Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Pathology of BRCA Tumors

  • Chapter
  • First Online:
Managing BRCA Mutation Carriers

Abstract

Hereditary or familial breast cancer is defined as breast cancers affecting several family members and involving different generations. An estimated 5% of all breast cancers are associated with a germline mutation in the high-penetrance genes BRCA1 and BRCA2 located in chromosomes 17q21 and 13q12.3, respectively. BRCA-mutated cancers are more frequently seen in women younger than age 40. In addition to breast cancer, BRCA1 is associated with ovarian cancer. BRCA1 breast-associated tumors are mostly invasive ductal carcinomas, and they tend to be of high grade, with high proliferative rates, and pushing borders. By immunohistochemistry, they tend to be triple-negative (estrogen receptor alpha, progesterone receptor, and Her2neu-negative) and p53-positive and express basal markers (CK5/6, CK14, EGFR, caveolin-1, vimentin, laminin, p-cadherin, etc.). There is a high incidence of medullary carcinomas among young patients with BRCA1 cancers. BRCA2-associated tumors are mostly invasive ductal carcinomas not otherwise specified (NOS) or no special type (NST), moderate to high grade, with pushing borders. The immunophenotype of BRCA2 tumors is similar to sporadic breast cancers and are frequently estrogen receptor alpha and progesterone receptor-positive as well as negative for Her2neu. An increase incidence of lobular carcinoma, including pleomorphic lobular carcinoma, has been reported in BRCA2 carriers. BRCA2 tumors express luminal markers (CK8, CK18) and do not express the basal markers seen in BRCA1 cancers. BRCA2 carriers are also at risk of prostate, pancreatic, ovarian, and fallopian tube cancers and melanoma. Hereditary but non-BRCA1/2-mutated breast cancers have some similarities to BRCA2 cancers. Other high-risk genes associated with hereditary breast cancer include PTEN, TP53, STK1/LKB1, CDH1, CHEK2, ATM, NBS1, RAD50, BRIP1, and PALB2. There is little information on these genes and will be only mentioned briefly. Most of these genes confer a low risk. Li-Fraumeni syndrome (TP53 gene) and Cowden’s syndrome (PTEN gene) are associated with a high risk of breast cancer; they however account for a very small number of breast cancers. Most of the hereditary breast cancers are associated with BRCA1 and BRCA2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from ÂŁ29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.

    Article  CAS  PubMed  Google Scholar 

  3. Wooster R, Bignell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378:789–92.

    Article  CAS  PubMed  Google Scholar 

  4. Rahman N, Scott RH. Cancer genes associated with phenotypes in monoallelic and biallelic mutation carriers: new lessons from old players. Hum Mol Genet. 2007;16(Spec No. 1):R60–6.

    Google Scholar 

  5. McKinnon PJ. ATM and ataxia telangiectasia. EMBO Rep. 2004;5:772–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Da Silva L, Lakhani SR. Pathology of hereditary breast cancer S49. Mod Pathol. 2010;23:S46–51.

    Article  PubMed  CAS  Google Scholar 

  7. Nevanlinna H, Bartek J. The CHEK2 gene and inherited breast cancer susceptibility. Oncogene. 2006;25:5912–9.

    Article  CAS  PubMed  Google Scholar 

  8. Rahman N, Seal S, Thompson D, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007;39:165–7.

    Article  CAS  PubMed  Google Scholar 

  9. Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40:17–22.

    Article  CAS  PubMed  Google Scholar 

  10. Lakhani SR, Easton DF, Stratton FR, et al. Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Breast cancer linkage consortium. Lancet. 1997;349:1505–10.

    Article  Google Scholar 

  11. Ford D, Easton DF, Peto J. Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am J Hum Genet. 1995;57:1457–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Easton DF, Narod SA, Ford D, et al. Letter to the editor; The genetic epidemiology of BRCA1. Breast cancer linkage consortium. Lancet. 1994;344:761.

    Article  CAS  PubMed  Google Scholar 

  13. Ford D, Easton DF, Bishop DT, et al. Risks of cancer in BRCA1-mutation carriers: breast cancer linkage consortium. Lancet. 1994;343:692–5.

