Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Metagenomics of Hyperthermophilic Environments: Biodiversity and Biotechnology

  • Chapter
  • First Online:
Microbial Ecology of Extreme Environments

Abstract

The field of thermophilic microbiology was born in the late 1970s with the pioneering work of Brock (Thermophiles biodiversity, ecology, and evolution. Springer, Boston, pp. 1–9, 2001) and dramatically expanded through the ’80s with the isolation of hyperthermophiles by Stetter (FEMS Microbiol Rev 18:149–158, 1996). The development of SSU rRNA phylogenetics revealed the complexity and diversity of prokaryotic phylotypes on biotopes widely differing in extreme conditions (e.g. spanning gradients of pH between 0 and 10 and temperatures from 60 °C to over 120 °C, respectively). Sites of volcanic activity all over the Earth’s surface and under the sea provide a variety of different environments for extremophilic microorganisms. Hot springs populated by hyperthermophiles (Topt > 65 °C), the majority of which belonging to the domain of Archaea, are very diverse and some of them show combinations of other extreme conditions, for example, acidic, alkaline, high pressure, and high concentrations of salts and heavy metals (Cowan et al. in Curr Opin Microbiol 25:97–102, 2015). Archaea inhabiting hot springs are considered to be the closest living descendants of the earliest living forms on Earth and their study provide insights into the origin and evolution of life (Woese et al. in Proc Natl Acad Sci USA 87:4576–4579, 1990; Olsen et al. in J Bacteriol 176:1–6, 1994). As with all studies of environmental microbiology, our understanding of the function of (hyper)thermophilic microbial consortia has lagged substantially behind. However, recent advances in ‘omics’ technologies, particularly within a system biology context, have made significant progresses into the prediction of in situ functionality (Cowan et al. in Curr Opin Microbiol 25:97–102, 2015). Most extremophilic microorganisms are recalcitrant to cultivation-based approaches (Amann et al. in Microbiol Rev 59:143–69, 1995; Lorenz et al. in Curr Opin Biotechnol 13:572–577, 2002); therefore, culture-independent metagenomic strategies are promising approaches to assess the phylogenetic composition and functional potential of microbial communities living in extreme environments (López-López et al. in Life 3:308–320, 2013). In addition, these approaches implement tremendously the access to enzymes from (hyper)thermophilic microorganisms that have important potential applications in several biotechnological processes. We report here on the state-of-the-art of the metagenomic surveys of different hot springs (T > 65 °C) (Table 5.1) and on the recent advance in the discovery of new hyperthermostable biocatalysts of biotechnological interest from metagenomic studies of these extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen ET, Day AL (1935) Hot springs of the Yellowstone National Park

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angelov A, Mientus M, Liebl S, Liebl W (2009) A two-host fosmid system for functional screening of (meta)genomic libraries from extreme thermophiles. Syst Appl Microbiol 32:177–185. doi:10.1016/j.syapm.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  • Auchtung TA, Shyndriayeva G, Cavanaugh CM (2011) 16S rRNA phylogenetic analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia. Extremophiles 15:105–116. doi:10.1007/s00792-010-0340-5

    Article  CAS  PubMed  Google Scholar 

  • Barth TFW (1950) Volcanic geology, hot springs and geysers of Iceland. Carnegie Institution of Washington, Washington

    Google Scholar 

  • Beam JP, Jay ZJ, Kozubal MA, Inskeep WP (2014) Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME J 8:938–951. doi:10.1038/ismej.2013.193

    Article  CAS  PubMed  Google Scholar 

  • Blank CE, Cady SL, Pace NR (2002) Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 68:5123–5135. doi:10.1128/AEM.68.10.5123-5135.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217. doi:10.1016/j.copbio.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  • Bolduc B, Shaughnessy DP, Wolf YI, Koonin EV, Roberto FF, Young M (2012) Identification of novel positive-strand RNA viruses by metagenomic analysis of Archaea-dominated yellowstone hot springs. J Virol 86:5562–5573. doi:10.1128/JVI.07196-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, btu170. doi:10.1093/bioinformatics/btu170

  • Briggs BR, Brodie EL, Tom LM, Dong H, Jiang H, Huang Q, Wang S, Hou W, Wu G, Huang L, Hedlund BP, Zhang C, Dijkstra P, Hungate BA (2014) Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China. Environ Microbiol 16:1579–1591. doi:10.1111/1462-2920.12311

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (2001) The origins of research on Thermophiles. In: Reysenbach A-L, Voytek M, Mancinelli R (eds) Thermophiles biodiversity, ecology, and evolution. Springer, Boston, pp 1–9

