, 1994). As with all studies of environmental microbiology, our understanding of the function of (hyper)thermophilic microbial consortia has lagged substantially behind. However, recent advances in ‘omics’ technologies, particularly within a system biology context, have made significant progresses into the prediction of in situ functionality (Cowan et al. in Curr Opin Microbiol 25:97–102, 2015). Most extremophilic microorganisms are recalcitrant to cultivation-based approaches (Amann et al. in Microbiol Rev 59:143–69, 1995; Lorenz et al. in Curr Opin Biotechnol 13:572–577, 2002); therefore, culture-independent metagenomic strategies are promising approaches to assess the phylogenetic composition and functional potential of microbial communities living in extreme environments (López-López et al. in Life 3:308–320, 2013). In addition, these approaches implement tremendously the access to enzymes from (hyper)thermophilic microorganisms that have important potential applications in several biotechnological processes. We report here on the state-of-the-art of the metagenomic surveys of different hot springs (T > 65 °C) (Table 5.1) and on the recent advance in the discovery of new hyperthermostable biocatalysts of biotechnological interest from metagenomic studies of these extreme environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen ET, Day AL (1935) Hot springs of the Yellowstone National Park
Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
Angelov A, Mientus M, Liebl S, Liebl W (2009) A two-host fosmid system for functional screening of (meta)genomic libraries from extreme thermophiles. Syst Appl Microbiol 32:177–185. doi:10.1016/j.syapm.2008.01.003
Auchtung TA, Shyndriayeva G, Cavanaugh CM (2011) 16S rRNA phylogenetic analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia. Extremophiles 15:105–116. doi:10.1007/s00792-010-0340-5
Barth TFW (1950) Volcanic geology, hot springs and geysers of Iceland. Carnegie Institution of Washington, Washington
Beam JP, Jay ZJ, Kozubal MA, Inskeep WP (2014) Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME J 8:938–951. doi:10.1038/ismej.2013.193
Blank CE, Cady SL, Pace NR (2002) Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 68:5123–5135. doi:10.1128/AEM.68.10.5123-5135.2002
Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217. doi:10.1016/j.copbio.2008.04.007
Bolduc B, Shaughnessy DP, Wolf YI, Koonin EV, Roberto FF, Young M (2012) Identification of novel positive-strand RNA viruses by metagenomic analysis of Archaea-dominated yellowstone hot springs. J Virol 86:5562–5573. doi:10.1128/JVI.07196-11
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, btu170. doi:10.1093/bioinformatics/btu170
Briggs BR, Brodie EL, Tom LM, Dong H, Jiang H, Huang Q, Wang S, Hou W, Wu G, Huang L, Hedlund BP, Zhang C, Dijkstra P, Hungate BA (2014) Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China. Environ Microbiol 16:1579–1591. doi:10.1111/1462-2920.12311
Brock TD (2001) The origins of research on Thermophiles. In: Reysenbach A-L, Voytek M, Mancinelli R (eds) Thermophiles biodiversity, ecology, and evolution. Springer, Boston, pp 1–9
Brock TD, Brock ML (1967) The hot springs of the Furnas Valley, Azores. Int Rev der gesamten Hydrobiol und Hydrogr 52:545–558. doi:10.1002/iroh.19670520405
Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. doi:10.1093/bioinformatics/btp636
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303
Chan CS, Chan K-G, Tay Y-L, Chua Y-H, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:177. doi:10.3389/fmicb.2015.00177
Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557
Cobucci-Ponzano B, Strazzulli A, Iacono R, Masturzo G, Giglio R, Rossi M, Moracci M (2015) Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries. Enzyme Microb Technol. doi:10.1016/j.enzmictec.2015.06.014
Cowan D, Ramond J-B, Makhalanyane T, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102. doi:10.1016/j.mib.2015.05.005
Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318. doi:10.1007/s00792-001-0259-y
Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119. doi:10.1016/j.mib.2015.05.011
Ellis A, Mahon WA (1967) Natural hydrothermal systems and experimental hot water/rock interactions (Part II). Geochim Cosmochim Acta 31:519–538. doi:10.1016/0016-7037(67)90032-4
Eme L, Reigstad LJ, Spang A, Lanzén A, Weinmaier T, Rattei T, Schleper C, Brochier-Armanet C (2013) Metagenomics of kamchatkan hot spring filaments reveal two new major (hyper) thermophilic lineages related to thaumarchaeota. Res Microbiol 164:425–438. doi:10.1016/j.resmic.2013.02.006
Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. doi:10.1016/0006-3207(92)91201-3
Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns PC, Discipulo MK (2000) Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). J Sediment Res 70:565–585. doi:10.1306/2DC40929-0E47-11D7-8643000102C1865D
Fouke BW, Bonheyo GT, Sanzenbacher B, Frias-Lopez J (2003) Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs, Yellowstone National Park, USA. Can J Earth Sci 40:1531–1548
Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375. doi:10.1038/ncomms1373
Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504. doi:10.1101/gr.112730.110
Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34
Hall JR, Mitchell KR, Jackson-Weaver O, Kooser AS, Cron BR, Crossey LJ, Takacs-Vesbach CD (2008) Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74:4910–4922. doi:10.1128/AEM.00233-08
Hamamura N, Macur RE, Korf S, Ackerman G, Taylor WP, Kozubal M, Reysenbach A-L, Inskeep WP (2009) Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 11:421–431. doi:10.1111/j.1462-2920.2008.01781.x
Hedenquist JW, Henley RW (1985) Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand; their origin, associated breccias, and relation to precious metal mineralization. Econ Geol 80:1640–1668. doi:10.2113/gsecongeo.80.6.1640
Hetzer A, Morgan HW, McDonald IR, Daughney CJ (2007) Microbial life in Champagne Pool, a geothermal spring in Waiotapu, New Zealand. Extremophiles 11:605–614. doi:10.1007/s00792-007-0073-2
Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, Huang Q, Huang L, Wu G, Zhi X, Li W, Dodsworth JA, Hedlund BP, Zhang C, Hartnett HE, Dijkstra P, Hungate BA (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing. PLoS ONE 8:e53350. doi:10.1371/journal.pone.0053350
Huang Q, Dong CZ, Dong RM, Jiang H, Wang S, Wang G, Fang B, Ding X, Niu L, Li X, Zhang C, Dong H (2011) Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles 15:549–563. doi:10.1007/s00792-011-0386-z
Huber R, Huber H, Stetter KO (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24:615–623. doi:10.1016/S0168-6445(00)00049-8
Hug K, Maher WA, Stott MB, Krikowa F, Foster S, Moreau JW (2014) Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand. Front Microbiol 5:1–14. doi:10.3389/fmicb.2014.00569
Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376
Huson DH, Weber N (2013) Microbial community analysis using MEGAN. Methods Enzymol 531:465–485. doi:10.1016/B978-0-12-407863-5.00021-6
Inskeep WP, Ackerman GG, Taylor WP, Kozubal M, Korf S, Macur RE (2005) On the energetics of chemolithotrophy in nonequilibrium systems: case studies of geothermal springs in Yellowstone National Park. Geobiology 3:297–317. doi:10.1111/j.1472-4669.2006.00059.x
Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, de Jennings RM, Fouke BW, Reysenbach A-L, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5:e9773. doi:10.1371/journal.pone.0009773
Inskeep WP, Jay ZJ, Herrgard MJ, Kozubal MA, Rusch DB, Tringe SG, Macur RE, Jennings RDM, Boyd ES, Spear JR, Roberto FF (2013a) Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front Microbiol. doi:10.3389/fmicb.2013.00095
Inskeep WP, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB (2013b) The YNP metagenome project: environmental parameters responsible for microbial distribution in the yellowstone geothermal ecosystem. Front Microbiol 4:67. doi:10.3389/fmicb.2013.00067
Isaia R, Marianelli P, Sbrana A (2009) Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: implications for caldera dynamics and future eruptive scenarios. Geophys Res Lett 36:L21303. doi:10.1029/2009GL040513
Jay Z, Planer-Friedrich B, Rusch D, Inskeep W (2011) Linking geochemistry to microbial community structure and function in sulfidic geothermal systems of Yellowstone National Park. Mineral Mag 75:1104
Jiang H, Huang Q, Dong H, Wang P, Wang F, Li W, Zhang C (2010) RNA-based investigation of ammonia-oxidizing archaea in hot springs of Yunnan Province, China. Appl Environ Microbiol 76:4538–4541. doi:10.1128/AEM.00143-10
Jones B, Renaut R, Rosen M (2001) Biogenicity of gold- and silver-bearing siliceous sinters forming in hot (75 C°) anaerobic spring-waters of Champagne Pool, Waiotapu, North Island, New Zealand. J Geol Soc Lond 158:895–911. doi:10.1144/0016-764900-131
Ko M-S, Park H-S, Kim K-W, Lee J-U (2013) The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil. Environ Geochem Health 35:727–733. doi:10.1007/s10653-013-9530-2
Kozubal M, Macur RE, Korf S, Taylor WP, Ackerman GG, Nagy A, Inskeep WP (2008) Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park. Appl Environ Microbiol 74:942–949. doi:10.1128/AEM.01200-07
Kozubal MA, Romine M, deM Jennings R, Jay ZJ, Tringe SG, Rusch DB, Beam JP, McCue LA, Inskeep WP (2013) Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J 7:622–634. doi:10.1038/ismej.2012.132