    Article  CAS  PubMed  Google Scholar 

  14. Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families: the breast cancer linkage consortium. Am J Hum Genet. 1998;62:676–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marroni F, Aretini P, D’Andrea E, et al. Penetrances of breast and ovarian cancer in a large series of families tested for BRCA1/2 mutations. Eur J Hum Genet. 2004;12:899–906.

    Article  CAS  PubMed  Google Scholar 

  16. Easton DF, Ford D, Bishop DT. Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast cancer linkage consortium. Am J Hum Genet. 1995;56:265–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hwang ES, Mclennan JL, Moore DH, et al. Ductal carcinoma in situ in BRCA mutation carriers. J Clin Oncol. 2007;25:642–7.

    Article  PubMed  Google Scholar 

  18. Agnarsson BA, Jonasson JG, Bjornsdottir IB, et al. Inherited BRCA2 mutation associated with high grade breast cancer. Breast Cancer Res Treat. 1998;47:121–7.

    Article  CAS  PubMed  Google Scholar 

  19. Armes JE, Egan AJ, Southey MC, et al. The histologic phenotypes of breast carcinoma occurring before age 40 years in women with and without BRCA1 or BRCA2 germline mutations: a population-based study. Cancer. 1998;83:2335–45.

    Article  CAS  PubMed  Google Scholar 

  20. Bane AL, Beck JC, Bleiweiss I, et al. BRCA2 mutation-associated breast cancers exhibit a distinguishing phenotype based on morphology and molecular profiles from tissue microarrays. Am J Surg Pathol. 2007;31:121–8.

    Article  PubMed  Google Scholar 

  21. Lakhani SR, Jacquemier J, Sloane JP, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998;90:1138–45.

    Article  CAS  PubMed  Google Scholar 

  22. Marcus JN, Watson P, Page DL, et al. Hereditary breast cancer: pathobiology, prognosis, and BRCA1 and BRCA2 gene linkage. Cancer. 1996;77:697–709.

    Article  CAS  PubMed  Google Scholar 

  23. Marcus JN, Watson P, Page DL, et al. BRCA2 hereditary breast cancer pathophenotype. Breast Cancer Res Treat. 1997;44:275–7.

    Article  CAS  PubMed  Google Scholar 

  24. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguishing tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brenton JD, Carey LA, Ahmed AA, et al. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol. 2005;23(29):7350–60.

    Article  CAS  PubMed  Google Scholar 

  26. Rakha EA, El Sayed ME, Reis-Filho JS, et al. Expression profiling technology: its contribution to our understanding of breast cancer. Histopathol. 2008;52(1):67–81.

    Article  CAS  Google Scholar 

  27. Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jones RL, Constantinidou A, Reis-Filho JS. Molecular classification of breast cancer. Surg Pathol Clin. 2012;5(3):701–17.

    Article  PubMed  Google Scholar 

  29. Cheang MCU, Chia SK, Voduc D, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101:736–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bertucci F, Finetti P, Cervera N, et al. How basal are triple-negative breast cancers? Int J Cancer. 2008;123:236–40.

    Article  CAS  PubMed  Google Scholar 

  31. de Ronde JJ, Hannemann J, Halfwerk H, et al. Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res Treat. 2010;119:119–26.

    Article  PubMed  CAS  Google Scholar 

  32. Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. The value of histological grade in breast cancer: experience from a large study with long-term follow up. Histopathology. 1991;19(5):403–10.

    Article  CAS  PubMed  Google Scholar 

  34. Ellis IO, Reis-Filho JS, Simpson JF, et al. Grading chapter. In: Lakhani S, Ellis IO, Schnitt et al., editors. WHO classification of tumours of the breast. Lyon: IARC Press; 2012. p. 19–20.

    Google Scholar 

  35. Rakha EA, Reis-Filho JS, Baehner, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12(4):207–218.

    Google Scholar 

  36. Johannsson OT, Idvall I, Anderson C, et al. Tumour biological features of BRCA1-induced breast and ovarian cancer. Eur J Cancer. 1997;33:362–71.

    Article  CAS  PubMed  Google Scholar 

  37. Lynch BJ, Holden JA, Buys SS, et al. Pathobiologic characteristics of hereditary breast cancer. Hum Pathol. 1998;29:1140–4.