    Chapter  Google Scholar 

  • Brock TD, Brock ML (1967) The hot springs of the Furnas Valley, Azores. Int Rev der gesamten Hydrobiol und Hydrogr 52:545–558. doi:10.1002/iroh.19670520405

    Article  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. doi:10.1093/bioinformatics/btp636

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CS, Chan K-G, Tay Y-L, Chua Y-H, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:177. doi:10.3389/fmicb.2015.00177

    PubMed  PubMed Central  Google Scholar 

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cobucci-Ponzano B, Strazzulli A, Iacono R, Masturzo G, Giglio R, Rossi M, Moracci M (2015) Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries. Enzyme Microb Technol. doi:10.1016/j.enzmictec.2015.06.014

    PubMed  Google Scholar 

  • Cowan D, Ramond J-B, Makhalanyane T, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102. doi:10.1016/j.mib.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  • Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318. doi:10.1007/s00792-001-0259-y

    Article  PubMed  Google Scholar 

  • Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119. doi:10.1016/j.mib.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  • Ellis A, Mahon WA (1967) Natural hydrothermal systems and experimental hot water/rock interactions (Part II). Geochim Cosmochim Acta 31:519–538. doi:10.1016/0016-7037(67)90032-4

    Article  CAS  Google Scholar 

  • Eme L, Reigstad LJ, Spang A, Lanzén A, Weinmaier T, Rattei T, Schleper C, Brochier-Armanet C (2013) Metagenomics of kamchatkan hot spring filaments reveal two new major (hyper) thermophilic lineages related to thaumarchaeota. Res Microbiol 164:425–438. doi:10.1016/j.resmic.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. doi:10.1016/0006-3207(92)91201-3

    Article  Google Scholar 

  • Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns PC, Discipulo MK (2000) Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). J Sediment Res 70:565–585. doi:10.1306/2DC40929-0E47-11D7-8643000102C1865D

    Article  CAS  Google Scholar 

  • Fouke BW, Bonheyo GT, Sanzenbacher B, Frias-Lopez J (2003) Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs, Yellowstone National Park, USA. Can J Earth Sci 40:1531–1548

    Article  Google Scholar 

  • Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375. doi:10.1038/ncomms1373

    Article  PubMed  Google Scholar 

  • Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504. doi:10.1101/gr.112730.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  • Hall JR, Mitchell KR, Jackson-Weaver O, Kooser AS, Cron BR, Crossey LJ, Takacs-Vesbach CD (2008) Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74:4910–4922. doi:10.1128/AEM.00233-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamamura N, Macur RE, Korf S, Ackerman G, Taylor WP, Kozubal M, Reysenbach A-L, Inskeep WP (2009) Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 11:421–431. doi:10.1111/j.1462-2920.2008.01781.x

    Article  CAS  PubMed  Google Scholar 

  • Hedenquist JW, Henley RW (1985) Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand; their origin, associated breccias, and relation to precious metal mineralization. Econ Geol 80:1640–1668. doi:10.2113/gsecongeo.80.6.1640

    Article  CAS  Google Scholar 

  • Hetzer A, Morgan HW, McDonald IR, Daughney CJ (2007) Microbial life in Champagne Pool, a geothermal spring in Waiotapu, New Zealand. Extremophiles 11:605–614. doi:10.1007/s00792-007-0073-2

    Article  PubMed  Google Scholar 

  • Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, Huang Q, Huang L, Wu G, Zhi X, Li W, Dodsworth JA, Hedlund BP, Zhang C, Hartnett HE, Dijkstra P, Hungate BA (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing. PLoS ONE 8:e53350. doi:10.1371/journal.pone.0053350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Dong CZ, Dong RM, Jiang H, Wang S, Wang G, Fang B, Ding X, Niu L, Li X, Zhang C, Dong H (2011) Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles 15:549–563. doi:10.1007/s00792-011-0386-z

    Article  PubMed  Google Scholar 

  • Huber R, Huber H, Stetter KO (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24:615–623. doi:10.1016/S0168-6445(00)00049-8

    Article  CAS  PubMed  Google Scholar 

  • Hug K, Maher WA, Stott MB, Krikowa F, Foster S, Moreau JW (2014) Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand. Front Microbiol 5:1–14. doi:10.3389/fmicb.2014.00569

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huson DH, Weber N (2013) Microbial community analysis using MEGAN. Methods Enzymol 531:465–485. doi:10.1016/B978-0-12-407863-5.00021-6