Kublanov IV, Perevalova AA, Slobodkina GB, Lebedinsky AV, Bidzhieva SK, Kolganova TV, Kaliberda EN, Rumsh LD, Haertlé T, Bonch-Osmolovskaya EA (2009) Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia). Appl Environ Microbiol 75:286–291. doi:10.1128/AEM.00607-08
Lewin A, Wentzel A, Valla S (2013) Metagenomics of microbial life in extreme temperature environments. Curr Opin Biotechnol 24:516–525. doi:10.1016/j.copbio.2012.10.012
López-López O, Cerdán M, González-Siso M (2013) Hot spring metagenomics. Life 3:308–320. doi:10.3390/life3020308
López-López O, Cerdán ME, González Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15:445–455
Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572–577
Macur RE, Jay ZJ, Taylor WP, Kozubal MA, Kocar BD, Inskeep WP (2013) Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. Geobiology 11:86–99. doi:10.1111/gbi.12015
Marsh CL, Larsen DH (1953) Characterization of some thermophilic bacteria from the Hot Springs of Yellowstone National Park. J Bacteriol 65:193–197
Menzel P, Gudbergsdóttir SR, Rike AG, Lin L, Zhang Q, Contursi P, Moracci M, Kristjansson JK, Bolduc B, Gavrilov S, Ravin N, Mardanov A, Bonch-Osmolovskaya E, Young M, Krogh A, Peng X (2015) Comparative metagenomics of eight geographically remote terrestrial hot springs. Microb Ecol. doi:10.1007/s00248-015-0576-9
Meyer-Dombard D, Shock E, Amend J (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227. doi:10.1111/j.1472-4669.2005.00052.x
Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, McDonald AI, Havig JR, Hedlund BP (2012) Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning. PLoS ONE 7:e35964. doi:10.1371/journal.pone.0035964
Moser MJ, Di Francesco RA, Gowda K, Klingele AJ, Sugar DR, Stocki S, Mead DA, Schoenfeld TW (2012) Thermostable DNA polymerase from a viral metagenome is a potent RT-PCR enzyme. PLoS One. doi:10.1371/journal.pone.0038371
Mountain B, Benning L, Boerema J (2003) Experimental studies on New Zealand hot spring sinters: rates of growth and textural development. Can J Earth Sci 40:1643–1667. doi:10.1139/E03-068
Nakagawa S, Shtaih Z, Banta A, Beveridge TJ, Sako Y, Reysenbach A-L (2005) Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum. Int J Syst Evol Microbiol 55:2263–2268. doi:10.1099/ijs.0.63708-0
Olsen GJ, Woese CR, Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6
Orsi G, De Vita S, di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214. doi:10.1016/S0377-0273(96)00063-7
Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130. doi:10.1007/s10534-008-9195-y
Park CB, Lee SB (1999) Inhibitory effect of mineral ion accumulation on high density growth of the hyperthermophilic archaeon Sulfolobus solfataricus. J Biosci Bioeng 87:315–319
Petrosino S, Damiano N, Cusano P, Di Vito MA, de Vita S, Del Pezzo E (2012) Subsurface structure of the Solfatara volcano (Campi Flegrei caldera, Italy) as deduced from joint seismic-noise array, volcanological and morphostructural analysis. Geochem Geophys Geosyst 13:n/a–n/a. doi:10.1029/2011GC004030
Planer-Friedrich B, Franke D, Merkel B, Wallschläger D (2008) Acute toxicity of thioarsenates to Vibrio fischeri. Environ Toxicol Chem 27:2027–2035. doi:10.1897/07-633.1
Pride DT, Schoenfeld T (2008) Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures. BMC Genom 9:420. doi:10.1186/1471-2164-9-420
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi:10.1093/nar/gkm864
Reysenbach AL, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2119
Reysenbach AL, Ehringer M, Hershberger K (2000) Microbial diversity at 83 degrees C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4:61–67
Reysenbach A-L, Banta A, Civello S, Daly J, Mitchel K, Ladonde S, Konhauserm K, Rodman A, Rusterholtz K, Takacs-Vesbach C (2005) Aquificales in Yellowstone National Park. In: Inskeep WP, Mcdermott TR (eds) Geothermal biology and geochemistry in YNP. Montana State University Publications, Bozeman, MT, pp 129–142
Reysenbach A-L, Hamamura N, Podar M, Griffiths E, Ferreira S, Hochstein R, Heidelberg J, Johnson J, Mead D, Pohorille A, Sarmiento M, Schweighofer K, Seshadri R, Voytek MA (2009) Complete and draft genome sequences of six members of the Aquificales. J Bacteriol 191:1992–1993. doi:10.1128/JB.01645-08
Rosi M, Santacroce R (1984) Volcanic hazard assessment in the Phlegraean Fields: a contribution based on stratigraphic and historical data. Bull Volcanol 47:359–370. doi:10.1007/BF01961567
Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian G (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662. doi:10.1007/s00792-013-0548-2
Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D (2008) Assembly of viral metagenomes from yellowstone hot springs. Appl Environ Microbiol 74:4164–4174. doi:10.1128/AEM.02598-07