    Article  CAS  PubMed  Google Scholar 

  38. Karp SE, Tonin PN, Begin LR, et al. Influence of BRCA1 mutations on nuclear grade and estrogen receptor status of breast carcinoma in Ashkenazi Jewish women. Cancer. 1997;80:435–41.

    Article  CAS  PubMed  Google Scholar 

  39. Palacios J, Honrado E, Osorio A, et al. Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin Cancer Res. 2003;9:3606–14.

    CAS  PubMed  Google Scholar 

  40. Eerola H, Heikkila P, Tamminen A, et al. Histopathological features of breast tumours in BRCA1, BRCA2 and mutation-negative breast cancer families. Breast Cancer Res. 2005;7:R93–100.

    Article  PubMed  CAS  Google Scholar 

  41. Eisinger F, Nogues C, Guinebretiere JM, et al. Novel indications for BRCA1 screening using individual clinical and morphological features. Int J Cancer. 1999;84:263–7.

    Article  CAS  PubMed  Google Scholar 

  42. Chappuis PO, Nethercot V, Foulkes WD. Clinico-pathological characteristics of BRCA1- and BRCA2-related breast cancer. Semin Surg Oncol. 2000;18:287–95.

    Article  CAS  PubMed  Google Scholar 

  43. Loman N, Johannsson O, Bendahl PO, et al. Steroid receptors in hereditary breast carcinomas associated with BRCA1 or BRCA2 mutations or unknown susceptibility genes. Cancer. 1998;83:310–9.

    Article  CAS  PubMed  Google Scholar 

  44. Noguchi S, Kasugai T, Miki Y, et al. Clinicopathologic analysis of BRCA1- or BRCA2-associated hereditary breast carcinoma in Japanese women. Cancer. 1999;85:2200–5.

    Article  CAS  PubMed  Google Scholar 

  45. van der Groep P, Bouter A, van der Zanden R, et al. Distinction between hereditary and sporadic breast cancer on the basis of clinicopathological data. J Clin Pathol. 2006;59:611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Atchley DA. Clinical and pathologic characteristics of patients With BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26:4282–8.

    Article  PubMed  Google Scholar 

  47. Lakhani S, Rakha E, Simpson PT. Invasive lobular carcinoma. In: Lakhani S, Ellis IO, Schnitt, et al., editors. WHO classification of tumours of the breast. Lyon: IARC Press; 2012. p. 40–2.

    Google Scholar 

  48. DaSilva L, Parry S, Reid L, et al. Aberrant expression of E-Cadherin in lobular carcinomas of the breast. Am J Surg Pathol. 2008;32(5):773–83.

    Article  Google Scholar 

  49. Rakha EA, Patel A, Powe DG, et al. Clinical and biological significance of E-Cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol. 2010;34(10):1472–9.

    Article  PubMed  Google Scholar 

  50. Manucha V, Khilko N, Reilly K, Zhang X. Invasive pleomorphic lobular carcinoma, negative for ER, PR and Her/2neu–a case report. Int J Clin Exp Pathol. 2011;4(2):200–5.

    PubMed  PubMed Central  Google Scholar 

  51. Palacios J, Sarrio D, Garcia-Macias MC, et al. Frequent E-cadherin gene inactivation by loss of heterozygosity in pleomorphic lobular carcinoma of the breast. Mod Pathol. 2003;16(7):674–8.

    Article  PubMed  Google Scholar 

  52. Moe RE, Anderson BO. Distinctive biology of pleomorphic lobular carcinoma of the breast. J Surg Oncol. 2005;90(2):47–50.

    Article  PubMed  Google Scholar 

  53. Ridolfi RL, Jamehdor MR, Arber JM. HER-2/neu testing in breast carcinoma: a combined immunohistochemical and fluorescence in situ hybridization approach. Mod Pathol. 2000;13(8):866–73.

    Article  CAS  PubMed  Google Scholar 

  54. Hoff ER, Tubbs RR, Myles JL, et al. HER2/neu amplification in breast cancer: stratification by tumor type and grade. Am J Clin Pathol. 2002;117:916–21.