    Article  CAS  PubMed  Google Scholar 

  • Inskeep WP, Ackerman GG, Taylor WP, Kozubal M, Korf S, Macur RE (2005) On the energetics of chemolithotrophy in nonequilibrium systems: case studies of geothermal springs in Yellowstone National Park. Geobiology 3:297–317. doi:10.1111/j.1472-4669.2006.00059.x

    Article  CAS  Google Scholar 

  • Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, de Jennings RM, Fouke BW, Reysenbach A-L, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5:e9773. doi:10.1371/journal.pone.0009773

  • Inskeep WP, Jay ZJ, Herrgard MJ, Kozubal MA, Rusch DB, Tringe SG, Macur RE, Jennings RDM, Boyd ES, Spear JR, Roberto FF (2013a) Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front Microbiol. doi:10.3389/fmicb.2013.00095

  • Inskeep WP, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB (2013b) The YNP metagenome project: environmental parameters responsible for microbial distribution in the yellowstone geothermal ecosystem. Front Microbiol 4:67. doi:10.3389/fmicb.2013.00067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isaia R, Marianelli P, Sbrana A (2009) Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: implications for caldera dynamics and future eruptive scenarios. Geophys Res Lett 36:L21303. doi:10.1029/2009GL040513

    Article  Google Scholar 

  • Jay Z, Planer-Friedrich B, Rusch D, Inskeep W (2011) Linking geochemistry to microbial community structure and function in sulfidic geothermal systems of Yellowstone National Park. Mineral Mag 75:1104

    Google Scholar 

  • Jiang H, Huang Q, Dong H, Wang P, Wang F, Li W, Zhang C (2010) RNA-based investigation of ammonia-oxidizing archaea in hot springs of Yunnan Province, China. Appl Environ Microbiol 76:4538–4541. doi:10.1128/AEM.00143-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones B, Renaut R, Rosen M (2001) Biogenicity of gold- and silver-bearing siliceous sinters forming in hot (75 C°) anaerobic spring-waters of Champagne Pool, Waiotapu, North Island, New Zealand. J Geol Soc Lond 158:895–911. doi:10.1144/0016-764900-131

    Article  CAS  Google Scholar 

  • Ko M-S, Park H-S, Kim K-W, Lee J-U (2013) The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil. Environ Geochem Health 35:727–733. doi:10.1007/s10653-013-9530-2

    Article  CAS  PubMed  Google Scholar 

  • Kozubal M, Macur RE, Korf S, Taylor WP, Ackerman GG, Nagy A, Inskeep WP (2008) Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park. Appl Environ Microbiol 74:942–949. doi:10.1128/AEM.01200-07

    Article  CAS  PubMed  Google Scholar 

  • Kozubal MA, Romine M, deM Jennings R, Jay ZJ, Tringe SG, Rusch DB, Beam JP, McCue LA, Inskeep WP (2013) Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J 7:622–634. doi:10.1038/ismej.2012.132

    Article  CAS  PubMed  Google Scholar 

  • Kublanov IV, Perevalova AA, Slobodkina GB, Lebedinsky AV, Bidzhieva SK, Kolganova TV, Kaliberda EN, Rumsh LD, Haertlé T, Bonch-Osmolovskaya EA (2009) Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia). Appl Environ Microbiol 75:286–291. doi:10.1128/AEM.00607-08

    Article  CAS  PubMed  Google Scholar 

  • Lewin A, Wentzel A, Valla S (2013) Metagenomics of microbial life in extreme temperature environments. Curr Opin Biotechnol 24:516–525. doi:10.1016/j.copbio.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  • López-López O, Cerdán M, González-Siso M (2013) Hot spring metagenomics. Life 3:308–320. doi:10.3390/life3020308

    Article  PubMed  PubMed Central  Google Scholar 

  • López-López O, Cerdán ME, González Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15:445–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572–577

    Article  CAS  PubMed  Google Scholar 

  • Macur RE, Jay ZJ, Taylor WP, Kozubal MA, Kocar BD, Inskeep WP (2013) Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. Geobiology 11:86–99. doi:10.1111/gbi.12015

    Article  CAS  PubMed  Google Scholar 

  • Marsh CL, Larsen DH (1953) Characterization of some thermophilic bacteria from the Hot Springs of Yellowstone National Park. J Bacteriol 65:193–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menzel P, Gudbergsdóttir SR, Rike AG, Lin L, Zhang Q, Contursi P, Moracci M, Kristjansson JK, Bolduc B, Gavrilov S, Ravin N, Mardanov A, Bonch-Osmolovskaya E, Young M, Krogh A, Peng X (2015) Comparative metagenomics of eight geographically remote terrestrial hot springs. Microb Ecol. doi:10.1007/s00248-015-0576-9