Schröder C, Elleuche S, Blank S, Antranikian G (2014) Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Enzyme Microb Technol 57:48–54. doi:10.1016/j.enzmictec.2014.01.010
Sharma A, Kawarabayasi Y, Satyanarayana T (2012) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19. doi:10.1007/s00792-011-0402-3
Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526. doi:10.1128/AEM.00946-09
Sofía Urbieta M, Toril EG, Alejandra Giaveno M, Bazán AA, Donati ER (2014) Archaeal and bacterial diversity in five different hydrothermal ponds in the Copahue region in Argentina. Syst Appl Microbiol 37:429–441. doi:10.1016/j.syapm.2014.05.012
Song Z-Q, Chen J-Q, Jiang H-C, Zhou E-M, Tang S-K, Zhi X-Y, Zhang L-X, Zhang C-LL, Li W-J (2010) Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China. Extremophiles 14:287–296. doi:10.1007/s00792-010-0307-6
Stauder S, Raue B, Sacher F (2005) Thioarsenates in sulfidic waters. Environ Sci Technol 39:5933–5939. doi:10.1021/es048034k
Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158
Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Lett 75:117–124. doi:10.1111/j.1574-6968.1990.tb04089.x
Takacs-Vesbach C, Inskeep WP, Jay ZJ, Herrgard MJ, Rusch DB, Tringe SG, Kozubal MA, Hamamura N, Macur RE, Fouke BW, Reysenbach AL, McDermott TR, Jennings RDM, Hengartner NW, Xie G (2013) Metagenome sequence analysis of filamentous microbial communities obtained from geochemically distinct geothermal channels reveals specialization of three aquificales lineages. Front Microbiol. doi:10.3389/fmicb.2013.00084
Tirawongsaroj P, Sriprang R, Harnpicharnchai P, Thongaram T, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133:42–49. doi:10.1016/j.jbiotec.2007.08.046
Troiano A, Di Giuseppe MG, Patella D, Troise C, De Natale G (2014) Electromagnetic outline of the solfatara-pisciarelli hydrothermal system, Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 277:9–21. doi:10.1016/j.jvolgeores.2014.03.005
Ullrich MK, Pope JG, Seward TM, Wilson N, Planer-Friedrich B (2013) Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand. J Volcanol Geotherm Res 262:164–177. doi:10.1016/j.jvolgeores.2013.07.007
Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP (2010) Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8:140–154. doi:10.1111/j.1472-4669.2009.00228.x
Wang S, Dong H, Hou W, Jiang H, Huang Q, Briggs BR, Huang L (2014) Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China. Sci Rep 4:7479. doi:10.1038/srep07479
Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka peninsula. Archaea. doi:10.1155/2013/136714
Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579
Yamamoto H, Hiraishi A, Kato K, Chiura HX, Maki Y, Shimizu A (1998) Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64:1680–1687
Yang T, Lyons S, Aguilar C, Cuhel R, Teske A (2011) Microbial communities and chemosynthesis in Yellowstone Lake sublacustrine hydrothermal vent waters. Front Microbiol 2:130. doi:10.3389/fmicb.2011.00130
Young M, Wiedenheft B, Snyder J, Spuhler J, Roberto F, Douglas T (2005) Archeal viruses from Yellowstone’s high temperature environments. In: Inskeep WP, Mcdermott TR (eds) Geothermal biology and geochemistry in YNP. Mountana State University Publications, Bozeman, MT, pp 289–304
Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269. doi:10.1007/BF00446886
Acknowledgements
This work was supported by a grant from the Italian Space Agency “Exobiology and extreme environments: from molecular chemistry to the biology of extremophiles” contract n. 2014-026-R.0 and a grant from the Ministero dell’Università e della Ricerca Scientifica—Industrial Research Project “Integrated agro-industrial chains with high energy efficiency for the development of eco-compatible processes of energy and biochemicals production from renewable sources and for the land valorization (Enerbio-Chem)” contract n. PON01_01966, funded in the frame of Operative National Programme Research and Competitiveness 2007–2013 D. D. Prot. n. 01/Ric. 18.1.2010.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Strazzulli, A., Iacono, R., Giglio, R., Moracci, M., Cobucci-Ponzano, B. (2017). Metagenomics of Hyperthermophilic Environments: Biodiversity and Biotechnology. In: Chénard, C., Lauro, F. (eds) Microbial Ecology of Extreme Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-51686-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-51686-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51684-4
Online ISBN: 978-3-319-51686-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
Keywords
- Microbial Community
- Archaeal Community
- Metagenomic Library
- Functional Screening
- Yellowstone National Park
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.