    Article  CAS  PubMed  Google Scholar 

  55. Lal P, Tan LK, Chen B. Correlation of HER-2 status with estrogen and progesterone receptors and histologic features in 3655 invasive breast carcinomas. Am J Clin Pathol. 2005;123:541–6.

    Article  CAS  PubMed  Google Scholar 

  56. Porter PL, Garcia R, Moe R, et al. C-erbB-2 oncogene protein in in situ and invasive lobular breast neoplasia. Cancer. 1991;68:331–4.

    Article  CAS  PubMed  Google Scholar 

  57. Frolik D, Caduff R, Varga Z. Pleomorphic lobular carcinoma of the breast: its cell kinetics, expression of oncogenes and tumour suppressor genes compared with invasive ductal carcinomas and classical infiltrating lobular carcinomas. Histopathology. 2001;39(5):503–13.

    Article  CAS  PubMed  Google Scholar 

  58. Ridolfi RL, Rosen PP, Port A, et al. Medullary carcinoma of the breast: a clinicopathologic study with 10 year follow up. Cancer. 1977;40:1365–85.

    Article  CAS  PubMed  Google Scholar 

  59. Jacquemier J, Reis-Filho, Lakhani SR, et al. Carcinomas with medullary features. In Lakhani S, Ellis IO, Schnitt, et al. WHO classification of tumors of the breast. Lyon: IARC Press; 2012. p. 46–7.

    Google Scholar 

  60. Rakha E, Pinder SE, Shin SJ, et al. Invasive tubular carcinoma. In: Lakhani S, Ellis IO, Schnitt, et al., editors. WHO classification of tumors of the breast. Lyon: IARC Press; 2012. p. 43–5.

    Google Scholar 

  61. Peters GN, Wolff M, Haagensen CD. Tubular carcinoma of the breast. Clinical pathologic correlations based on 100 cases. Ann Surg. 1981;193:138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carstens PH, Greenberg RA, Francis D, Lyon H. Tubular carcinoma of the breast. A long term follow-up. Histopathology. 1985;9:271–80.

    Article  CAS  PubMed  Google Scholar 

  63. Sullivan T, Raad RA, Goldberg S, et al. Tubular carcinoma of the breast: a retrospective analysis and review of the literature. Breast Cancer Res Treat. 2005;93:199–205.

    Article  PubMed  Google Scholar 

  64. Reis-Filho JS, Tutt AN. Triple negative tumors: a critical review. Histopathology. 2008;52:108–18.

    Article  CAS  PubMed  Google Scholar 

  65. Bauer KR, Brown M, Cress RD, et al. Descriptive Analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative and Her2-negative invasive breast cancer, the so call triple negative phenotype: a population based study from the California Cancer Registry. Cancer. 2007;109:1721–8.

    Article  PubMed  Google Scholar 

  66. Anders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncology (Williston Park) 2008;22:1233–9; discussion 1239–40, 1243.

    Google Scholar 

  67. Lee E, McKean-Cowdin R, Ma H, et al. Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation: results from a population-based study of young women. J Clin Oncol. 2011;29:4373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13:2329–34.

    Article  CAS  PubMed  Google Scholar 

  69. Heerma van Voss MR, van der Groep P, Bart J, et al. Lympho-vascular invasion in BRCA related breast cancer compared to sporadic controls. BMC Cancer. 2010;10:145–51.

    Google Scholar 

  70. Eerola H, Heikkila P, Tamminen A, et al. Relationship of patients’ age to histopathological features of breast tumours in BRCA1 and BRCA2 and mutation-negative breast cancer families. Breast Cancer Res. 2005;7:R465–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mavaddat N, Barrowdale D, Andrulis IL, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of investigators of modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev. 2012;21(1):134–47.

    Article  CAS  PubMed  Google Scholar 

  72. Eisinger F, Nogues C, Bimbaum D, et al. BRCA1 and medullary breast cancer. JAMA. 1998;280:1227–8.

    Article  CAS  PubMed  Google Scholar 

  73. Phillips K, Andulis IL, Goodwin PJ, et al. Breast carcinomas arising in carriers of mutations in BRCA1 or BRCA2: are they prognostically different? J Clin Oncol. 1999;17:3653–63.