    PubMed  Google Scholar 

  • Meyer-Dombard D, Shock E, Amend J (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227. doi:10.1111/j.1472-4669.2005.00052.x

    Article  Google Scholar 

  • Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, McDonald AI, Havig JR, Hedlund BP (2012) Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning. PLoS ONE 7:e35964. doi:10.1371/journal.pone.0035964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser MJ, Di Francesco RA, Gowda K, Klingele AJ, Sugar DR, Stocki S, Mead DA, Schoenfeld TW (2012) Thermostable DNA polymerase from a viral metagenome is a potent RT-PCR enzyme. PLoS One. doi:10.1371/journal.pone.0038371

  • Mountain B, Benning L, Boerema J (2003) Experimental studies on New Zealand hot spring sinters: rates of growth and textural development. Can J Earth Sci 40:1643–1667. doi:10.1139/E03-068

    Article  CAS  Google Scholar 

  • Nakagawa S, Shtaih Z, Banta A, Beveridge TJ, Sako Y, Reysenbach A-L (2005) Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum. Int J Syst Evol Microbiol 55:2263–2268. doi:10.1099/ijs.0.63708-0

    Article  CAS  PubMed  Google Scholar 

  • Olsen GJ, Woese CR, Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsi G, De Vita S, di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214. doi:10.1016/S0377-0273(96)00063-7

    Article  CAS  Google Scholar 

  • Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130. doi:10.1007/s10534-008-9195-y

    Article  PubMed  Google Scholar 

  • Park CB, Lee SB (1999) Inhibitory effect of mineral ion accumulation on high density growth of the hyperthermophilic archaeon Sulfolobus solfataricus. J Biosci Bioeng 87:315–319

    Article  CAS  PubMed  Google Scholar 

  • Petrosino S, Damiano N, Cusano P, Di Vito MA, de Vita S, Del Pezzo E (2012) Subsurface structure of the Solfatara volcano (Campi Flegrei caldera, Italy) as deduced from joint seismic-noise array, volcanological and morphostructural analysis. Geochem Geophys Geosyst 13:n/a–n/a. doi:10.1029/2011GC004030

  • Planer-Friedrich B, Franke D, Merkel B, Wallschläger D (2008) Acute toxicity of thioarsenates to Vibrio fischeri. Environ Toxicol Chem 27:2027–2035. doi:10.1897/07-633.1

    Article  CAS  PubMed  Google Scholar 

  • Pride DT, Schoenfeld T (2008) Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures. BMC Genom 9:420. doi:10.1186/1471-2164-9-420

    Article  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi:10.1093/nar/gkm864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reysenbach AL, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reysenbach AL, Ehringer M, Hershberger K (2000) Microbial diversity at 83 degrees C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4:61–67

    CAS  PubMed  Google Scholar 

  • Reysenbach A-L, Banta A, Civello S, Daly J, Mitchel K, Ladonde S, Konhauserm K, Rodman A, Rusterholtz K, Takacs-Vesbach C (2005) Aquificales in Yellowstone National Park. In: Inskeep WP, Mcdermott TR (eds) Geothermal biology and geochemistry in YNP. Montana State University Publications, Bozeman, MT, pp 129–142

    Google Scholar 

  • Reysenbach A-L, Hamamura N, Podar M, Griffiths E, Ferreira S, Hochstein R, Heidelberg J, Johnson J, Mead D, Pohorille A, Sarmiento M, Schweighofer K, Seshadri R, Voytek MA (2009) Complete and draft genome sequences of six members of the Aquificales. J Bacteriol 191:1992–1993. doi:10.1128/JB.01645-08

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosi M, Santacroce R (1984) Volcanic hazard assessment in the Phlegraean Fields: a contribution based on stratigraphic and historical data. Bull Volcanol 47:359–370. doi:10.1007/BF01961567

    Article  Google Scholar 

  • Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian G (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662. doi:10.1007/s00792-013-0548-2

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D (2008) Assembly of viral metagenomes from yellowstone hot springs. Appl Environ Microbiol 74:4164–4174. doi:10.1128/AEM.02598-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder C, Elleuche S, Blank S, Antranikian G (2014) Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Enzyme Microb Technol 57:48–54. doi:10.1016/j.enzmictec.2014.01.010

