Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Contemporary Robust Optimal Design Strategies

  • Conference paper
  • First Online:
Trends and Perspectives in Linear Statistical Inference

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

  • 734 Accesses

  • 2 Citations

Abstract

Researchers often find that nonlinear regression models are more applicable for modeling various biological, physical, and chemical processes than the linear ones since they tend to fit the data well and since these models (and model parameters) are more scientifically meaningful. These researchers are thus often in a position of requiring optimal or near-optimal designs for a given nonlinear model. A common shortcoming of most optimal designs for nonlinear models used in practical settings, however, is that these designs typically focus only on (first-order) parameter variance or predicted variance, and thus ignore the inherent nonlinear of the assumed model function. Another shortcoming of optimal designs is that they often have only p support points, where p is the number of model parameters. Measures of marginal curvature, first introduced in Clarke (1987) and further developed in Haines et al. (2004), provide a useful means of assessing this nonlinearity. Other relevant developments are the second-order volume design criterion introduced in Hamilton and Watts (1985) and extended in O’Brien (1992) and O’Brien et al. (2010), and the second-order MSE criterion developed and illustrated in Clarke and Haines (1995). This chapter underscores and highlights various robust design criteria and those based on second-order (curvature) considerations. These techniques, easily coded in the R and SAS/IML software packages, are illustrated here with several key examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, A.C.: Planning experiments to detect inadequate regression models. Biometrika 59, 275–293 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS. Oxford, New York (2007)

    Google Scholar 

  • Bates, D.M., Watts, D.G.: Nonlinear Regression Analysis and Its Applications. Wiley, New York (1988)

    Book  MATH  Google Scholar 

  • Beale, E.M.L.: Confidence regions in non-linear estimation (with Discussion). J. R. Stat. Soc. B 22, 41–88 (1960)

    MATH  Google Scholar 

  • Clarke, G.P.Y.: Marginal curvatures and their usefulness in the analysis of nonlinear regression models. J. Am. Stat. Assoc. 82, 844–850 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Clarke, G.P.Y., Haines, L.M.: Optimal design for models incorporating the richards function. In: Seeber, G.U.H., Francis, B.J., Hatzinger, R., Steckel-Berger, G. (eds.) Statistical Modelling. Springer, New York (1995)

    Google Scholar 

  • Cook, R.D., Witmer, J.A.: A note on parameter-effects curvature. J. Am. Stat. Assoc. 80, 872–878 (1985)

    Article  MathSciNet  Google Scholar 

  • Dette, H., O’Brien, T.E.: Optimality criteria for regression models based on predicted variance. Biometrika 86, 93–106 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Govaerts, B.: Discussion of the papers by Atkinson, and Bates et al. J. R. Stat. Soc. B 58, 95–111 (1996)

    Google Scholar 

  • Haines, L.M., O’Brien, T.E., Clarke, G.P.Y.: Kurtosis and curvature measures for nonlinear regression models. Stat. Sinica 14, 547–570 (2004)

    MathSciNet  MATH  Google Scholar 

  • Hamilton, D.C., Watts, D.G.: A quadratic design criterion for precise estimation in nonlinear regression models. Technometrics 27, 241–250 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer, J.: General equivalence theory for optimal designs (approximation theory). Ann. Stat. 2, 849–879 (1974)

    Article  MATH  Google Scholar 

  • Kiefer, J., Wolfowitz, J.: The equivalence of two extremum problems. Can. J. Math. 12, 363–366 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • O’Brien, T.E.: A note on quadratic designs for nonlinear regression models. Biometrika 79, 847–849 (1992)

    Article  Google Scholar 

  • O’Brien, T.E.: A new robust design strategy for sigmoidal models based on model nesting. In: Dutter, R., Grossmann, W. (eds.) CompStat 1994, pp. 97–102. Physica-Verlag, Heidelberg (1994)

    Google Scholar 

  • O’Brien, T.E.: Optimal design and lack of fit in nonlinear regression models. In: Seeber, G.U.H., Francis, B.J., Hatzinger, R., Steckel-Berger, G. (eds.) Statistical Modelling, pp. 201–206. Springer, New York (1995)

    Chapter  Google Scholar 

  • O’Brien, T.E.: Efficient experimental design strategies in toxicology and bioassay. Stat. Optim. Inf. Comput. 4, 99–106 (2016)

    MathSciNet  Google Scholar 

  • O’Brien, T.E., Funk, G.M.: A gentle introduction to optimal design for regression models. Am. Stat. 57, 265–267 (2003)

    Article  MathSciNet  Google Scholar 

  • O’Brien, T.E., Rawlings, J.O.: A non-sequential design procedure for parameter estimation and model discrimination in nonlinear regression models. J. Stat. Plann. Infer. 55, 77–93 (1996)

    Article  MATH  Google Scholar 

  • O’Brien, T.E., Chooprateep, S., Homkham, N.: Efficient geometric and uniform design strategies for sigmoidal regression models. S. Afr. Stat. J. 43, 49–83 (2009)

    MathSciNet  Google Scholar 

  • O’Brien, T.E., Jamroenpinyo, S., Bumrungsup, C.: Curvature measures for nonlinear regression models using continuous designs with applications to optimal design. Involve J. Math. 3, 317–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Pawitan, Y.: In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press, Oxford (2013)

    Google Scholar 

  • Pukelsheim, F.: Optimal Design of Experiments. Wiley, New York (1993)

    MATH  Google Scholar 

  • Pukelsheim, F., Rieder, S.: Efficient rounding of approximate designs. Biometrika 79, 763–770 (1992)

    Article  MathSciNet  Google Scholar 

  • Ratkowsky, D.A.: Nonlinear Regression Modeling: A Unified Practical Approach. Marcel Dekker, New York (1983)

    MATH  Google Scholar 

  • Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley, New York (1989)

    Book  MATH  Google Scholar 

  • Silvey, S.D.: Optimal Design: An Introduction to the Theory for Parameter Estimation. Chapman and Hall, London (1980)

    Book  MATH  Google Scholar 

  • Studden, W.J.: Some robust-type D-optimal designs in polynomial regression. J. Am. Stat. Assoc. 77, 916–921 (1982)

    Google Scholar 

  • White, L.V.: An extension of the general equivalence theorem to nonlinear models. Biometrika 60, 345–348 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author expresses his appreciation to the J. William Fulbright Foreign Scholarship Board for ongoing grant support and to Chiang Mai University (Thailand), Gadjah Mada University and Islamic University (Indonesia), Kathmandu University (Nepal), and Vietnam National University (Hanoi) for kind hospitality during recent research visits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. O’Brien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

O’Brien, T.E. (2018). Contemporary Robust Optimal Design Strategies. In: Tez, M., von Rosen, D. (eds) Trends and Perspectives in Linear Statistical Inference . Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-73241-1_11

Download citation

Keywords

AMS Mathematics Subject Classification Numbers

Publish with us

Policies and ethics