    Article  CAS  PubMed  Google Scholar 

  74. Lakhani SR, Gusterson BA, Jacquemier J, et al. The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin Cancer Res. 2000;6:782–9.

    CAS  PubMed  Google Scholar 

  75. Honrado E, Benitez J, Palacios J. The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol. 2005;18:1305–20.

    Article  CAS  PubMed  Google Scholar 

  76. Tsuda H, Takarabe T, Hasegawa F, et al. Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases. Am J Surg Pathol. 2000;24:197–202.

    Article  CAS  PubMed  Google Scholar 

  77. Armes JE, Trute L, White D, et al. Distinct molecular pathogeneses of early-onset breast cancers in BRCA1 and BRCA2 mutation carriers: a population-based study. Cancer Res. 1999;59:2011–7.

    CAS  PubMed  Google Scholar 

  78. Tot T. The cytokeratin profile of medullary carcinoma of the breast. Histopathology. 2000;37:175–81.

    Article  CAS  PubMed  Google Scholar 

  79. Takei H, Iino Y, Horiguchi J, et al. Low and high molecular weight cytokeratins in invasive breast carcinoma. Oncol Rep. 1997;4:33–8.

    CAS  PubMed  Google Scholar 

  80. Jones C, Nonni AV, Fulford L, et al. CGH analysis of ductal carcinoma of the breast with basaloid/myoepithelial cell differentiation. Br J Cancer. 2001;85:422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fisher B, Slack NH, Bross ID. Cancer of the breast: size of neoplasm and prognosis. Cancer. 1969;24:1071–80.

    Article  CAS  PubMed  Google Scholar 

  82. Smart CR, Myers MH, Gloeckler LA. Implications from SEER data on breast cancer management. Cancer. 1978;41:787–9.

    Article  CAS  PubMed  Google Scholar 

  83. Nemoto T, Vana J, Bedwani RN, et al. Management and survival of female breast cancer: results of a national survey by the American College of Surgeons. Cancer. 1980;45:2917–24.

    Article  CAS  PubMed  Google Scholar 

  84. Reger V, Beito G, Jolly PC. Factors affecting the incidence of lymph node metastases in small cancers of the breast. Am J Surg. 1989;157:501–2.

    Article  CAS  PubMed  Google Scholar 

  85. Carter CL, Allen C, Henson DE. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer. 1989;63:181–7.

    Article  CAS  PubMed  Google Scholar 

  86. Olivotto IA, Jackson JS, Mates D, et al. Prediction of axillary lymph node involvement of women with invasive breast carcinoma: a multivariate analysis. Cancer. 1998;83:948–55.

    Article  CAS  PubMed  Google Scholar 

  87. Foulkes WD, Metcalfe K, Hanna W, et al. Disruption of the expected positive correlation between breast tumor size and lymph node status in BRCA1-related breast carcinoma. Cancer. 2003;98(8):1569–77.

    Article  PubMed  Google Scholar 

  88. Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  89. Sørlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100:8418–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pinilla SM, Honrado E, Hardisson D, et al. Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat. 2006;99:85–90.

    Article  CAS  PubMed  Google Scholar 

  91. Foulkes WD, Stefansson IM, Chappuis PO, et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 2003;95:1482–5.

    Article  CAS  PubMed  Google Scholar 

  92. Rodriguez-Pinilla SM, Sarrio D, Honrado E, et al. Vimentin and laminin expression is associated with basal-like phenotype in both sporadic and BRCA1-associated breast carcinomas. J Clin Pathol. 2007;60:1006–12.

    Article  PubMed  Google Scholar 

  93. Arnes JB, Brunet JS, Stefansson I, et al. Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer. Clin Cancer Res. 2005;11:4003–11.

    Article  CAS  PubMed  Google Scholar 

  94. Cheang MC, Voduc D. Bajdik C, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple negative phenotype. Clin Cancer Res. 2008;14:1368–76.

    Google Scholar 

  95. Collins LC, Martyniak A, Kandel MJ. Basal cytokeratin and epidermal growth factor receptor expression are not predictive of BRCA1 mutation status in women with triple negative breast cancers. Am J Surg Pathol. 2009;33:1093–7.

    Article  PubMed  Google Scholar 

  96. Lakhani SR. The pathology of familial breast cancer: morphological aspects. Breast Cancer Res. 1999;1:31–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lakhani SR, Van De Vijver MJ, Jacquemier J, et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol. 2002;20:2310–8.

    Article  CAS  PubMed  Google Scholar 

  98. Foulkes WD, Metcalfe K, Sun P, et al. Estrogen receptor status in BRCA1- and BRCA2-related breast cancer: the influence of age, grade, and histological type. Clin Cancer Res. 2004;10:2029–34.

    Article  CAS  PubMed  Google Scholar 

  99. Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25:5846–53.

    Article  CAS  PubMed  Google Scholar 

  100. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26:2568–81.

    Article  PubMed  Google Scholar 

  101. Reis-Filho JS, Richardson AL, van de Vijver MJ, et al. Genetic alterations and gene expression profiles of BRCA1 and BRCA2 associated breast cancers. In: Lakhani, SL, editor. WHO classification of tumors of the breast, 4th ed. WHO Press; 2012. p. 181–2.

    Google Scholar 

  102. Haffty BG, Yang Q, Reiss M, et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol. 2006;24:5652–7.

    Article  PubMed  Google Scholar 

  103. Musolino A, Bella MA, Bortesi B, et al. BRCA mutations, molecular markers, and clinical variables in early-onset breast cancer: a population-based study. Breast. 2007;16:280–92.

    Article  PubMed  Google Scholar 

  104. Li WF, Hu Z, Rao NY, et al. The prevalence of BRCA1 and BRCA2 germline mutations in high-risk breast cancer patients of Chinese Han nationality: two recurrent mutations were identified. Breast Cancer Res Treat. 2008;110(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  105. Byrski T, Gronwald J, Huzarski T, et al. Response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat. 2008;108:289–96.

    Article  CAS  PubMed  Google Scholar 

  106. Lakhani SR, Reis-Filho JS, Fulford L, et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res. 2005;11:5175–80.

    Article  CAS  PubMed  Google Scholar 

  107. Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–74.

    Article  CAS  PubMed  Google Scholar 

  108. Laakso M, Loman N, Borg A, et al. Cytokeratin 5/14-positive breast cancer: true basal phenotype confined to BRCA1 tumors. Mod Pathol. 2005;18:1321–8.

    Article  CAS  PubMed  Google Scholar 

  109. Rodriguez-Pinilla SM, Sarrio D, Honrado E, et al. Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res. 2006;12:1533–9.

    Article  CAS  PubMed  Google Scholar 

  110. van der Groep P, Bouter A, van der Zanden R, Re. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 2004;96:712–3; author reply 714.

    Google Scholar 

  111. van Diest PJ, van der Groep P, van der Wall E. EGFR expression predicts BRCA1 status in patients with breast cancer. Clin Cancer Res. 2006;12:670, author reply 671.

    Google Scholar 

  112. Elledge RM, Allred DC. Prognostic and predictive value of p53 and p21 in breast cancer. Breast Cancer Res Treat. 1998;52:79–98.

    Article  CAS  PubMed  Google Scholar 

  113. Crook T, Brooks LA, Crossland S, et al. p53 mutation with frequent novel condons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours. Oncogene. 1998;17:1681–9.

    Article  CAS  PubMed  Google Scholar 

  114. Phillips KA, Nichol K, Ozcelik H, et al. Frequency of p53 mutations in breast carcinomas from Ashkenazi Jewish carriers of BRCA1 mutations. J Natl Cancer Inst. 1999;91:469–73.

    Article  CAS  PubMed  Google Scholar 

  115. Rudolph P, Olsson H, Bonatz G, et al. Correlation between p53, cerbB-2, and topoisomerase II alpha expression, DNA ploidy, hormonal receptor status and proliferation in 356 node-negative breast carcinomas: prognostic implications. J Pathol. 1999;187:207–16.

    Article  CAS  PubMed  Google Scholar 

  116. Hoogerbrugge N, Bult P, de Widt-Levert LM, et al. High prevalence of premalignant lesions in prophylactically removed breasts from women at hereditary risk for breast cancer. J Clin Oncol. 2003;21:41–5.

    Article  CAS  PubMed  Google Scholar 

  117. Isern AE, Loman N, Malina J, et al. Histopathological findings and follow-up after prophylactic mastectomy and immediate breast reconstruction in 100 women from families with hereditary breast cancer. Eur J Surg Oncol. 2008;34:1148–54.

    Article  CAS  PubMed  Google Scholar 

  118. Kauff ND, Brogi E, Scheuer L, et al. Epithelial lesions in prophylactic mastectomy specimens from women with BRCA mutations. Cancer. 2003;97:1601–8.

    Article  PubMed  Google Scholar 

  119. Hermsen BB, von Mensdorff-Pouilly S, Fabry HF, et al. Lobulitis is a frequent finding in prophylactically removed breast tissue from women at hereditary high risk of breast cancer. J Pathol. 2005;206:220–3.

    Article  PubMed  Google Scholar 

  120. Adem C, Reynolds C, Soderberg CL, et al. Pathologic characteristics of breast parenchyma in patients with hereditary breast carcinoma, including BRCA1 and BRCA2 mutation carriers. Cancer. 2003;97:1–11.

    Article  PubMed  Google Scholar 

  121. Claus EB, Petruzella S, Matloff E, et al. Prevalence of BRCA1 and BRCA2 mutations in women diagnosed with ductal carcinoma in situ. JAMA. 2005;293:964–9.

    Article  CAS  PubMed  Google Scholar 

  122. Jacquemier J, Eisinger F, Guinebretiere JM, et al. Intraductal component and BRCA1-associated breast cancer. Letter to the editor. Lancet. 1996;348:1098.

    Article  Google Scholar 

  123. Hadjiloucas I, Gilmore AP, Bundred NJ, et al. Assessment of apoptosis in human breast tissue using an antibody against the active form of caspase 3: relation to tumour histopathological characteristics. Br J Cancer. 2001;85:1522–6.

    Google Scholar 

  124. Simpson PT, Reis-Filho JS, Lambros MB, et al. Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol. 2008;215:231–44.

    Article  CAS  PubMed  Google Scholar 

  125. Freneaux P, Stoppa-Lyonnet D, Mouret E, et al. Low expression of BCL-2 in BRCA1-associated breast cancers. Br J Cancer. 2000;83:1318–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Osin P, Gusterson BA, Philp E, et al. Predicted anti-oestrogen resistance in BRCA-associated familial breast cancers. Eur J Cancer. 1998;34:1683–6.

    Article  CAS  PubMed  Google Scholar 

  127. Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p 21 in apoptosis 1. Mol Cancer Therap. 2002;639–49.

    Google Scholar 

  128. Foulkes WD, Brunet JS, Stefansson IM, et al. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1 related breast cancer. Cancer Res. 2004;64:830–5.

    Article  CAS  PubMed  Google Scholar 

  129. Chappuis PO, Donato E, Goffin JR, et al. Cyclin E expression in breast cancer: predicting germline BRCA1 mutations, prognosis and response to treatment. Ann Oncol. 2005;16:735–42.

    Article  CAS  PubMed  Google Scholar 

  130. Palacios J, Honrado E, Osorio A, et al. Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat. 2005;90:5–14.

    Article  CAS  PubMed  Google Scholar 

  131. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Ann Rev Cell Dev Biol. 1999;15:551–78.

    Article  CAS  Google Scholar 

  132. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000;88(4):1474–80.

    CAS  PubMed  Google Scholar 

  133. van der Groep P, Bouter A, Menko FH, et al. High frequency of HIF-1alpha overexpression in BRCA1 related breast cancer. Breast Cancer Res Treat. 2008;111:475–80.

    Article  CAS  PubMed  Google Scholar 

  134. Turner N, Tutt A, Ashworth A. Hallmarks of “BRCAness” in sporadic cancers. Nat Rev Cancer. 2004;4:814–9.

    Google Scholar 

  135. Chin K, DeVries S, Fridlyand J, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006;10:529–41.

    Article  CAS  PubMed  Google Scholar 

  136. Bergamaschi A, Kim YH, Wang P, et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene expression subtypes of breast cancer. Genes Chromosom Cancer. 2006;45:1033–40.

    Article  CAS  PubMed  Google Scholar 

  137. Lidereau R, Eisinger F, Champeme MH, et al. Major improvement in the efficacy of BRCA1 mutation screening using morphoclinical features of breast cancer. Cancer Res. 2000;60:1206–10.

    CAS  PubMed  Google Scholar 

  138. Young SR, Pilarski RT, Donenberg T, et al. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer. 2009;9:86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vaziri SA, Krumroy LM, Elson P, et al. Breast tumor immunophenotype of BRCA1-mutation carriers is influenced by age at diagnosis. Clin Cancer Res. 2001;7:1937–45.

    CAS  PubMed  Google Scholar 

  140. Honrado E, Osorio A, Milne RL, et al. Immunohistochemical classification of non-BRCA1/2 tumors identifies different groups that demonstrate the heterogeneity of BRCAX families. Mod Pathol. 2007;20:1298–306.

    Article  CAS  PubMed  Google Scholar 

  141. Robson ME, Chappuis PO, Satagopan J, et al. A combined analysis of outcome following breast cancer: differences in survival based on BRCA1/BRCA2 mutation status and administration of adjuvant treatment. Breast Cancer Res. 2004;6:R8–17.

    Article  CAS  PubMed  Google Scholar 

  142. Quenneville LA, Phillips KA, Ozcelik H, et al. HER-2/ neu status and tumor morphology of invasive breast carcinomas in Ashkenazi women with known BRCA1 mutation status in the Ontario Familial Breast Cancer Registry. Cancer. 2002;95:2068–75.

    Article  CAS  PubMed  Google Scholar 

  143. Arun B, Vogel KJ, Lopez A, et al. High prevalence of preinvasive lesions adjacent to BRCA1/2-associated breast cancers. Cancer Prev Res (Phila. PA). 2009;2:122–7.

    Google Scholar 

  144. Hoogerbrugge N, Bult P, Bonenkamp JJ, et al. Numerous high-risk epithelial lesions in familial breast cancer. Eur J Cancer. 2006;42:2492–8.

    Article  CAS  PubMed  Google Scholar 

  145. van der Groep P, van Diest PJ, Menko FH, et al. Molecular profile of ductal carcinoma in situ of the breast in BRCA1 and BRCA2 germline mutation carriers. J Clin Pathol. 2009;62:926–30.

    Article  PubMed  Google Scholar 

  146. Schuyer M, van der Burg ME, Henzen-Logmans SC, et al. Reduced expression of BAX is associated with poor prognosis in patients with epithelial ovarian cancer: a multifactorial analysis of TP53, p21, BAX and BCL-2. Br J Cancer. 2001;85:1359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jonsson G, Naylor TL, Vallon-Christersson J, et al. Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res. 2005;65:7612–21.

    PubMed  Google Scholar 

  148. van Beers EH, van Welsem T, Wessels LF, et al. Comparative genomic hybridization profiles in human BRCA1 and BRCA2 breast tumors highlight differential sets of genomic aberrations. Cancer Res. 2005;65:822–7.

    PubMed  Google Scholar 

  149. Wessels LF, van Welsem T, Hart AA, et al. Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res. 2002;62:7110–7.

    CAS  PubMed  Google Scholar 

  150. Yang RL, Mick R, Lee K. DCIA in BRCA1 and BRCA2 mutation carriers: prevalence, phenotype, and expression of oncodrivers C-Met and HER3. J Transl Med. 2015;13:335–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without the help of Mrs. Elizabeth Mason-Renteria from the MemorialCare library at Long Beach who helped me in obtaining most of the papers used as references for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Ibarra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ibarra, J.A. (2017). Pathology of BRCA Tumors. In: B. Chagpar, A. (eds) Managing BRCA Mutation Carriers . Springer, Cham. https://doi.org/10.1007/978-3-319-59198-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59198-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59197-1

  • Online ISBN: 978-3-319-59198-8

  • eBook Packages: MedicineMedicine (R0)

Keywords

Publish with us

Policies and ethics