    Article  PubMed  Google Scholar 

  • Sharma A, Kawarabayasi Y, Satyanarayana T (2012) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19. doi:10.1007/s00792-011-0402-3

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526. doi:10.1128/AEM.00946-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofía Urbieta M, Toril EG, Alejandra Giaveno M, Bazán AA, Donati ER (2014) Archaeal and bacterial diversity in five different hydrothermal ponds in the Copahue region in Argentina. Syst Appl Microbiol 37:429–441. doi:10.1016/j.syapm.2014.05.012

    Article  PubMed  Google Scholar 

  • Song Z-Q, Chen J-Q, Jiang H-C, Zhou E-M, Tang S-K, Zhi X-Y, Zhang L-X, Zhang C-LL, Li W-J (2010) Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China. Extremophiles 14:287–296. doi:10.1007/s00792-010-0307-6

    Article  PubMed  Google Scholar 

  • Stauder S, Raue B, Sacher F (2005) Thioarsenates in sulfidic waters. Environ Sci Technol 39:5933–5939. doi:10.1021/es048034k

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158

    Article  CAS  Google Scholar 

  • Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Lett 75:117–124. doi:10.1111/j.1574-6968.1990.tb04089.x

    Article  Google Scholar 

  • Takacs-Vesbach C, Inskeep WP, Jay ZJ, Herrgard MJ, Rusch DB, Tringe SG, Kozubal MA, Hamamura N, Macur RE, Fouke BW, Reysenbach AL, McDermott TR, Jennings RDM, Hengartner NW, Xie G (2013) Metagenome sequence analysis of filamentous microbial communities obtained from geochemically distinct geothermal channels reveals specialization of three aquificales lineages. Front Microbiol. doi:10.3389/fmicb.2013.00084

  • Tirawongsaroj P, Sriprang R, Harnpicharnchai P, Thongaram T, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133:42–49. doi:10.1016/j.jbiotec.2007.08.046

    Article  CAS  PubMed  Google Scholar 

  • Troiano A, Di Giuseppe MG, Patella D, Troise C, De Natale G (2014) Electromagnetic outline of the solfatara-pisciarelli hydrothermal system, Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 277:9–21. doi:10.1016/j.jvolgeores.2014.03.005

    Article  CAS  Google Scholar 

  • Ullrich MK, Pope JG, Seward TM, Wilson N, Planer-Friedrich B (2013) Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand. J Volcanol Geotherm Res 262:164–177. doi:10.1016/j.jvolgeores.2013.07.007

    Article  CAS  Google Scholar 

  • Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP (2010) Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8:140–154. doi:10.1111/j.1472-4669.2009.00228.x

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Dong H, Hou W, Jiang H, Huang Q, Briggs BR, Huang L (2014) Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China. Sci Rep 4:7479. doi:10.1038/srep07479

    Article  CAS  PubMed  Google Scholar 

  • Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka peninsula. Archaea. doi:10.1155/2013/136714

    PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Hiraishi A, Kato K, Chiura HX, Maki Y, Shimizu A (1998) Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64:1680–1687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Lyons S, Aguilar C, Cuhel R, Teske A (2011) Microbial communities and chemosynthesis in Yellowstone Lake sublacustrine hydrothermal vent waters. Front Microbiol 2:130. doi:10.3389/fmicb.2011.00130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young M, Wiedenheft B, Snyder J, Spuhler J, Roberto F, Douglas T (2005) Archeal viruses from Yellowstone’s high temperature environments. In: Inskeep WP, Mcdermott TR (eds) Geothermal biology and geochemistry in YNP. Mountana State University Publications, Bozeman, MT, pp 289–304

    Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269. doi:10.1007/BF00446886

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Italian Space Agency “Exobiology and extreme environments: from molecular chemistry to the biology of extremophiles” contract n. 2014-026-R.0 and a grant from the Ministero dell’Università e della Ricerca Scientifica—Industrial Research Project “Integrated agro-industrial chains with high energy efficiency for the development of eco-compatible processes of energy and biochemicals production from renewable sources and for the land valorization (Enerbio-Chem)” contract n. PON01_01966, funded in the frame of Operative National Programme Research and Competitiveness 2007–2013 D. D. Prot. n. 01/Ric. 18.1.2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Cobucci-Ponzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Strazzulli, A., Iacono, R., Giglio, R., Moracci, M., Cobucci-Ponzano, B. (2017). Metagenomics of Hyperthermophilic Environments: Biodiversity and Biotechnology. In: Chénard, C., Lauro, F. (eds) Microbial Ecology of Extreme Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-51686-8_5

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics